

Home appliances 32-bit 3-in-1 MCU

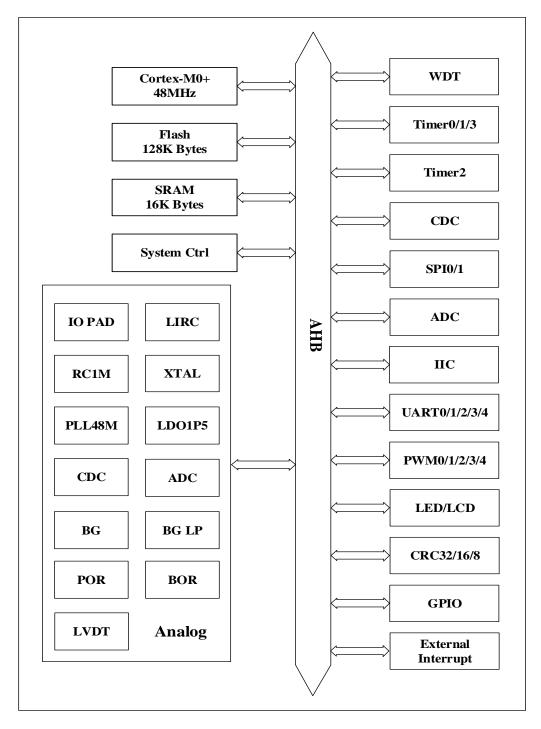
1 BF7807AMXX MCU general description

1.1. Features

- > Core: ARM Cortex-M0+
- Operating frequency: 48MHz, 32MHz, 24MHz, 12MHz
- Clock error: ±1% @-20°C~65°C, 5V
 - ±3% @-40°C~105°C, 5V
- > Memory (FLASH)
- FLASH: 128K Bytes, support erase and write protection and read protection functions
- DATA: 512 Bytes
- SRAM: 16K Bytes
- > Clock source, reset and power management
- Internal low-speed RC oscillator: LIRC 32kHz, clock error is ±10% @25°C, 5V, ±25% @-40°C ~105°C, 5V
- Internal high-speed RC oscillator: RC 1MHz
- External crystal oscillator: XTAL 32768Hz/4MHz/8MHz
- 8 kinds of resets, including power-down reset voltage (BOR): 2.8V/3.3V/3.7V/4.2V
- Low voltage detection:
 2.7V/3.0V/3.3V/3.6V/3.8V/4.0V/4.2V/4.4V
- > 10
- Both support built-in pull-up resistor 33k
- High current sink port (PA0~PA7)
- Support IO function remapping
- Both support external interrupt function (rising edge, falling edge, double edge)
- Communication module
- 5xUART communication module, support IO mapping
- 1xIIC master-slave communication, both master and slave support 100kHz/400kHz/1MHz
- 2xSPI master-slave communication, the master supports up to 8MHz, the slave supports up to 4MHz
- > 16-Bit PWM
- PWM0/1 both support 5 channels, sharing period, duty cycle and polarity are configurable
- PWM2/3 both support 1 channel and support mapping
- PWM4 supports 1 channel
- Support timing mode

- Operating voltage: 2.7V ~5.5V
- ➢ Operating temperature: -40°C ~105℃
- High precision 12-bit ADC
- Up to 59 analog input channels
- Reference voltage: VCC/2V/4V
- Single conversion mode
- > Interrupt
- 26 interrupt sources
- ➢ 4-level interrupt priority can be configured
- > Timer
- 16-bit Timer0/1/2/3
- Timer2 clock source: LIRC 32k, XTAL 32768Hz/4MHz/8MHz
- Watchdog timer, overflow time from 18ms to 2.304s
- SysTick timer
- > LED Driver
- Support up to 8COM x 16SEG (1/8~8/8 duty cycle)
- LCD Driver
- 4 COM x 28 SEG (1/4 duty cycle, 1/3 bias)
- 5 COM x 27 SEG (1/5 duty cycle, 1/3 bias)
- \circ 6 COM x 26 SEG (1/6 duty cycle, 1/3 bias or 1/4 bias)
- 8 COM x 24 SEG (1/8 duty cycle, 1/4 bias)
- Touch key
- The sensitivity of each key can be set independently
- Capacitive keys can be reused as GPIO
- > Low power management
- $\circ \quad \ \ Idle \ mode \ 0, power \ consumption \ 1.7mA@5V \ typical$
- Idle mode 1, power consumption 8.0µA@5V typical
- > Cyclic redundancy check unit
- CRC8/16/32
- > 96-bit/128-bit chip unique identification code
- Serial two-wire debugging interface SWD, PGC/PGD programming
- Package
- LQFP44/LQFP64

1.2. Overview


The BF7807AMXX adopts ARM Cortex-M0+ core, 32-bit high-performance microcontroller. The Cortex-M0+ core is based on the ARMv6-M architecture and supports the Thumb instruction set.

The BF7807AMXX includes peripheral watchdog, LED row and column matrix driver, LCD driver, capacitive touch key detection, IIC master-slave, SPI master-slave, multi-channel UART, PWM, Timer0, Timer1, Timer2, Timer3, 12bit successive approximation ADC, low-voltage detection, power-down reset, low-power management and other modules.

The BF7807AMXX integrates multiple capacitive detection channels, which can be used to detect proximity sensing or touch, and realize various applications such as keys, scroll wheels, and sliders. The BF7807AMXX can configure the corresponding function register to adjust the sensitivity of the capacitance detection channel.

1.3. System architecture

System architecture

1.4. Memory map

0x500A_FFFF	External Interrupt			
0x500A_0100	.			
0x500A_0000	GPIO	r	_	
	CRC		0x5005_0900	PWM4
0x5009_0000			0x5005_0800	PWM3
	LED/LCD		0x5005_0700	PWM2
0x5008_0000			0x5005_0600	PWM1
0x5007_0000	ADC		0x5005_0500	PWM0
0.0007_0000	CDC		0x5005_0400	WDT
0x5006_0000	СЪС		0x5005_0300	Timer3
	Timer0~3/WDT/PWM0~4		0x5005_0200	Timer2
0x5005_0000			0x5005_0100	Timer1
0 5004 0000	IIC		- 0x5005_0000	Timer0
0x5004_0000				
0x5003_0000	UART0~4		0x5003_0400	UART4
_	SPI0/1		0x5003_0300	UART3
0x5002_0000			0x5003_0200	UART2
0 5001 0000	FLASH_CTRL		0x5003_0100	UART1
0x5001_0000			0x5003_0000	UARTO
0x5000_001C	LVDT		0x5002_0100	SPI1
	CVC CTDI	ļ	0x5002_0000	SPI0
0x5000_0000	SYS_CTRL			
	Reserved			
0x2000_4000				
	GDAN			
	SRAM			
0x2000_0000				
	Reserved			
	Keserveu			
0x0003_0000				
	FLASH IP/ FLASH NVR			
0x0000_0000				

Address division map

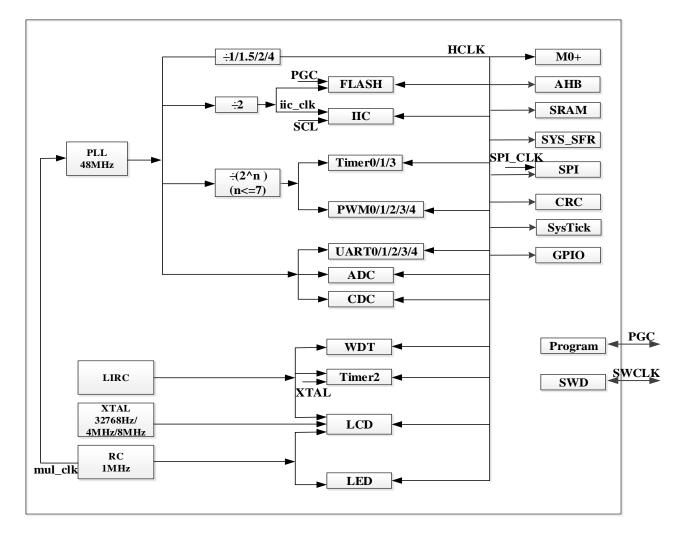
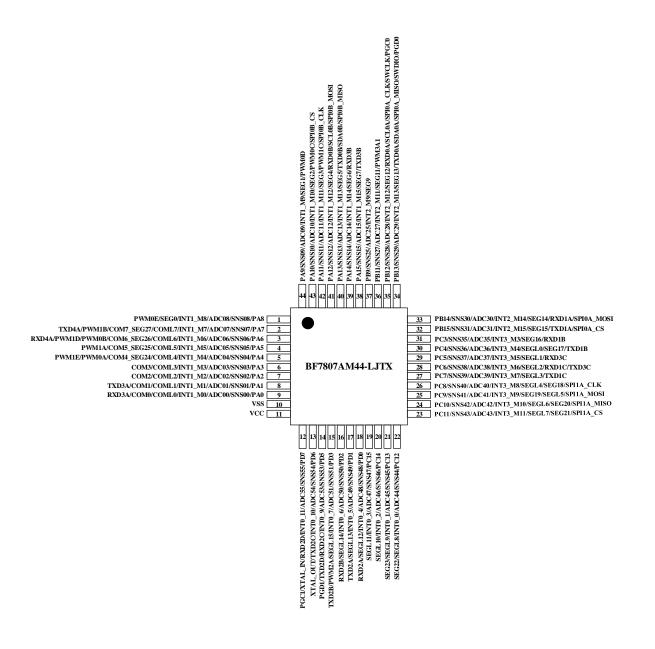

Address range	Size(Bytes)	Module
0x0000_0000 ~ 0x0002_FFFF	192K	FLASH IP/FLASH NVR
0x2000_0000 ~ 0x2000_3FFF	16K	SRAM
0x5000_0000 ~ 0x5000_001B	CAV	SYS_CTRL
0x5000_001C~ 0x5000_FFFF	64K	LVDT
0x5001_0000 ~ 0x5001_FFFF	64K	FLASH_CTRL
0x5002_0000 ~ 0x5002_00FF	256	SPIO
0x5002_0100 ~ 0x5002_01FF	256	SPI1
0x5002_0200 ~ 0x5002_FFFF	-	Reserved
0x5003_0000 ~ 0x5003_00FF	256	UART0
0x5003_0100 ~ 0x5003_01FF	256	UART1
0x5003_0200 ~ 0x5003_02FF	256	UART2
0x5003_0300 ~ 0x5003_03FF	256	UART3
0x5003_0400 ~ 0x5003_04FF	256	UART4
0x5003_0500 ~ 0x5003_FFFF	-	Reserved
0x5004_0000 ~ 0x5004_FFFF	64K	IIC
0x5005_0000 ~ 0x5005_00FF	256	Timer0
0x5005_0100 ~ 0x5005_01FF	256	Timer1
0x5005_0200 ~ 0x5005_02FF	256	Timer2
0x5005_0300 ~ 0x5005_03FF	256	Timer3
0x5005_0400 ~ 0x5005_04FF	256	WDT
0x5005_0500 ~ 0x5005_05FF	256	PWM0
0x5005_0600 ~ 0x5005_06FF	256	PWM1
0x5005_0700 ~ 0x5005_07FF	256	PWM2
0x5005_0800 ~ 0x5005_08FF	256	PWM3
0x5005_0900 ~ 0x5005_09FF	256	PWM4
0x5005_0A00 ~ 0x5005_FFFF	-	Reserved
0x5006_0000 ~ 0x5006_FFFF	64K	CDC
0x5007_0000 ~ 0x5007_FFFF	64K	ADC
0x5008_0000 ~ 0x5008_FFFF	64K	LED/LCD
0x5009_0000 ~ 0x5009_FFFF	64K	CRC
0x500A_0000 ~ 0x500A_00FF		GPIO
0x500A_0100 ~ 0x500A_FFFF	64K	External Interrupt

