

Current Sensors

Description

For the electronic measurement of currents: DC, AC, pulsed, mixed, with a galvanic isolation between the primary circuit and the secondary circuit.

Features

- ◆ Hall effect measuring principle
- ◆ Low power consumption
- ◆ Isolation voltage 5000 V
- ◆ Extended measuring range (3 *I_{PN})
- Galvanic isolation between primary and secondary circuit
- Insulated plastic case recognized according to UL 94-V0

$$\begin{split} I_{PN} &= 500...2500A \\ V_{OUT} &= \pm 4~V \end{split}$$

Advantages

- ◆ Easy installation
- ◆ Small size and space saving
- Only one design for wide current ratings range
- ♦ High immunity to external interference

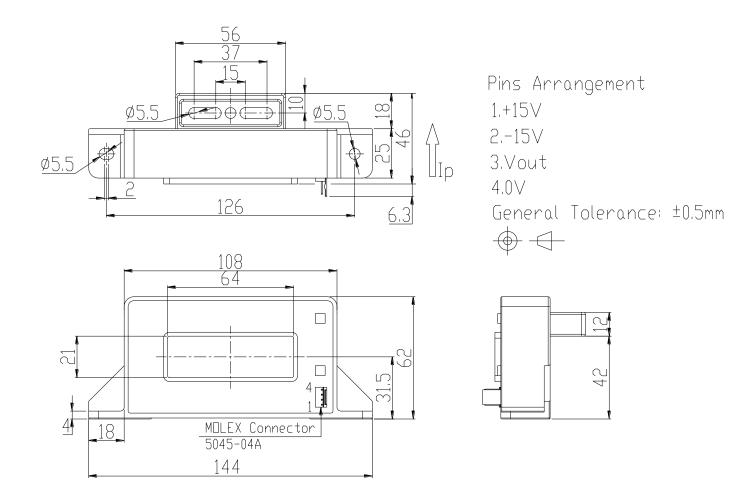
Industrial applications

- ◆ AC motor speed control
- Battery supplied applications
- ◆ Uninterruptible Power Supplies(UPS)
- ◆ Power supplies for welding ,cable TV and telecommunication applications.

TYPES OF PRODUCTS					
Type	Primary nominal r. m. s current I _{PN} (A)	Primary current measuring range I _P (A)			
BSY9-500IOV2M	500	±1500			
BSY9-600IOV2M	600	±1800			
BSY9-850IOV2M	850	+2550			
BSY9-1000IOV2M	1000	±3000			
BSY9-1200IOV2M	1200	±3600			
BSY9-1500IOV2M	1500	±4500			
BSY9-2000IOV2M	2000	±5500			
BSY9-2500IOV2M	2500	±5500			

Current Sensors

Parameters Table


PARAMETERS	SYMBOL	UNIT	VALUE	CONDITIONS
Electrical data				
Supply voltage(±5%) ⁽¹⁾	Vc	V	±15	
Current consumption	I_{C}	mA	< <u>+20</u>	
Overload capacity	Icc	At	30000	
R.M.S voltage for AC isolation test	V_d	KV	5	@ 60Hz,1min
R.M.S rated voltage, safe separation	V_b	V	500	
Output voltage	V _{OUT}	V	±4V ±40mV	@ \pm I _{PN} , R _L = 10 kΩ, T _A = 25 °C
Isolation resistance	R_{IS}	ΜΩ	>1000	@ 500 VDC
Output internal resistance	Rout	Ω	Approx.100	
Load resistance ⁽²⁾	$R_{\rm L}$	ΚΩ	>1	
Accuracy - Dynamic perform	ance data			
Linearity ⁽³⁾ $(0 \pm I_{PN})$	εL	% of I _{PN}	<±1	@ (0±I _{PN})
Accuracy	X	%	<±1	@ I _{PN} , T _A = 25 °C (without offset)
Electrical offset voltage	V_{OE}	mV	< <u>+20</u>	$@T_{A} = 25 \text{ C}$
Hysteresis offset voltage	V _{OH}	mV	<±30	@ I _P = 0;after an excursion of 1*I _{PN}
Thermal drift of VoE	V _{OT}	mV/K	<±1	
Thermal drift of the gain(% of reading)	TCε _G	%/K	<±0.1	
Response time	t _r	μS	<5	@ 90% of I _{PN}
di/dt accurately followed	di/dt	A/μS	>50	
Frequency bandwidth(-3dB) (4)	f	kHz	DC25	
General data				
Ambient operating temperature	T_A	°C	-40+105	
Ambient storage temperature	Ts	$^{\circ}$	-40+105	
Mass	m	g	300	

Notes:

- (1) Operating at $\pm 12V \le V_C < \pm 15V$ will reduce the measuring range.
- (2) If the customer uses $1K\Omega$ of the load resistor, the primary current has to be limited as the nominal.
- (3) Linearity data exclude the electrical offset.
- (4) Please refer to derating curves in the technical file to avoid excessive core heating at high frequency.

Current Sensors

Dimensions BSY9-IOV2M(in mm. 1 mm = 0.0394 inch)

◆Instructions of use

- 1. When the test current passes through the sensors you can get the size of the output voltage. (Warning: wrong connection may lead to sensors damage.)
- 2. Based on user needs, the sensors output range can be appropriately regulated.
- 3. According to user needs, different rated input currents and output voltages of the sensors can be customized.

BSY9-IOV2M

Current Sensors

RESTRICTIONS ON PRODUCT USE

- The information contained herein is subject to change without notice.
- BYD Microelectronics Co., Ltd. (short for BME) exerts the greatest possible effort to ensure high quality and reliability. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing BME products, to comply with the standards of safety in making a safe design for the entire system, including redundancy, fire-prevention measures, and malfunction prevention, to prevent any accidents, fires, or community damage that may ensue. In developing your designs, please ensure that BME products are used within specified operating ranges as set forth in the most recent BME products specifications.
- The BME products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These BME products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of BME products listed in this document shall be made at the customer's own risk.