Table Address division

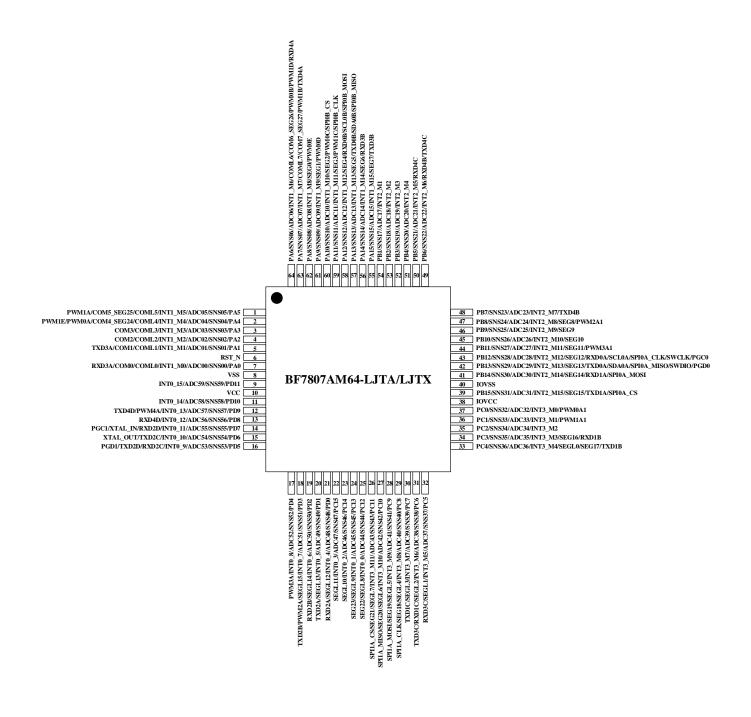
1.5. Clock block diagram

Clock block diagram

1.6. Selection list


		BF7807AM44-	BF7807AM64-	BF7807AM64-
Moo	del	LJTX	LJTA	LJTX
Operating voltage (V)		2.7~5.5	2.7~5.5	2.7~5.5
Operating free	quency (Hz)	48M	48M	48M
Co	re	ARM Cortex-M0+	ARM Cortex-M0+	ARM Cortex-M0+
C 11	FLASH	128004B	128K	128K
Storage module	DATA	512	512	512
(Bytes)	SRAM	16K	16K	16K
	WDT	1	1	1
	Timer0*16bit	1	1	1
Timer	Timer1*16bit	1	1	1
	Timer2*16bit	1	1	1
	Timer3*16bit	1	1	1
	IIC	1	1	1
Communication	UART	5	5	5
module	SPI	2	2	2
GP	Ю	42	59	59
KE	Y	42	59	59
IN	Т	42	59	59
CO	М	8	8	8
Analog module	ADC*12bit	42	59	59
Diamlary madula	LED ranks	8 COM x 16 SEG	8 COM x 16 SEG	8COM x 16SEG
Display module	LCD	8 COM x 22 SEG	8 COM x 24 SEG	8COM x 24SEG
	PWM0*16bit	5	5	5
	PWM1*16bit	5	5	5
PWM module	PWM2*16bit	1	1	1
	PWM3*16bit	1	1	1
	PWM4*16bit	-	1	1
CRC		CRC8/16/32	CRC8/16/32	CRC8/16/32
Package		LQFP44	LQFP64	LQFP64
		(10mm*10mm,	(10mm*10mm,	(14mm*14mm,
		e=0.8mm)	e=0.5mm)	e=0.8mm)

1.7. Pin configuration


1.7.1. BF7807AM44-LJTX

LQFP44 package pin diagram

1.7.2. BF7807AM64-LJTA/LJTX

LQFP64 package pin diagram

1.8. Pin description

BF7807AM64- LJTA/LJTX	BF7807AM44- LJTX	Function description
		Default function: GPIO <pa5></pa5>
		Other functions: SNS05: Touch key channel
		ADC05: ADC channel
1	4	INT1_M5: External interrupt
		COML5: COM of LED row column matrix; Large irrigation port
		COM5_SEG25: COM of LCD can be shared as SEG
		PWM1A: PWM output port
		Default function: GPIO <pa4></pa4>
		Other functions: SNS04: Touch key channel
		ADC04: ADC channel
2	5	INT1_M4: External interrupt
2	5	COML4: COM of LED row column matrix; Large irrigation port
		COM4_SEG24: COM of LCD can be shared as SEG
		PWM0A: PWM output port
		PWM1E: PWM output port
		Default function: GPIO <pa3></pa3>
	6	Other functions: SNS03: Touch key channel
3		ADC03: ADC channel
3		INT1_M3: External interrupt
		COML3: COM of LED row column matrix; Large irrigation port
		COM3: LCD COM
	7	Default function: GPIO <pa2></pa2>
		Other functions: SNS02: Touch key channel
4		ADC02: ADC channel
4		INT1_M2: External interrupt
		COML2: COM of LED row column matrix; Large irrigation port
		COM2: LCD COM
		Default function: GPIO <pa1></pa1>
		Other functions: SNS01: Touch key channel
		ADC01: ADC channel
5	8	INT1_M1: External interrupt
		COML1: COM of LED row column matrix; Large irrigation port
		COM1: LCD COM
		TXD3A: Serial port transmission
6	-	RST_N: Reset pin

		Default function: GPIO <pa0></pa0>
		Other functions: SNS00: Touch key channel
		ADC00: ADC channel
7	9	INT1_M0: External interrupt
		COML0: COM of LED row column matrix; Large irrigation port
		COM0: LCD COM
		RXD3A: Serial port receiving
8	10	Default function: GND <vss></vss>
		Default function: GPIO <pd11></pd11>
		Other functions: SNS59: Touch key channel
9	-	ADC59: ADC channel
		INT0_15: External interrupt
10	11	Default function: Power supply <vcc></vcc>
		Default function: GPIO <pd10></pd10>
		Other functions: SNS58: Touch key channel
11	-	ADC58: ADC channel
		INT0_14: External interrupt
		Default function: GPIO <pd9></pd9>
		Other functions: SNS57: Touch key channel
12		ADC57: ADC channel
12	-	INT0_13: External interrupt
		PWM4A: PWM output port
		TXD4D: Serial port transmission
		Default function: GPIO <pd8></pd8>
		Other functions: SNS56: Touch key channel
13	-	ADC56: ADC channel
		INT0_12: External interrupt
		RXD4D: Serial port receiving
		Default function: GPIO <pd7></pd7>
		Other functions: SNS55: Touch key channel
		ADC55: ADC channel
14	12	INT0_11: External interrupt
		RXD2D: Serial port receiving
		XTAL_IN: External crystal input
		PGC1: Programming port
		Default function: GPIO <pd6></pd6>
		Other functions: SNS54: Touch key channel
15	13	ADC54: ADC channel
		INTO_10: External interrupt
		TXD2D: Serial port transmission
		XTAL_OUT: External crystal oscillator output

	[Default function: GPIO <pd5></pd5>
		Other functions: SNS53: Touch key channel
17	14	ADC53: ADC channel
16	14	INT0_9: External interrupt
		TXD2D: Serial port transmission
		RXD2C: Serial port receiving
	l	PGD1: Programming port
		Default function: GPIO <pd4></pd4>
		Other functions: SNS52: Touch key channel
17	-	ADC52: ADC channel
		INT0_8: External interrupt
i		PWM3A: PWM output port
		Default function: GPIO <pd3></pd3>
		Other functions: SNS51: Touch key channel
		ADC51: ADC channel
18	15	INT0_7: External interrupt
		SEGL15: SEG of LED row column matrix
		TXD2B: Serial port transmission
		PWM2A: PWM output port
		Default function: GPIO <pd2></pd2>
		Other functions: SNS50: Touch key channel
10	16	ADC50: ADC channel
19		INT0_6: External interrupt
		SEGL14: SEG of LED row column matrix
		RXD2B: Serial port receiving
		Default function: GPIO <pd1></pd1>
		Other functions: SNS49: Touch key channel
20	17	ADC49: ADC channel
20	17	INT0_5: External interrupt
		SEGL13: SEG of LED row column matrix
		TXD2B: Serial port transmission
		Default function: GPIO <pd0></pd0>
		Other functions: SNS48: Touch key channel
	10	ADC48: ADC channel
21	18	INTO_4: External interrupt
		SEGL12: SEG of LED row column matrix
		RXD2A: Serial port receiving
		Default function: GPIO <pc15></pc15>
		Other functions: SNS47: Touch key channel
22	19	ADC47: ADC channel
22	.,	INTO_3: External interrupt
		SEGL11: SEG of LED row column matrix
Li	<u> </u>	

		Defect for the ODIO (DC14)
22		Default function: GPIO <pc14></pc14>
	• •	Other functions: SNS46: Touch key channel
23	20	ADC46: ADC channel
		INTO_2: External interrupt
		SEGL10: SEG of LED row column matrix
		Default function: GPIO <pc13></pc13>
		Other functions: SNS45: Touch key channel
24	21	ADC45: ADC channel
27	21	INT0_1: External interrupt
		SEGL9: SEG of LED row column matrix
		SEG23: SEG of LCD
		Default function: GPIO <pc12></pc12>
		Other functions: SNS44: Touch key channel
25	22	ADC44: ADC channel
25	22	INT0_0: External interrupt
		SEGL8: SEG of LED row column matrix
		SEG22: SEG of LCD
		Default function: GPIO <pc11></pc11>
		Other functions: SNS43: Touch key channel
		ADC43: ADC channel
26	23	INT3_M11: External interrupt
		SEGL7: SEG of LED row column matrix
		SEG21: SEG of LCD
		SPI1A_CS: SPI chip selection signal
		Default function: GPIO <pc10></pc10>
		Other functions: SNS42: Touch key channel
	24	ADC42: ADC channel
27		INT3_M10: External interrupt
		SEGL6: SEG of LED row column matrix
		SEG20: SEG of LCD
		SPI1A_MISO: SPI master data input
	ļ	Default function: GPIO <pc9></pc9>
		Other functions: SNS41: Touch key channel
		ADC41: ADC channel
28	25	INT3_M9: External interrupt
20	25	SEGL5: SEG of LED row column matrix
		SEG19: SEG of LCD
		SPI1A_MOSI: SPI master data output
<u> </u>		Default function: GPIO <pc8></pc8>
		Other functions: SNS40: Touch key channel
29	26	ADC40: ADC channel
		INT3_M8: External interrupt

		SEGL4: SEG of LED row column matrix
		SEG14: SEG of LCD
		SPI1A_CLK: SPI clock
		Default function: GPIO <pc7></pc7>
		Other functions: SNS39: Touch key channel ADC39: ADC channel
30	27	
		INT3_M7: External interrupt SEGL3: SEG of LED row column matrix
		TXD1C: Serial port transmission
		Default function: GPIO <pc6></pc6>
		Other functions: SNS38: Touch key channel
	20	ADC38: ADC channel
31	28	INT3_M6: External interrupt
		SEGL2: SEG of LED row column matrix
		RXD1C: Serial port receiving
		TXD3C: Serial port transmission
		Default function: GPIO <pc5></pc5>
		Other functions: SNS37: Touch key channel
32	29	ADC37: ADC channel
52		INT3_M5: External interrupt
		SEGL1: SEG of LED row column matrix
		RXD3C: Serial port receiving
		Default function: GPIO <pc4></pc4>
		Other functions: SNS36: Touch key channel
		ADC36: ADC channel
33	30	INT3_M4: External interrupt
		SEGL0: SEG of LED row column matrix
		SEG17: SEG of LCD
		TXD1B: Serial port transmission
		Default function: GPIO <pc3></pc3>
		Other functions: SNS35: Touch key channel
24	21	ADC35: ADC channel
34	31	INT3_M3: External interrupt
		SEG16: SEG of LCD
		RXD1B: Serial port receiving
		Default function: GPIO <pc2></pc2>
25		Other functions: SNS34: Touch key channel
35	-	ADC34: ADC channel
		INT3_M2: External interrupt
		Default function: GPIO <pc1></pc1>
36	-	Other functions: SNS33: Touch key channel
		ADC33: ADC channel
		ADC33: ADC channel

		INT2 M1: External interment
		INT3_M1: External interrupt
		PWM1A1: PWM output port
		Default function: GPIO <pc0></pc0>
27		Other functions: SNS32: Touch key channel
37	-	ADC32: ADC channel
		INT3_M0: External interrupt
		PWM0A1: PWM output port
38	-	Default function: IOVCC
		Default function: GPIO <pb15></pb15>
		Other functions: SNS31: Touch key channel
		ADC31: ADC channel
39	32	INT2_M15: External interrupt
		SEG15: SEG of LCD
		SPI0A_CS: SPI chip selection signal
		TXD1A: Serial port transmission
40	-	Default function: IOVSS
		Default function: GPIO <pb14></pb14>
		Other functions: SNS30: Touch key channel
		ADC30: ADC channel
41	33	INT2_M14: External interrupt
		SEG14: SEG of LCD
		SPI0A_ MOSI: SPI master data output
		RXD1A: Serial port receiving
		Default function: GPIO <pb13></pb13>
		Other functions: SNS29: Touch key channel
		ADC29: ADC channel
		INT2_M13: External interrupt
42	34	SEG13: SEG of LCD
42	54	SPI0A_ MISO: SPI master data input
		TXD0A: Serial port transmission
		SDA0A: Serial data line of IIC
		SWDIO: Data input /output
		PGD0: Programming port
		Default function: GPIO <pb12></pb12>
		Other functions: SNS28: Touch key channel
		ADC28: ADC channel
		INT2_M12: External interrupt
43	35	SEG12: SEG of LCD
		SPI0A_ CLK: SPI clock
		RXD0A: Serial port receiving
		SCL0A: Serial clock line of IIC
		SWCLK: Clock signal

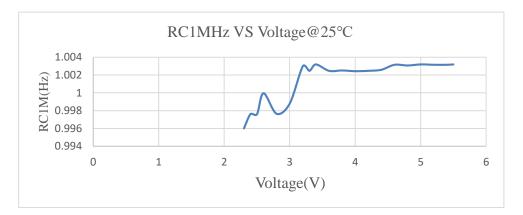
		PGC0: Programming port
		Default function: GPIO <pb11></pb11>
		Other functions: SNS27: Touch key channel
		ADC27: ADC channel
44	36	INT2_M11: External interrupt
		SEG11: SEG of LCD
		PWM3A1: PWM output port
		Default function: GPIO <pb10></pb10>
		Other functions: SNS26: Touch key channel
45	-	ADC26: ADC channel
		INT2_M10: External interrupt
		SEG10: SEG of LCD
		Default function: GPIO <pb9></pb9>
		Other functions: SNS25: Touch key channel
46	37	ADC25: ADC channel
		INT2_M9: External interrupt
		SEG9: SEG of LCD
		Default function: GPIO <pb8></pb8>
		Other functions: SNS24: Touch key channel
47	_	ADC24: ADC channel
.,		INT2_M8: External interrupt
		SEG8: SEG of LCD
		PWM2A1: PWM output port
		Default function: GPIO <pb7></pb7>
		Other functions: SNS23: Touch key channel
48	-	ADC23: ADC channel
		INT2_M7: External interrupt
		TXD4B: Serial port transmission
		Default function: GPIO <pb6></pb6>
		Other functions: SNS22: Touch key channel
49	-	ADC22: ADC channel
_		INT2_M6: External interrupt
		RXD4B: Serial port receiving
		TXD4C: Serial port transmission
		Default function: GPIO <pb5></pb5>
		Other functions: SNS21: Touch key channel
50	-	ADC21: ADC channel
		INT2_M5: External interrupt
		RXD4C: Serial port receiving
		Default function: GPIO <pb4></pb4>
51	-	Other functions: SNS20: Touch key channel
		ADC20: ADC channel

		INT2_M4: External interrupt
		Default function: GPIO <pb3></pb3>
52		Other functions: SNS19: Touch key channel
	-	ADC19: ADC channel
		INT2_M3: External interrupt
		Default function: GPIO <pb2></pb2>
50		Other functions: SNS18: Touch key channel
53	-	ADC18: ADC channel
		INT2_M2: External interrupt
		Default function: GPIO <pb1></pb1>
54		Other functions: SNS17: Touch key channel
54	-	ADC17: ADC channel
		INT2_M1: External interrupt
		Default function: GPIO <pa15></pa15>
		Other functions: SNS15: Touch the key channel
55	38	ADC15: ADC channel
55	50	INT1_M15: External interrupt
		SEG7: SEG of LCD
		TXD3B: Serial port transmission
		Default function: GPIO <pa14></pa14>
	39	Other functions: SNS14: Touch key channel
56		ADC14: ADC channel
20		INT1_M14: External interrupt
		SEG6: SEG of LCD
		RXD3B: Serial port receiving
		Default function: GPIO <pa13></pa13>
		Other functions: SNS13: Touch key channel
		ADC13: ADC channel
57	40	INT1_M13: External interrupt
		SEG5: SEG of LCD
		SPI0B_MISO: SPI master data input
		TXD0B: Serial port transmission
		SDA0B: Serial data line of IIC
		Default function: GPIO <pa12></pa12>
		Other functions: SNS12: Touch key channel
		ADC12: ADC channel
58	41	INT1_M12: External interrupt
		SEG4: SEG of LCD
		SPI0B_MOSI: SPI master data output
		RXD0B: Serial port receiving
		SCL0B: Serial clock line of IIC

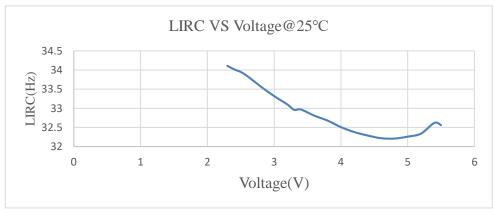
		Default function: GPIO <pa11></pa11>
59		Other functions: SNS11: Touch key channel
		ADC11: ADC channel
	42	INT1_M11: External interrupt
39	42	SEG3: SEG of LCD
		PWM1C: PWM output port
		SPI0B_CLK: SPI clock
		Default function: GPIO <pa10></pa10>
		Other functions: SNS10: Touch key channel
		ADC10: ADC channel
60	43	INT1_M10: External interrupt
		SEG2: SEG of LCD
		PWM0C: PWM output port
		SPI0B_CS: SPI chip selection signal
		Default function: GPIO <pa9></pa9>
		Other functions: SNS09: Touch key channel
61	44	ADC09: ADC channel
01		INT1_M9: External interrupt
		SEG1: SEG of LCD
		PWM0D: PWM output port
		Default function: GPIO <pa8></pa8>
	1	Other functions: SNS08: Touch key channel
62		ADC08: ADC channel
02		INT1_M8: External interrupt
		SEG0: SEG of LCD
		PWM0E: PWM output port
		Default function: GPIO <pa7></pa7>
		Other functions: SNS07: Touch key channel
	2	ADC07: ADC channel
63		INT1_M7: External interrupt
		COML7: COM of LED row column matrix; Large irrigation port
		COM7_SEG27: COM OF LCD can be shared as SEG
		TXD4A: Serial port transmission
		Default function: GPIO <pa6></pa6>
		Other functions: SNS06: Touch key channel
		ADC06: ADC channel
		INT1_M6: External interrupt
64	3	COML6: COM of LED row column matrix; Large irrigation port
		COM6_SEG26: COM OF LCD can be shared as SEG
		PWM0B: PWM output port
		PWM1D: PWM output port
		RXD4A: Serial port receiving
		KAD4A. Schar politicici vilig

2 Electrical characteristics

2.1. Limit parameters

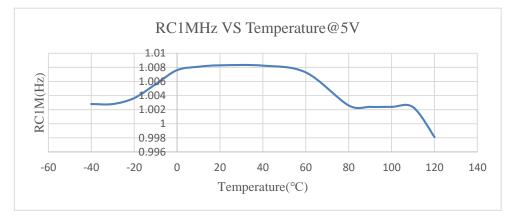

Ch-al	Demonstern	Test (Condition	Min	Turnical	Max	Unit	
Symbol	Parameter	VCC	Condition		Typical	wax	Cint	
VCC	Supply voltage when operating	-	-	VSS+2.7	-	VSS+5.5	v	
T _{STG}	Storage temperature	-	-	-40	-	125	°C	
Та	Operating temperature	-	-	-40	-	105	°C	
Vin	I/O input voltage	-	-	VSS-0.5	-	VCC+0.5	V	
Iola	IoL total current	-	-		130		mA	
I _{OHA}	I _{OH} total current	-	-	-130			mA	
ESD(HBM)	Port electrostatic discharge voltage	-	-	-8	-	8	kV	

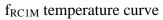
Note: Exceeding the range specified by the limit parameters will cause damage to the chip. It is impossible to predict the working state of the chip outside the above marked range, and if it works under the conditions outside the marked range for a long time, it may affect the reliability of the chip.

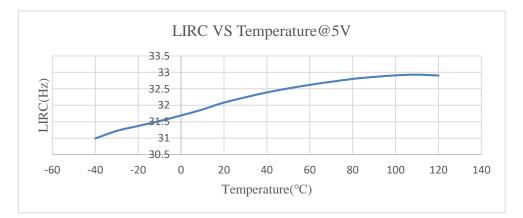


2.2. AC characteristics

S-mah al	Devenuetor	Test C	onditions	Min	Trunical	Mar	TI:4	
Symbol	Parameter	VCC	Temperature	Min	Typical	Max	Unit	
		517	-20°C~65°C	-1%	1	+1%		
£	Internal high-	5V	-40°C ~105°C	-3%	1	+3%	MII-	
f _{RC1M} speed R(oscillato	speed RC	2711 5 51	25°C	-1%	1	+1%	MHz	
	oscillator	2.7V~5.5V	-40°C ~105°C	-3%	1	+3%		
		517	-20°C~65°C	-1%	48/32/24/12	+1%		
c		5V	-40°C ~105°C	-3%	48/32/24/12	+3%	NATT	
f _{HCLK}	System clock		25°C	-1%	48/32/24/12	+1%	MHz	
		2.7V~5.5V	-40°C ~105°C	-3%	48/32/24/12	+3%		
	Internal low	517	25°C	-10%	32	+10%		
f _{LIRC}	speed RC	5V	-40°C ~105°C	-25%	32	+25%	kHz	
	oscillator	2.7V~5.5V	25°C	-20%	32	+20%		


f_{RC1M} voltage graph




$f_{LIRC} \ voltage \ graph$

 $f_{\mbox{\sc LIRC}}$ temperature curve

2.3. DC characteristics

						Та	a=25°C	
Symbol	Donomotor	Tes	t Condition	Min	Typical	Max	Unit	
Symbol	Parameter	VCC	Condition	IVIIII	туріса	WIAX	Omt	
VCC	Operating voltage	-	-	2.7	-	5.5	V	
		3.3V	f _{HCLK} =48MHz,	-	5.0	6.5		
		5V	all peripherals off	-	5.2	6.7		
		3.3V	f _{HCLK} =32MHz,	-	4.4	5.7		
T		5V	all peripherals off	-	4.6	6.0		
I_{OP1}	Active mode current	3.3V	f _{HCLK} =24MHz,	-	3.8	4.9	mA	
		5V	all peripherals off	-	4.0	5.2		
		3.3V	f _{HCLK} =12MHz,	-	2.8	3.6		
		5V	all peripherals off	-	3.0	3.9		
T		3.3V	SCR = 0x0, all	-	1.6	2.0		
I_{STB0}	Idle mode 0 current	5V	peripherals off	-	1.7	2.2	mA	
T	T 11 1 1	3.3V	SCR = 0x4, all	-	7.8	10.1		
I_{STB1}	Idle mode 1 current	5V	peripherals off	-	8.0	10.4	μA	
V _{IL}	Input low voltage	2.7~5.5V	-	-	-	0.3*VCC	V	
V _{IH}	Input high voltage	2.7~5.5V	-	0.7*VCC	-	-	V	
V _{INTL}	INT input low voltage	2.7~5.5V	-	-	-	0.3*VCC	v	
V _{INTH}	INT input high voltage	2.7~5.5V	-	0.7*VCC	-	-	v	
V _{OL}	Output low voltage	5V	I _{OL} =75mA	-	-	0.1*VCC	V	
V _{OH}	Output high voltage	5V	I _{OH} =16mA	0.9VCC	-	-	V	
Iol	IO sink current	5V	V _{OL} =0.1VCC	53	75	97	mA	
I _{OH}	IO source current	5V	V _{OH} =0.9VCC	11	16	20	mA	
I _{COM}	PA0-PA7 high current	5V	V _{OL} =0.1VCC	-	130	-	mA	
I _{SPI_OL}	SPI high-speed mode sink current	5V	V _{SPI_OL} =0.1VCC	-	6.0	-	mA	
I _{SPI_OH}	SPI high-speed mode source current	5V	V _{SPI_OH} =0.9VCC	-	5.0	-	mA	
I _{Leak}	Input leakage current	5V	-	-	1	5	μΑ	
$R_{\rm PH}$	IO/RST_N internal pull-up resistor	5V	_	23	33	42	kΩ	

S-mah al	Deveneter		Test Condition	Min	Tunical	Max	Unit	
Symbol	Parameter	VCC	Condition	IVIIII	Typical	wiax	Cint	
I _{CDC}	CDC operating current	5V	f _{HCLK} =48MHz, enable CDC, open six channels	-	0.6	-	mA	
I _{ADC}	ADC operating current	5V	f _{HCLK} =48MHz, enable ADC, open one channel	-	2.7	-	mA	
I _{PWM}	PWM operating current	5V	f _{HCLK} =48MHz, enable PWM0, output 4kHz waveform	-	0.6	-	mA	
I _{LVDT}	LVDT operating current	5V	f _{HCLK} =48MHz, enable LVDT, configure detection parameter 2.7V	-	0.6	-	mA	

2.4. ADC characteristics

							Ta=25°C
Same al	Davamatar	Те	est Condition	Min	Tunical	Max	Unit
Symbol	Parameter	VCC	Condition	IVIIII	Typical	Max	Umt
V _{ADC}	Supply voltage	-	-	2.7	-	5.5	V
N _R	Precision	-	-	-	9	10	Bit
V _{ADCI}	ADC input voltage	-	-	VSS		V _{REF}	v
р	ADC input	51/	No RC filtering	1.2	3.2	17.5	1-0
R _{ADCI}	resistance	5V	RC filtering	10	14.2	31.5	kΩ
I _{ADC}	ADC operating current	5V	f _{HCLK} =48MHz, enable ADC, open one channel	-	2.7		mA
I _{ADCI}	A/D input current	-	-	-	-	1	μΑ
DNL	Differential nonlinearity error	5V	-	-	<u>+4</u>	±6	LSB
INL	Integral nonlinearity error	5V	-	-	<u>+4</u>	±6	LSB
t_1	ADC sampling time	-	-	0.5	-	-	μs
t _{ADC}	ADC conversion time	-	-	2.875	-	-	μs
RESO	Resolution	-	-		12		Bit
N _{ADC}	Input channel	-	-	-	-	59	Channel

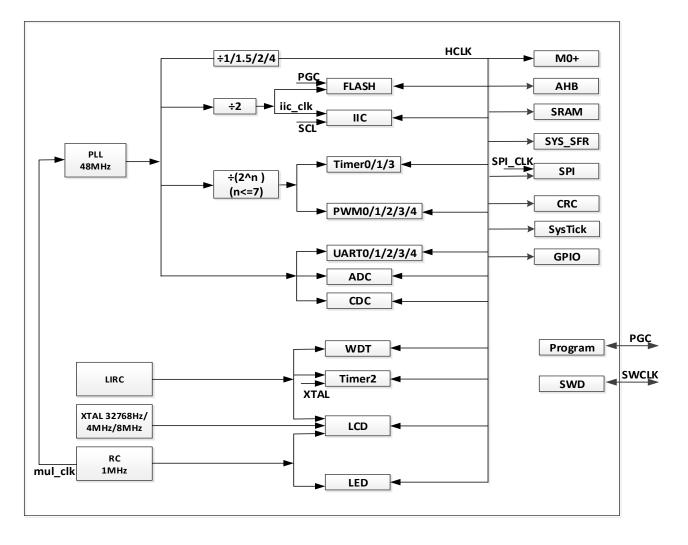
2.5. Memory characteristics

]	Ta=25°C
Samph al	Danamatan		Test Condition	Min	Tunical	Max	Unit
Symbol	Parameter	VCC	Condition	101111	Typical	wax	Umt
EC	Erase and write times	5V	-	20000	-	-	Cycle
t _{RET}	Data retention period	-	-	100	-	-	Year
terase	Page erase time	5V	fHCLK=48MHz, in the while, the main memory block is page erased	-	4.5	-	ms
t _{PROG}	Programming time	5V	fHCLK=48MHz, in the while, a word is written to the main memory block	-	750	-	ns
I _{ERASE}	Page erase current 5V		f _{HCLK} =48MHz, in the while, the main memory block is page erased	-	1.0	-	mA
I _{PROG}	Programming current	5V	f _{HCLK} =48MHz, in the while, a word is written to the main memory block	-	1.2	-	mA

3 System control (SYS_CTRL)

3.1. Clock description

The clock control module mainly controls the system clock and peripheral clock. It can configure different system clock frequency divisions, and can enable or disable peripheral clocks. Clock source:


- Internal high-speed RC oscillator: RC 1MHz
- Internal low-speed RC oscillator: LIRC 32kHz
- External crystal oscillator: 32768Hz/4MHz/8MHz
- RC1M multiplication to get PLL clock: PLL multiplied clock

The BF7807AMXX series clocks are defined as follows:

- **RC1M:** Internal high-speed RC oscillator, LED/LCD module working clock, frequency multiplier (mul_clk) to get PLL48MHz.
- **PLL48M:** System clock source, CDC/ADC/UART module working clock.
- HCLK: System clock, AHB bus peripheral clock, 48MHz/32MHz/24MHz/12MHz frequency optional.
- **PLL48M divide by 2:** FLASH programming clock, IIC digital filter clock and IIC master working clock(iic_clk).
- PLL48M 1~128 frequency division: Timer0/Timer1/Timer3/PWM module working clock.
- LIRC 32kHz: Internal low-speed RC oscillator, WDT/Timer2/LCD module clock source.
- XTAL 32768Hz /4MHz /8MHz: External crystal oscillator, Timer2/LCD module clock source.
- **PGC:** The clock within 5M is used as the FLASH programming clock source.
- SCL: The highest 400kHz clock is used as the IIC slave communication clock source.
- SPI_CLK: The highest 4MHz clock is used as the slave SPI communication clock source.
- **SWCLK:** Clock within 20M, as the clock source for DEBUG and FLASH programming.

Clock block diagram

3.2. Registers

Base address:	0x5000 0000
---------------	-------------

Address offset	Register	Description					
0x00	CLK_CFG	Clock configuration register					
0x04	RCU_EN	Peripheral module clock control register					
0x0C	XTAL_HS_SEL	Hysteresis voltage selection of comparator in crystal oscillator register					
0x10	ANA_CFG	Analog module switch register					
0x18	WAKE_CFG	System wake-up configuration register					

3.2.1. Clock registers

3.2.1.1. Clock configuration register (CLK_CFG)

Address offset: 0x00

Reset value: 0x0000 0002

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
											HCLK	K_SEL			
						Rese	erved								

31:2	-	Reserved
	1:0 HCLK_SEL	HCLK clock frequency division selection register
		00: 48MHz
1:0		01: 32MHz
		10: 24MHz
		11: 12MHz

3.2.1.2. Peripheral module clock control register (RCU_EN)

This register is a register that allows or prohibits the provision of clocks to peripheral modules. Address offset: 0x04

Re	Reset value: 0x0000 0001											
	31	30	26	25	24							
	Reserved											
	23	22	21	20	19	18	17	16				

RW

LED_LCD_C	GPIO_CL	CRC_CL	ADC_CL	CDC_CL	WDT_CL	TIMER3_CL	TIMER2_CL
LKEN	KEN	KEN	KEN	KEN	KEN	KEN	KEN
RW	RW	RW	RW	RW	RW	RW	RW

15	14	13	12	11	10	9	8
TIMER1_CL	TIMER0_CL	PWM4_CL	PWM3_CL	PWM2_CL	PWM1_CL	PWM0_CL	IIC_CL
KEN	KEN	KEN	KEN	KEN	KEN	KEN	KEN
RW	RW	RW	RW	RW	RW	RW	RW

7	6	5	4	3	2	1	0
UART4_C	UART3_C	UART2_C	UART1_C	UART0_C	SPI1_CLK	SPI0_CLK	
LKEN	LKEN	LKEN	LKEN	LKEN	EN	EN	Reserved
RW	RW	RW	RW	RW	RW	RW	

31:24	-	Reserved				
		LCD/LED module operation enable				
23	LED_LCD _CLKEN	1: Work				
		0: Off, the default is 0				
		GPIO module operation enable				
22	GPIO_CLKEN	1: Work				
		0: Off, the default is 0				
		CRC module operation enable				
21 CRC_CLKEN		: Work				
		0: Off, the default is 0				
		ADC module operation enable				
20	ADC_CLKEN	1: Work				
		0: Off, the default is 0				
		CDC module operation enable				
19	CDC_CLKEN	1: Work				
		0: Off, the default is 0				
		WDT module operation enable				
18	WDT_CLKEN	1: Work				
		0: Off, the default is 0				
		TIMER3 module operation enable				
17	TIMER3_CLKEN	1: Work				
		0: Off, the default is 0				
		TIMER2 module operation enable				
16	TIMER2_CLKEN	1: Work				
		0: Off, the default is 0				
15	TIMER1_CLKEN	TIMER1 module operation enable				

		1. W. 1					
		1: Work					
		0: Off, the default is 0					
		TIMER0 module operation enable					
14	TIMER0_CLKEN	1: Work					
		0: Off, the default is 0					
		PWM4 module operation enable					
13	PWM4_CLKEN	1: Work					
		0: Off, the default is 0					
		PWM3 module operation enable					
12	PWM3_CLKEN	1: Work					
		0: Off, the default is 0					
		PWM2 module operation enable					
11	PWM2_CLKEN	1: Work					
		0: Off, the default is 0					
		PWM1 module operation enable					
10	PWM1_CLKEN	1: Work					
		0: Off, the default is 0					
		PWM0 module operation enable					
9	9 PWM0_CLKEN	1: Work					
		0: Off, the default is 0					
		IIC module operation enable					
8	IIC_CLKEN	1: Work					
		0: Off, the default is 0					
		UART4 module operation enable					
7	UART4_CLKEN	1: Work					
		0: Off, the default is 0					
		UART3 module operation enable					
6	UART3_CLKEN	1: Work					
		0: Off, the default is 0					
		UART2 module operation enable					
5	UART2_CLKEN	1: Work					
		0: Off, the default is 0					
		UART1 module operation enable					
4	UART1_CLKEN	1: Work					
	_	0: Off, the default is 0					
		UART0 module operation enable					
3	UART0_CLKEN	1: Work					
		0: Off, the default is 0					
		SPI1 module operation enable					
2	SPI1_CLKEN	1: Work					
L		1. 1. 01K					

		0: Off, the default is 0			
		SPI0 module operation enable			
1	SPI0_CLKEN	1: Work			
		0: Off, the default is 0			
0	-	Reserved			

3.2.1.3. System wake-up configuration register (WAKE_CFG)

Addre Reset			-	7											
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved								PLL_WAKE_TIM						
									RW						

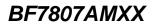
31:3	-	Reserved				
		Wake up PLL timing time				
		000: 0.2ms				
		001: 0.3ms				
		010: 0.4ms				
2:0	PLL_WAKE_TIM	011: 0.5ms				
		100: 0.6ms				
		101: 0.7ms				
		110: 0.9ms				
		111: 1ms				

3.2.2. Hysteresis voltage selection of comparator in crystal oscillator register (XTAL_HS_SEL)

Addres				1											
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
						15:	2							1	0
													l	HS_SEI	[1:0]
	Reserved RW								7						
31:2	-				Reserv	red									

		Hysteresis voltage selection of comparator in crystal oscillator
		00: 300mV
1:0	HS_SEL[1:0]	01: 400mV
		10: 500mV
		11: 600mV

3.2.3. Analog module switch register (ANA_CFG)


Address offset: 0x10

Reset value: 0x0000 0007

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							

15:5	4	3	2	1	0
	XTAL_HFR_SEL	XTAL_SEL	PD_XTAL	PD_CDC	PD_ADC
Reserved	RW	RW	RW	RW	RW

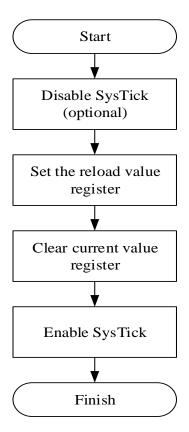
31:5	-	Reserved					
		Analog high frequency crystal oscillator circuit selection					
4	XTAL_HFR_SEL	0: 4MHz					
		1: 8MHz					
		Frequency selection of analog crystal oscillator circuit					
3	XTAL_SEL	0: 32768Hz					
		1: 4MHz/8MHz					
		Analog crystal oscillator circuit (32768Hz/4MHz/8MHz) control register					
2	PD_XTAL	1: Off					
		0: On, off by default					
		CDC work control register					
1	PD_CDC	0: CDC module works normally					
		1: CDC module does not work					
		Analog ADC shutdown control register					
0	PD_ADC	0: ADC module works normally					
		1: ADC module does not work					

3.3. SysTick timer

3.3.1. System timer description

SysTick timer, used to generate periodic interrupt requests. Features:

- 24-bit cyclic count down
- Automatic loading count initial value
- Configurable interrupts
- The count clock is the system clock


SysTick cannot wake up from standby mode.

SysTick is a 24-bit timer and counts down. After the timer count is reduced to 0, a programmable value will be reloaded and a SysTick exception will be generated at the same time. SysTick can be operated by polling or interruption. Programs that use polling can read the SysTick control and status registers and check COUNTFLAG. If the flag is set, it means that the SysTick count has been reduced to 0.

Directly operate register to control SysTick:

SysTick->CTRL = 0; // Disable SysTick SysTick->LOAD = 999; // Count down from 999 to 0 SysTick->VAL = 0; // Clear the current value to 0 SysTick->CTRL = 0x7; // Enable SysTick

The process of setting SysTick is as follows:

3.3.2. Registers

Address	Register	CMSIS symbol	Description
0xE000E010	SYST_CSR	SysTick->CTRL	SysTick control and status register
0xE000E014	SYST_RVR	SysTick->LOAD	SysTick reload value register
0xE000E018	SYST_CVR	SysTick->VAL	SysTick current value register

3.3.2.1. SysTick control and status register (SYST_CSR)

Bit	Bit symbol	Description	RW	Reset value
31:17	Reserved	-	-	-
16	COUNTFLAG	SysTick timer overflow flag, read-only bit1: Timer counts to 00: Timer did not count to 0Reading register will be cleared	R	0
15:3	Reserved	-	-	-
2	CLKSOURCE	SysTick clock source 1: Use HCLK clock 0: Reserved	R/W	0
1	TICKINT	SysTick interrupt enable 1: Enable interrupt 0: Prohibit interrupt	R/W	0
0	ENABLE	SysTick timer enable 1: Enable SysTick 0: Prohibit SysTick	R/W	0

3.3.2.2. SysTick reload value register (SYST_RVR)

Bit	Bit symbol	Description	RW	Reset value
31:24	Reserved	-	-	-
23:0	RELOAD	Reload initial value of Systick timer	R/W	Undefined

3.3.2.3. SysTick current value register (SYST_CVR)

Bit	Bit symbol	Description	RW	Reset value
31:24	Reserved	-	-	-
23:0	CURRENT	The current value of the Systick timer, writing any value will clear the register, and COUNTFLAG will also be cleared (does not cause an exception to the Systick timer)	R/W	Undefined

4 FLASH

4.1. FLASH features

- Main storage block: 128K Bytes, 256 pages
- NVR1/2/3/4: 512 Bytes per NVR, 1 page
- Whole word programming
- Whole chip erase and page erase
- Support IAP upgrade
- Erase and program protection states to prevent accidental write operations
- Support read protection function and write configuration word protection function
- Support security protection status, which can prevent illegal read access to code or data
- Erasing/programming times: At least 20000 times@25°C
- Data retention period: 100 years@25°C

4.2. FLASH memory allocation

Main block: Used to store the chip running program.

NVR1 (system block) addresses 0x201F8 and NVR3 addresses 0x205FC~0x205E0 are option byte areas. Users can configure according to specific application requirements.

NVR2 (information block): Used to store information about the factory configuration, which cannot be changed by the user.

NVR4 (DATA): User data storage area.

0x0002_0780	0x0002_07FF		
DATA(NVF	R4)		
512 Bytes	6		
0x0002_0600	0x0002_067F		
0x0002_0580	0x0002_05FF		
Protect block(N	VR3)		
512 Bytes			
0x0002_0400	0x0002_047F		
0x0002_0380	0x0002_03FF		
Information block	x(NVR2)		
512 Bytes	6		
0x0002 0200	0x0002_027F		
0x0002_0180	0x0002_01FF		
System block(N	VR1)		
512 Bytes	· · · · · · · · · · · · · · · · · · ·		
0x0002_0000	0x0002_007F		
0x0001_FF80	0x0001_FFFF		
Main bloc			
128K Byte	es		
0x0000_0000	0x0000 007F		

Module	Address	Size(Bytes)	Page
Main block	0x0000_0000 ~ 0x0000_01FF	512	Page 0
	0x0000_0200 ~ 0x0000_03FF	512	Page 1
	0x0000_0300 ~ 0x0000_04FF	512	Page 2
	0x0000_0500 ~ 0x0000_06FF	512	Page 3
	0x0001_FE00~ 0x0001_FFFF	512	Page 255
NVR1	0x0002 0000 ~ 0x0002 01FF	512	1 page
(System block)	0x0002_0000 ~ 0x0002_01FF		
NVR2	0x0002_0200 ~ 0x0002_03FF	512	1 page
(Information block)	0x0002_0200 ~ 0x0002_03FF	512	
NVR3(Protect block)	0x0002_0400 ~ 0x0002_05FF	512	1 page
NVR4	0x0002_0600 ~ 0x0002_07FF	512	1 page

Address allocation table

4.3. FLASH function overview

When the FLASH is operated and the erase and programming instructions are executed, the AHB bus is occupied. When the erase and programming instructions are executed, the bus is released and the program continues to execute. If an interrupt occurs, wait for the erase and programming instructions to complete, and then execute the interrupt service routine after the BUSY bit in the FMC_STATE register is cleared to 0.

4.3.1. Key value

In order to enhance security, when performing an operation, it is necessary to write specific values to a bit to verify whether it is a safe operation. These values are called key values. The FLASH of BF7807AMXX has three key values:

RDP = 0xA5, used to release read protection;

KEY1 = 0x45670123, to unlock the flash memory lock;

KEY2 = 0xCDEF89AB, to unlock the flash memory lock.

4.3.2. FLASH unlock

After reset, the FMC module is protected and the FMC control register (FMC_CTRL) does not allow write operations. The unlock sequence is as follows:

- 1. Write KEY1 = 0x45670123 to the FMC key register (FMC_KEY)
- 2. Write KEY2 = 0xCDEF89AB to the FMC key register (FMC_KEY)

Wrong sequence of operations will lock the FMC module and the FMC_CTRL register before the next reset, and writing the wrong key sequence will also generate a bus error. A bus error occurs when either of the following conditions occur:

- The first write is not KEY1
- The first write is KEY1 but the second write is not KEY2

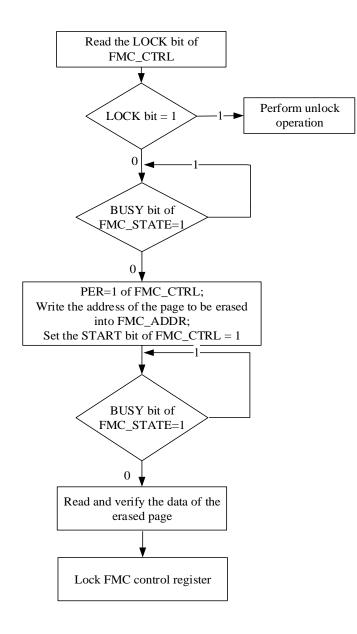
The first 4 pages of FLASH and NVR are still protected after writing the key value to the FMC key register (FMC_KEY). For erasing and programming of the first 4 pages of FLASH, PER0KEY is also required to unlock. The unlocking process is two write operations:

- 1. Write 0x45670123 to the FLASH first 4 page key register (FMC_PER0KEY)
- 2. Write 0xCDEF89AB to the FLASH first 4 page key register (FMC_PER0KEY)

For the unlocking steps of NVR1/3/4, see "NVR1/3/4 unlocked", and for the unlocking steps of NVR2, see "NVR2 read".

The program can set the LOCK bit in the FMC control register (FMC_CTRL) to lock the FMC module and the FMC control register (FMC_CTRL).

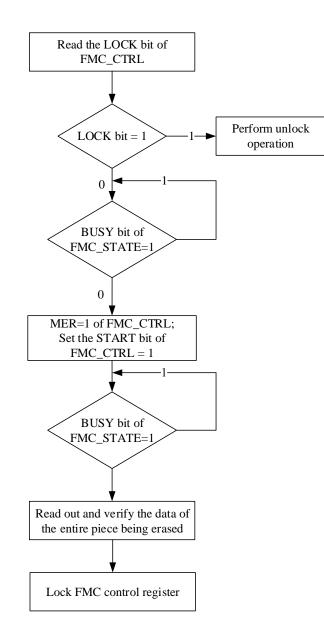
4.3.3. Erase


4.3.3.1. Main memory block page erase

The page erase function of FMC initializes the page content of the main storage flash memory to high level. Each page can be erased independently without affecting the contents of other pages. FMC erase page steps are as follows:

- 1. Make sure that the FMC_CTRL register is not in a locked state;
- 2. Check the BUSY bit of the FMC_STATE register to determine whether the flash memory is in the erase and write access state, if the BUSY bit is 1, you need to wait for the operation to end, and the BUSY bit becomes 0;
- 3. Position FMC_CTRL the PER bit of the register;
- 4. Writes the absolute address of the page to be erased to the FMC_ADDR register;
- 5. Send the page erase command to FMC by setting the START bit of the FMC_CTRL register to 1;
- 6. Wait for the erase command to be executed, and the BUSY bit of the FMC_STATE register is cleared to 0;
- 7. If necessary, the CPU can read to verify whether the page has been successfully erased;
- 8. After completing the relevant operations, re-lock the FMC control register to prevent FLASH from being misoperated.

When the page erase is successfully performed, the END bit of the FMC_STATE register is set. The user needs to make sure that the correct erase address is written. Otherwise, when the address of the page to be erased is used to fetch instructions or access data, the software will run away. In this case, the FMC does not provide any notification of the error. At the same time, erasing a write-protected page will have no effect. The figure below shows the page erase operation flow.


4.3.3.2. Main memory block full chip erase

The chip erase function of the BF7807AMXX initializes the contents of the main memory block to a high level. Chip Erase does not affect the NVR. For chip erase operation, the specific steps of register setting are as follows:

- 1. Make sure that the FMC_CTRL register is not in a locked state;
- 2. Wait for the BUSY bit of the FMC_STATE register to become 0;
- 3. Set the MER bit in the FMC_CTRL register;
- 4. Send the entire chip erase command to FMC by setting the START bit of the FMC_CTRL register to 1;
- 5. Wait for the erase command to be executed and the BUSY bit of the FMC_STATE register is cleared to 0;
- 6. If necessary, you can verify whether the programming is successful by reading the CPU (little endian mode);
- 7. After completing the relevant operations, re-lock the FMC control register to prevent FLASH from being misoperated.

When the entire chip erase is successfully executed, the END bit of the FMC_STATE register is set. Since all the flash memory data will be reset to 0xFFFF_FFFF, the whole chip erase operation can be realized by directly accessing the FMC register by a program running in SRAM or using a debugging tool.

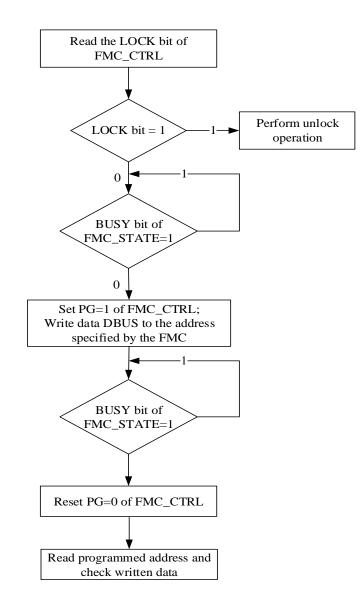
4.3.4. Main memory block programming

FMC provides a 32-bit whole word programming function to modify the contents of the main memory block. The programming operation using each register flow is as follows:

- 1. Make sure that the FMC_CTRL register is not in a locked state;
- 2. Wait for the BUSY bit of the FMC_STATE register to become 0;
- 3. Set the PG bit of the FMC_CTRL register;
- 4. The CPU writes a 32-bit whole word to the destination absolute address (0x000X_XXXX);
- 5. Wait for the completion of the programming instruction, and the BUSY bit of the FMC_STATE register is cleared to 0;
- 6. Clear the PG bit of the FMC_CTRL register;
- 7. If necessary, it can be verified by CPU read whether the programming is successful (little endian mode);
- 8. After completing the relevant operations, re-lock the FMC control register to prevent FLASH from being misoperated.

When the main memory block programming is successfully executed, the END bit of the FMC_STATE register is set.

Programming errors: The following errors can be detected.


• PGERR: Programming error

When performing a whole word programming operation, the hardware checks whether the data at the destination address is 0xFFFF. When the data at the address is not 0xFFFF, a programming error occurs, PGERR is set to 1, and programming is aborted.

• WPERR: Erase/Program protection error

During an erase/program operation on a protected page, WPERR is set by hardware and the erase/program is aborted.

4.3.5. Protect

The user code area in the flash memory can prevent illegal reading. The pages of the flash memory area are protected to prevent them from being accidentally changed when the program runs away. The basic unit of write protection is: 2 pages.

4.3.5.1. Main memory read protection

Read protection can be activated by setting the RDP option byte and then a system reset to load the new RDP option byte.

Read protection turned on:

- 1. Only allow the read operation of the main flash memory from the user code.
- 2. All the functions of loading and executing code to the built-in SRAM through SWD are still valid, and it can also be started from the built-in SRAM through SWD. This function can be used to release the read protection.
- 3. When the read-protected option byte is changed to the unprotected value of the memory, the whole chip erase process will be executed.

Steps to remove read protection:

- 1. Erase the entire option byte area, the read protection code (RDP) will become 0xFF, at this time the read protection is still valid;
- 2. Write the correct nRDP (0x5A) and RDP (0xA5) to release the protection of the memory. This operation will firstly cause the entire chip erase operation of all user flash memories;
- 3. Perform a reset to reload the option byte (and the new RDP code), at this time the read protection is released.

4.3.5.2. Main memory write protection

Write protection is implemented in units of every 2 pages.

If you try to program or erase a protected page, a protection error flag will be returned in the FMC status flag register (FMC_STATE).

The configuration option byte WRP[7:0] will set the write protection, and the subsequent system reset will load the new WRPx option byte.

Pages 0~3 are automatically written-protected, and other parts of the memory can be programmed through the code executed in the main memory (to achieve IAP or data storage functions), but it is not allowed to be in the debug mode or in the slave internal SRAM Perform write or erase operations after booting (except for mass erase).

IAP (In Application Programming): It means that the Flash of the microcontroller can be reprogrammed during the running of the user program.

Remove write protection:

- 1. Erase the entire option byte area;
- 2. Reload option bytes (including new WRP[7:0] bytes);
- 3. Perform a system reset and the write protection is released.

4.4. NVR1/3/4

4.4.1. NVR1/3 option bytes

NVR1 (system block) addresses 0x201F8 and NVR3 addresses 0x205FC~0x205E0 of BF7807AMXX are option byte areas. The option bytes are configured by the user according to specific application requirements. Each 32-bit word in the option byte is divided into the following format:

Bit[31:16]	Bit[15:0]
Inversion of byte 0	Option byte 0

The selected byte block must be programmed in 32-bit word, Bit[31:16] is the inverse of Bit[15:0], otherwise the default value is restored.

NVR1 option byte description:

FLASH address	Bit	Bit symbol	Description	Defaults
	[10]	PD_WDT_EN	 0: Do not allow the program to turn off the watchdog function 1: Allow the program to turn off the watchdog function 0: When entering idle mode 1, a watchdog 	1
0x201F8	[9]	WDTRST_SD	reset is generated 1: When entering idle mode 1, no watchdog reset is generated, wake-up standby, and WDT interrupt is generated	m to turn off the rn off the e 1, a watchdog e 1, no watchdog b standby, and d e 0, a watchdog e 0, no watchdog b standby, and 1 1 1 1 1 1 1 1 1 1 1 1 1
	[8]	WDTRST_SP	0: When entering idle mode 0, a watchdogreset is generated1: When entering idle mode 0, no watchdogreset is generated, wake up standby, andgenerate WDT interrupt	1
	[7:0]	MAIN_READ_P ROTECT	Code read protection option byte. Unprotected state (can be read): RDP=0xA5 Protected state (cannot be read): RDP!=0xA5	0xFF

NVR3 option byte description: The basic unit of write protection is: 2 pages. Each representative: 0: Write protection is effective; 1: Write protection is invalid

FLASH address	Bit	Bit symbol	Description	Defaults
			Write protection of pages 0~31 of the main	
			memory block	
0.00555	F1 7 01	WDD0	Bit[0]: Write protection of page 0 and page 1	
0x205FC	[15:0]	WRP0	Bit[1]: Write protection for pages 2 and 3	0xFFFF
			Bit[14]: Write protection on pages 28 and 29	
			Bit[15]: Write protection on page 30 and page 31	
			Write protection of pages 32~63 of the main	
0.00550	[15 0]	WDD1	memory block	
0x205F8	[15:0]	WRP1	Bit[0]: Write protection for pages 32 and 33	0xFFFF
			Bit[15]: Write protection on pages 62 and 63	
			Write protection of pages 64~95 of the main	
0.00554	[15 0]	WDD2	memory block	
0x205F4	[15:0]	WRP2	Bit[0]: Write protection of page 64 and page 65	0xFFFF
			 Distinction and the second of and 05	
			Bit[15]: Write protection on pages 94 and 95	
			Write protection of pages 96~127 of the main	
0-20550	[15.0]	WDD2	memory block	0EEEE
0x205F0	[15:0]	WRP3	Bit[0]: Write protection of page 96 and page 97	0xFFFF
			 Dis[15]: White protection on pages 126 and 127	
			Bit[15]: Write protection on pages 126 and 127	
			Write protection of pages 128~159 of the main	
0x205EC	[15:0]	WRP4	memory block Bit[0]: Write protection on page 128 and page 120	0xFFFF
0X203EC	[15:0]	W KF4	Bit[0]: Write protection on page 128 and page 129	υλγγγ
			Bit[15]: Write protection on pages 158 and 159	
			Write protection of pages 160~191 of the main	
			memory block	
0x205E8	[15:0]	WRP5	Bit[0]: Write protection on pages 160 and 161	0xFFFF
0X203E8	[13.0]	WKI J	Britoj. write protection on pages 100 and 101	UXITIT
			 Bit[15]: Write protection on pages 190 and 191	
			Write protection of pages 192~223 of the main	
			memory block	
0x205E4	[15:0]	WRP6	Bit[0]: Write protection on pages 192 and 193	0xFFFF
	[10.0]	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
			Bit[15]: Write protection on pages 222 and 223	
L	I	I	2. [10]. White protection on puges 222 and 225	

0x205E0	[15:0]	WRP7	Write protection of pages 224~255 of the main memory block Bit[0]: Write protection for pages 224 and 225 Bit[15]: Write protection on pages 254 and 255	0xFFFF
---------	--------	------	---	--------

4.4.2. NVR4 (DATA area)

The NVR of BF7807AMXX includes a DATA storage area for storing user data. The address range of the DATA area is $0x0002_0600 \sim 0x0002_07FF$, one page, 512 bytes.

0x0002_0780	0x0002_07FF
DATA(NVF	'
512 Bytes	S I
0x0002_0600	0x0002_067F

DATA area address map

4.4.3. NVR1/3/4 unlocked

By default, NVR1/3/4 are always readable and write-protected.

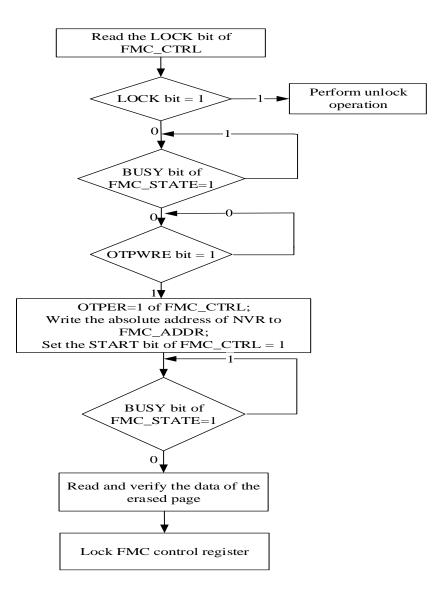
Write operation (program/erase) to NVR1/3/4 must first write the correct key sequence in the FMC option key register, then allow write operation to NVR1/3/4, OTPWRE bit of FMC control register (FMC_CTRL) Indicates that writing is allowed, clearing this bit will disable writing.

The unlock sequence is as follows:

- 1. Write KEY1 = 0x45670123 to the FMC key register (FMC_KEY);
- 2. Write KEY2 = 0xCDEF89AB to the FMC key register (FMC_KEY);
- 3. Write 0x45670123 to the FMC option key register (FMC_OTPKEY);
- 4. Write 0xCDEF89AB to the FMC Option Key Register (FMC_OTPKEY).

4.4.4. NVR1/3/4 erase

After the erase operation is completed, the page content of the NVR is initialized to a high level. The NVR1/3/4 erasing steps are as follows.


- 1. Unlock according to NVR1/3/4 unlocking sequence;
- 2. Make sure the FMC_CTRL register is not locked;
- 3. Wait for the BUSY bit of the FMC_STATE register to become 0;
- 4. Wait for the OTPWRE bit of the FMC_CTRL register to be 1;
- 5. Set the OTPER bit in the FMC_CTRL register;
- 6. Write the absolute address of the NVR to be erased to the FMC_ADDR register;
- 7. Send the optional byte block erase command to FMC by setting the START bit of the

FMC_CTRL register to 1;

- 8. Wait for the erase command to be executed and the BUSY bit of the FMC_STATE register is cleared to 0;
- 9. If necessary, the CPU can read to verify whether the erase is successful;
- 10. After completing the relevant operations, re-lock the FMC control register to prevent FLASH from being misoperated.

When the NVR1/3/4 erase is successfully executed, the END bit of the FMC_STATE register is set.

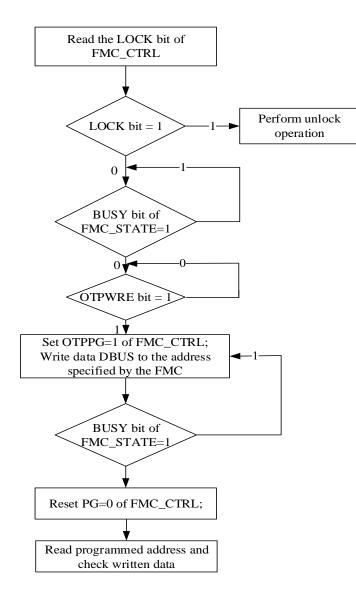
4.4.5. NVR1/3/4 programming

FMC provides a 32-bit whole word programming function, which can be used to modify the content of NVR1/3/4.

The NVR1/3/4 programming operation steps are as follows.

- 1. Unlock according to NVR1/3/4 unlocking sequence;
- 2. Make sure the FMC_CTRL register is not locked;
- 3. Wait for the BUSY bit of the FMC_STATE register to become 0;
- 4. Wait for the OTPWRE bit of the FMC_CTRL register to be 1;
- 5. Set the OTPPG bit in the FMC_CTRL register;
- 6. The CPU writes a 32-bit whole word to the destination address;

When programming the option byte area (NVR1/3), Bit[31:16] must be the one's complement of Bit[15:0], otherwise the default value will be restored.


- 7. Wait for the completion of the programming instruction, and the BUSY bit of the FMC_STATE register is cleared to 0;
- 8. Reset the OTPPG bit of the FMC_CTRL register;
- 9. If necessary, verify whether the programming is successful by reading the CPU (little endian mode);
- 10. After completing the relevant operations, re-lock the FMC control register to prevent FLASH from being misoperated.

When the NVR1/3/4 programming is successfully executed, the END bit of the FMC_STATE register is set.

Programming error

When performing a whole word programming operation, the hardware checks whether the data at the destination address is 0xFFFF. When the data at the address is not 0xFFFF, a programming error occurs, PGERR is set to 1, and programming is aborted.

4.5. NVR2 read

The NVR2 (information block) module stores the configuration word, RB80k calibration value, ADC calibration value and electronic signature of the device, etc. It needs to be unlocked to read, and the user cannot change it. The Information block key register (FMC_INFKEY) is used to unlock the read protection.

The reading steps are as follows:

- 1. Write KEY1 = 0x45670123 to the FMC key register (FMC_KEY);
- 2. Write KEY2 = 0xCDEF89AB to the FMC key register (FMC_KEY);
- 3. Write 0x896DBA23 to the Information block key register (FMC_INFKEY);
- 4. Write 0x7EA56C8F to the Information block key register (FMC_INFKEY);
- 5. Read the data;
- 6. Configure the FMC control register FMC_CTRL. LOCK = 1 to lock the NVR2 module.

4.6. Registers

Base address: 0x5001 0000

Address offset	Register							
	Register		Description					
0x00	FMC_KEY		FMC key register					
0x04	FMC_OTPKEY	[FMC option key register					
0x08	FMC_STATE		FMC status flag register					
0x0C	FMC_CTRL		FMC control register					
0x10	FMC_ADDR		FMC address register					
0x14	FMC_PER0KE	Y	The first 4 pages of FLASH key re	gister				
0x18	FMC_INFKEY		Information block key register					
0x1C	FMC_CFG		CFG register					
0x20	FMC_WRP0		Write protection register 0					
0x24	FMC_WRP1		Write protection register 1					
0x28	FMC_WRP2		Write protection register 2					
0x2C	FMC_WRP3		Write protection register 3					
The following reg	gisters are config	uration wo	rd registers					
Address offset	Register	RW	Description	Defaults				
0x0100	CFG00_REG	R	Configuration word 00 register	0x0000 1FFF				
0x0104	CFG01_REG	R	Configuration word 01 register	0x0000 0DA9				
0x0108	CFG02_REG	R	Configuration word 02 register	0x0000 01A9				
0x010C	CFG03_REG	R	Configuration word 03 register	0x0000 00FF				
0x0110	CFG04_REG	R	Configuration word 04 register	0x0000 0018				
0x0114	CFG05_REG	R	Configuration word 05 register 0x0000 77H					
0x0118	CFG06_REG	R	Configuration word 06 register	0x0000 FFFF				
0x011C	CFG07_REG	R	Configuration word 07 register	0x0000 FFFF				
0x0120	CFG08_REG	R	Configuration word 08 register	0x0000 FFFF				
0x0124	CFG09_REG	R	Configuration word 09 register	0x0000 0FFF				
0x0128	CFG10_REG	R	Configuration word 10 register	0x0000 007F				
0x012C	CFG20_REG	R	Configuration word 20 register	0x0000 00FF				
0x0130	CFG21_REG	R	Configuration word 21 register	0x0000 07FF				
0x0134	CFG22_REG	R	Configuration word 22 register	0x0000 FFFF				
0x0138	CFG23_REG	R	Configuration word 23 register	0x0000 FFFF				
0x013C	CFG24_REG	R	Configuration word 24 register	0x0000 FFFF				
0x0140	CFG25_REG	R	Configuration word 25 register	0x0000 FFFF				
0x0144	CFG26_REG	R	Configuration word 26 register	0x0000 FFFF				
0x0148	CFG27_REG	R	Configuration word 27 register	0x0000 FFFF				
0x014C	CFG28_REG	R	Configuration word 28 register	0x0000 FFFF				
0x0150	CFG29_REG	R	Configuration word 29 register	0x0000 FFFF				

4.6.1. FMC key register (FMC_KEY)

Addres	Address offset: 0x00														
Reset v	Reset value: 0x0000 0000														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							KEY[31:16]							
							V	V							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	KEY[15:0]														
	W														

		Unlock for FLASH erasing and programming
		The register is write-only, the read back data is 0
31:0	VEV[21.0]	Unlock method: Write KEY1 = 0x45670123, KEY2 = 0xCDEF89AB in
51.0	KEY[31:0]	sequence
		Note: Only after configuring this register successfully, other FMC registers can
		be configured

4.6.2. FMC option key register (FMC_OTPKEY)

Address offset: 0x04

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						C	TPKE	Y [31:16	5]						
							V	V							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	OTPKEY [15:0]														
							V	V							

		Used to unlock NVR1/3/4 erasing and programming
31:0	OTPKEY[31:0]	The register is write-only, the read back data is 0
		Unlock method: Write sequentially 0x45670123, 0xCDEF89AB

4.6.3. FMC status flag register (FMC_STATE)

Address offset: 0x08 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Reserved

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
										END	WPERR		PGERR	1	BUSY
				Rese	erved					RC_W1	RC_W1	Res.	RC_W1	Res.	RC_W1

31:6	-	Reserved
		Operation end flag
5	END	After the operation is successfully executed, this bit is set by hardware
		Software write 1 to clear 0
		Erase/program protection error flag
4	WARDD	During an erase/program operation on a protected page, this bit is set by
4	WPERR	hardware
		Software write 1 to clear 0
3	-	Reserved
		Programming error flag
2	DCEDD	When the state of the programmed area is not 0xFFFF, program the flash
2	PGERR	memory, this bit is set by hardware
		Software write 1 to clear 0
1	-	Reserved
		Busy, this bit indicates that the flash memory operation is in progress
0	BUSY	At the beginning of the flash memory operation, this bit is set to '1'
		At the end of the operation or an error occurs, this bit is cleared to '0'

4.6.4. FMC control register (FMC_CTRL)

Addre	Address offset: 0x0C														
Reset	Reset value: 0x0000 0080														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														

15:12	11	10	9	8	7	6	5	4	3	2	1	0
	INFRDE		OTPWR	PER0W	LOC	STA	OTP	OPTP		ME	PE	PG
Res.	INFRDE	Res.	Е	RE	К	RT	ER	G	Res.	R	R	10
	RC_W0		RC_W0	RC_W0	RS	RS	RW	RW		RW	RW	RW

31:12	-	Reserved
		Allow reading information block
		When this bit is '1', the read operation of the information block is allowed
11	INFRDE	When the correct key sequence is written in the FMC_INFKEY register, this bit
		is set to '1'
		Software can write 0 to clear this bit

10	-	Reserved
		Allow write NVR1/NVR3/NVR4
		When this bit is '1', the NVR1/NVR3/NVR4 can be programmed
9	OTPWRE	When the correct key sequence is written in the FLASH_OPTKEY register, this
		bit is set to '1'
		Software can write 0 to clear this bit
		Allow to write the first 4 pages of flash
		When this bit is '1', the option byte can be programmed
8	PER0WRE	When the correct key sequence is written in the FLASH_PER0KEY register,
		this bit is set to '1'
		Software can write 0 to clear this bit
		Lock
		Only '1' can be written. When this bit is '1', it means the FLASH_CTRL register
7	LOCK	is locked
		This bit is cleared by hardware after a correct unlock sequence is detected
		If the unlock operation fails, this bit remains set until the next system reset
		Send erase command bit to FLASH
		Set by software to send erase command to FLASH
6	START	When the BUSY bit is cleared to 0, this bit is cleared to 0 by hardware
		When there is no valid erase command, after START writes 1, it can only be
		completed by writing FLASH command or cleared by error
		Erase NVR1/NVR3/NVR4
5	OTPER	1 effective
		Set and cleared by software
		Programming NVR1/NVR3/NVR4
4	OPTPG	1 effective
		Set and cleared by software
3	-	Reserved
		Option to erase all pages of main memory block
2	MER	1 effective
		Set and cleared by software
		Select erase main memory block pages
1	PER	1 effective
		Set and cleared by software
		Main memory block programming operation
0	PG	1 effective
		Set and cleared by software

4.6.5. FMC address register (FMC_ADDR)

Address offset: 0x10

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	FMC_ADDR[31:16]														
	RW														
15	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0														0
	FMC_ADDR[15:0]														
	RW														

31:0	FMC ADDR[31:0]	Flash erase address, this bit is set by software
51.0	FMC_ADDR[51.0]	The ADDR bit is the address of the flash erase command

4.6.6. The first 4 pages of FLASH key register (FMC_PER0KEY)

Address offset: 0x14 Reset value: 0x0000 0000

Repet															
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						Pl	ER0KE	Y [31:1	6]						
							V	N							

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	PER0KEY [15:0]														
								V							

		Used to erase and program the first 4 pages of FLASH to unlock
31:0	PER0KEY	The register is write-only, the read back data is 0
		Unlock method: Write sequentially 0x45670123, 0xCDEF89AB

4.6.7. Information block key register (FMC_INFKEY)

Addres Reset v			-)											
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						Ι	NFKEY	7 [31:16]						
	W														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							INFKE	Y [15:0]							
							V	V							

21.0		Used to unlock the read protection of the information block 0x0002_0200~0x0002_03FF
31:0	INFKEY[31:0]	The register is write-only, the read back data is 0
		Unlock method: Write sequentially 0x896DBA23, 0x7EA56C8F

4.6.8. CFG register (FMC_CFG)

Address offset: 0x1C Reset value: 0xFFFF FFFF 31 30 29 28 27 26 25 24 23 22

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							

15:5	4	3	2	1	0
	WDT_EN	WDTRST_SD	WDTRST_SP	RDPRT	CFGERR
Reserved	R	R	R	R	R

31:5	-	Reserved
		Read protection, read-only bit
1	RDPRT	1: Indicates that the flash memory is read protected
		0: Indicates that the flash memory is not read-protected
		Reset read configuration word error, read-only bit
0	CFGERR	When this bit is 1, it means that the configuration word and its inverse code
		do not match

4.6.9. Write protection register 0 (FMC_WRP0)

Address	Address offset: 0x20														
Reset v	alue:	0xFFF	FF FFF	ŦF											
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							WF	RP1							
							I	λ							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							WF	RP0							
	R														

		Write protection of pages 0~63 of the main memory block
31:16	WRP1	Bit[0]: Write protection for pages 0 and 1
		Bit[1]: Write protection for pages 2 and 3

		Bit[31]: Write protection for pages 62 and 63
15:0	WRP0	0: The corresponding two-page write protection takes effect
		1: The corresponding two-page write protection is invalid
		This register contains the write protection option byte loaded by SYS

4.6.10. Write protection register 1 (FMC_WRP1)

	Address offset: 0x24 Reset value: 0xFFFF FFFF														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							WF	RP3							
							ŀ	λ							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							WF	RP2							
	R														

31:16	WRP3	Write protection of pages 64~127 of the main memory block Bit[0]: Write protection for pages 64 and 65 Bit[1]: Write protection for pages 66 and 67
15:0	WRP2	 Bit[31]: Write protection for pages 126 and 127 0: The corresponding two-page write protection takes effect 1: The corresponding two-page write protection is invalid This register contains the write protection option byte loaded by SYS

4.6.11. Write protection register 2 (FMC_WRP2)

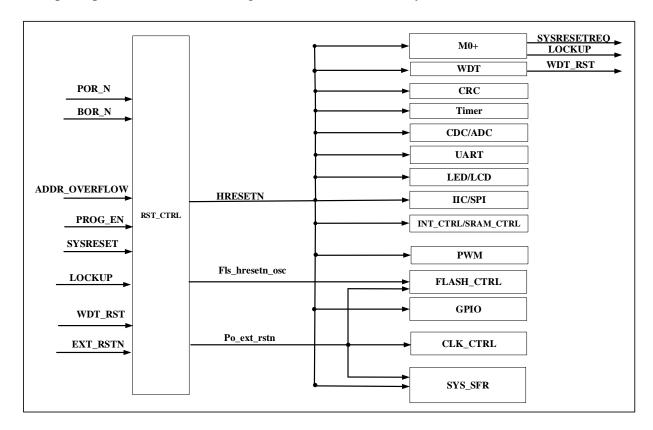
Address offset: 0x28								
Reset value: 0xFFFF FFFF								
<u>31 30 29 28 27 26 25 24 23 22 21 20 19 18</u>	17 16							
WRP5								
R								
15 14 13 12 11 10 9 8 7 6 5 4 3 2	1 0							
WRP4								
R								

31:16	WRP5	Write protection of pages 128~191 of the main memory block Bit[0]: Write protection for pages 128 and 129 Bit[1]: Write protection for pages 130 and 131
15:0	WRP4	 Bit[31]: Write protection for pages 190 and 191 0: The corresponding two-page write protection takes effect 1: The corresponding two-page write protection is invalid This register contains the write protection option byte loaded by SYS

4.6.12. Write protection register 3 (FMC_WRP3)

Address offset: 0x2C

Reset value: 0xFFFF FFFF

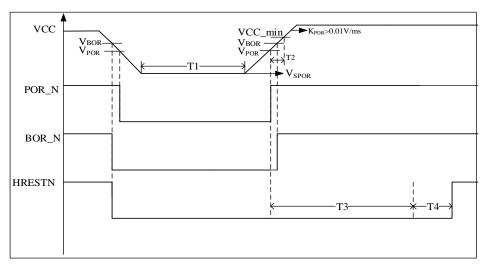

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							WF	RP7							
							Ι	R							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							WI	RP6							
							I	R							

31:16	WRP7	Write protection of pages 192~255 of the main memory block Bit[0]: Write protection for pages 192 and 193 Bit[1]: Write protection for pages 194 and 195
15:0	WRP6	 Bit[31]: Write protection for pages 254 and 255 0: The corresponding two-page write protection takes effect 1: The corresponding two-page write protection is invalid This register contains the write protection option byte loaded by SYS

5 Reset

There are 8 reset sources in BF7807AMXX: Power-on reset, power-down reset, watchdog reset, CPU software reset, CPU lock reset, external reset, PC pointer overflow reset, and FLASH programming reset. As long as any one of these resets occurs, the system's global reset signal resets the entire chip. The reset flag register (RST_STATE) can be used to determine what kind of reset the chip has performed. The reset flag bit needs to be cleared by software.

Reset block diagram


5.1. Reset introduction

5.1.1. Power-on/Power-down reset

POR_N: After the system is powered on, after the POR reset module releases the POR reset signal, the global reset signal lasts for 93ms, and after the global reset signal continues to be valid for 5ms, the system exits the reset mode.

BOR_N: After the system is powered off, the BOR reset module generates a BOR reset signal, the global reset signal is valid for 5ms.

Power-up/power-down sequence:

Power-on reset schematic

Ch-al	Demonster	Tes	Test Conditions		T	M	T	
Symbol	Parameter	VCC	Temperature	Min	Typical	Max	Unit	
V _{SPOR}	Power-on reset start voltage	-	25°C	-	-	300	mV	
K _{POR}	Power-on reset voltage rate	-	25°C	0.01	-	-	V/ms	
V _{POR}	Power-on reset voltage, 0.3V hysteresis	-	25°C	1.1	1.4	2.2	v	
V _{BOR}	Power-down reset voltage (±10%), 0.2V hysteresis	-	25°C	-	V _{BOR}	-	v	
VCC_min	Minimum working voltage	-	25°C	2.7	-	-	V	
T1	VCC hold V _{SPOR} time	-	25°C	0.1	-	-	ms	
T2	V _{POR} to VCC_min time	-	25°C	-	-	0.6*T3	ms	
T3	Analog POR module delay time	-	25°C	75	93	112	ms	
T4	Global reset valid time	-	25°C	-	5	-	ms	

Power-on reset characteristic parameter table

Note: The V_{BOR} power-down reset voltage is selected by the VTH_SEL bits of the BOR controller BOR_CFG[4:2].

5.1.2. Watchdog timer overflow reset

WDT_RST: After the watchdog timer overflows, the global reset is performed for 5ms. After 5ms, the system exits the reset mode.

5.1.3. CPU software reset

SYSRESETREQ: The soft reset signal is valid by writing the CPU register, and the global reset signal is valid for 5ms. After 5ms, the system exits the reset mode (AIRCR. SYSRESETREQ, writing 1 will activate the external SYSRESETREQ signal).

5.1.4. CPU lockup reset

LOCKUP: If there is an error in program execution, the CPU is locked to make the reset signal valid, and the global reset signal is valid for 5ms. After 5ms, the system exits the reset mode.

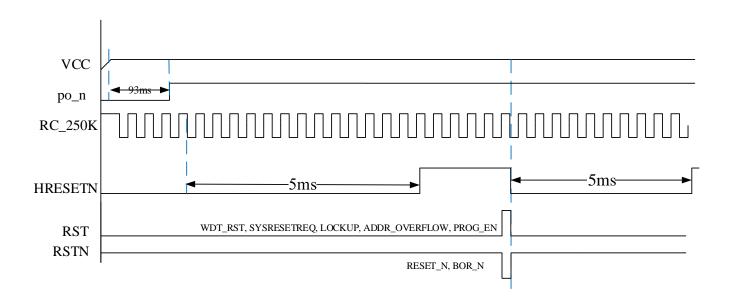
5.1.5. External reset

RESET_N: When the external reset pin detects a low level, a system reset is generated. The reset pin has a built-in 33k pull-up resistor. The signal added to this pin should exceed 300us to ensure reliable reset of the chip.

The chip port is connected to an external reset signal. When reset_n is low, the entire chip is in a reset state. After it becomes high, the global reset signal continues to be valid for 5ms. After 5ms, the system exits the reset mode.

5.1.6. PC pointer overflow reset

ADDR_OVERFLOW: If the PC pointer exceeds the valid address range of the flash when the MCU addresses the program memory, the addr_overflow signal becomes high, and the rising edge of the sys_clk clock detects the high level of addr_overflow (it takes 1 clock cycle) to reset the global for 5ms, and the reset signal will reset the addr_overflow signal. The signal is cleared, and after 5ms, the system exits the reset mode.


5.1.7. FLASH programming reset

PROG_EN: When prog_en is high, it is the programming mode of FLASH. At this time, the global reset signal is valid. After it becomes low, the global reset signal continues to be valid for 5ms.

5.2. Reset timing diagram

Reset sequence description:

- 1. When the chip has a power-on reset, the analog POR module delays for 93ms, and PO_N is pulled high.
- 2. The programmer sends instructions to make the chip enter the programming mode (PROG_EN is pulled high), after completing the programming, exit the programming mode. After a delay of 5ms, and HRESETN are pulled high. The chip enters normal operation.
- 3. In normal operation, when any one of watchdog reset, address overflow reset, soft reset, and LOCKUP occurs, HRESETN is pulled low, after a delay of 5ms, HRESETN is pulled high. The chip enters normal operation.
- 4. After normal work, you can no longer enter the programming mode.
- 5. In normal operation, after an external reset RESET_N occurs, after filtering 4 clocks with LIRC32k, HRESETN is pulled low, after RESET_N is pulled high, and after a delay of 5ms, HRESETN is pulled high. The chip enters normal operation.
- 6. In normal operation, after BO_N occurs, HRESETN is pulled low, after BO_N is pulled high, and after a delay of 5ms, HRESETMN is pulled high. The chip enters normal operation.

5.3. Registers

Address offset	Register	Description
0x08	RST_STATE	Reset flag register
0x14	BOR_CFG	BOR configuration register

5.3.1. Reset flag register (RST_STATE)

Address offset: 0x08

Reset value: 0x0000 0001

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							

15:8	7	6	5	4	3	2	1	0
	PROG	ADDROF	EXTI_RSTN	LOCKUP	SYSRESET	WDTRST	BOR	POR
Reserved	RC_W0							

31:8	-	Reserved
		FLASH programming reset flag, software can write 0 to clear the corresponding
7	PROG	flag bit
/	I KOO	1: FLASH programming reset occurs
		0: No FLASH programming reset occurs
		PC pointer overflow reset flag, software can write 0 to clear the corresponding
6	ADDROF	flag bit
0		1: PC pointer overflow reset occurs
		0: No PC pointer overflow reset occurs
		External reset flag, software can write 0 to clear the corresponding flag bit
5	EXTI_RSTN	1: External reset occurred
		0: No external reset occurred
		CPU lock reset flag, software can write 0 to clear the corresponding flag bit
4	LOCKUP	1: CPU lock reset occurred
		0: No CPU lock reset occurs
		CPU software reset flag, software can write 0 to clear the corresponding flag bit
3	SYSRESET	1: CPU software reset occurred
		0: No CPU software reset occurs
		Watchdog reset flag, software can write 0 to clear the corresponding flag bit
2	WDTRST	1: Watchdog reset occurred
		0: No watchdog reset occurs
1	BOR	Power-down reset flag, software can write 0 to clear the corresponding flag bit

		1: Power-down reset occurred
		0: No power-down reset occurs
		Power-on reset flag, software can write 0 to clear the corresponding flag bit
0	POR	1: Power-on reset occurred
		0: No power-on reset occurred

5.3.2. BOR configuration register (BOR_CFG)

Address offset: 0x14 Reset value: 0x0000 0002 Reserved

15:5	4 3 2	1	0	
Reserved	VTH_SEL	DELAY_SEL		
	RW	RW	Res.	

31:5	-	Reserved			
		BOR power-down threshold configuration register			
		000: Reserved			
		001: 2.8V			
		010: 3.3V			
4:2	VTH_SEL	011: 3.7V			
		1xx: 4.2V			
		After power-on reset, the BOR threshold defaults to 2.3V, and the program			
		configures the above gears			
		See table "Threshold and delay selection"			
		BOR's Power-Down Delay Configuration Register			
1	DELAY_SEL	0: Delay selection 1			
1	DELAI_SEL	1: Delay option 2			
		See table "Threshold and delay selection"			
0	-	Reserved			

DELAY_SEL	VTH_SEL	Power down threshold (V)	Recovery threshold (V)	Hysteresis (mV)	Delay (µs)
	001	2.8	2.6	140.3	84.0
	010	3.3	3.4	144.5	97.7
0	011	3.7	3.8	121	107.3
	1XX	4.2	4.3	129.7	117.3
	001	2.8	2.9	144.5	168
1	010	3.3	3.4	149.5	195.9
1	011	3.7	3.8	126.4	215.3
	1XX	4.2	4.3	135.6	235.6

Table BOR threshold and delay selection

6 System working mode

6.1. Working mode description

The working mode of BF7807AMXX: Active mode, debug mode, standby mode.

• Active Mode

The RC1M, PLL, HCLK, LIRC work, XTAL depends on software settings. The core is running, the peripherals keep working normally, and the functions of each peripheral are controlled by software configuration.

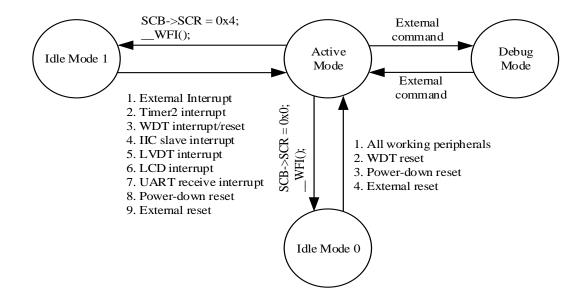
• Debug Mode

Debugging is performed by transmitting commands through the SWD port.

• Standby mode is divided into idle mode 0 and idle mode 1

• Idle Mode 0

Only the HCLK clock is turned off, RC1M, PLL and LIRC work, XTAL depends on software settings. The core stops running, and the rest of the peripherals that do not need HCLK as the working clock can work.


• Idle Mode 1

RC1M, PLL and HCLK are off, XTAL depends on software settings, LIRC works. The core is stopped and the peripherals work fine using the LIRC clock.

The working	status o	f the	clock source:

Work mode	Entry conditions	Effects on the	e clock
		RC1M	Work
		PLL	Work
Astiva Mada	Wake-up from power-on	HCLK	Work
Active Mode	reset/standby mode	LIRC	Work
		XTAL	Depends on software configuration
		RC1M	Work
	SCB->SCR = 0x0;WFI();	PLL	Work
Idle Mode 0		HCLK	Off
		LIRC	Work
		XTAL	Depends on software configuration
		RC1M	Off
		PLL	Off
Idle Mode 1	$SCP > SCP = 0_{VA}$, $WEI()$.	HCLK	Off
	SCB->SCR = 0x4;WFI();	LIRC	Work
		XTAL	Depends on software configuration

Working mode conversion diagram

6.1.1. Active mode

Reduce system clock speed

In active mode, the system clock (HCLK) speed can be reduced by configuring the clock configuration register (CLK_CFG).

Peripheral clock gating

In active mode, peripherals can be stopped at any time to reduce power consumption.

To further reduce power consumption in idle mode, peripheral clocks can be disabled before executing a WFI or WFE instruction. Peripheral clock gating is controlled by the peripheral module clock control register (RCU_EN).

6.1.2. Debug mode

Debugging is performed by transmitting commands through the SWD port.

If the user application puts the MCU in standby mode, debugging will break because the core clock is stopped.

6.1.3. Low power management

The BF7807AMXX saves all CPU states before entering standby mode, SRAM and register contents are preserved, and GPIOs remain in run-time state.

Enter idle mode 0 SCB->SCR = 0x0; __WFI(); Enter idle mode 1 SCB->SCR = 0x4; __WFI();

Status of peripherals in standby mode:

Madada	Clock	Standby mode	
Module		Idle mode 0	Idle mode 1
Cortex-M0+	HCLK	×	×
SRAM	HCLK	×	×
SYS_SFR	HCLK	×	×
SysTick	HCLK	×	×
FLASH	Divide by 2 of HCLK/PLL_48M	\checkmark	×
UART0/1/2/3/4	HCLK/ PLL_48M	\checkmark	×
PWM0/1/2/3/4	1~128 frequency division of HCLK/PLL_48M	\checkmark	×
Timer0/1/3	1~128 frequency division of HCLK/PLL_48M	\checkmark	×
WDT	HCLK/LIRC	\checkmark	\checkmark
Timer2	HCLK/LIRC/ XTAL	\checkmark	\checkmark
CDC	HCLK/PLL_48M	\checkmark	×
ADC	HCLK/PLL_48M	\checkmark	×
LED	HCLK/RC1M	\checkmark	×
LCD	HCLK/LIRC/RC1M/XTAL	\checkmark	\checkmark
SPI	HCLK/SPI_CLK	\checkmark	×
IIC	HCLK/PLL_48M divide by 2/SCL	\checkmark	×
CRC	HCLK	×	×
GPIO		\checkmark	\checkmark

Note: In the figure, $\sqrt{}$ means support, according to the program configuration. × means unavailable.

Exit idle mode 0

WDT interrupt, external interrupt 0~3 interrupt, IIC slave interrupt, UART0/1/2/3/4 interrupt, Timer0/1/2/3 interrupt, LED interrupt, LCD interrupt, ADC interrupt, CDC interrupt, PWM0/1 /2/3/4 interrupt, LVDT interrupt, any of which can wake up the chip, exit idle mode 0, and the CPU executes the interrupt service routine.

External reset, power-down reset, and WDT reset can also wake up the chip to exit idle mode 0.

Exit idle mode 1

WDT interrupt, external interrupt, IIC slave interrupt, Timer2 interrupt, LCD interrupt, LVDT interrupt, UART receive interrupt, any of which can wake up the chip, exit idle mode 1, and the CPU executes the interrupt service routine.

External reset, power-down reset, and WDT reset can also wake up the chip to exit idle mode 1.

6.2. Register

Enter idle mode 0 or idle mode 1, which is determined by the register SCR.SLEEPDEEP bit.

Address	Register	Description
0xE000ED10	SCR	System control register

Bit	Bit symbol	Description	RW	Reset value
31:3	Reserved	-	-	-
2	SLEEPDEEP	Select standby mode register 0: Enter idle mode 0 1: Enter idle mode 1	R/W	0
1	SLEEPONEXIT	 0: Do not enter standby mode (WFI) when exiting exception handling and returning to the program thread 1: When exiting exception handling and returning to the program thread, the processor automatically enters standby mode (WFI) 	R/W	0
0	Reserved	-	-	-

7 WDT

7.1. WDT features

- The WDT clock is provided by internal low-speed clock LIRC32kHz, which can work in standby mode
- Timing range: 18ms~2.304s
- In debug mode, it can be configured to automatically pause at the current value and continue counting after exiting

7.2. WDT function overview

Due to the particularity of the system application, the watchdog timer overflow signal is classified:

Watchdog time-out reset: Reset generated in active mode, reset generated by option byte selection in standby mode. If the watchdog timing overflow occurs, the overflow signal is the watchdog overflow reset signal at this time, and the watchdog overflow reset affects the global reset. At this time, the system implements the global reset action and reloads the configuration information.

Watchdog time-out interrupt: Option byte selection generates an interrupt in standby mode. If the watchdog timing overflow occurs, the overflow signal is the watchdog interrupt signal at this time. In this case, no reset occurs, and the interrupt wakes up the chip to exit the sleep mode and execute the watchdog interrupt service function.

The watchdog module is a timing counting module, and its counting clock is the internal lowspeed clock LIRC, and its timing clearing signal is composed of global reset and configuration clearing. This signal is synchronously released by the watchdog timing clock in the reset module; for The clearing action is generated every time the CPU configures the watchdog overflow timing configuration register, and the watchdog restarts the timing; at the same time, the watchdog counter has the watchdog count enable control. After the watchdog timer overflows (reset or interrupt), as long as the watchdog count enable is not turned off, the watchdog counter will restart counting.

Note: When the watchdog peripheral clock is turned on, the configuration register WDT_EN=0x55 can turn off the watchdog.

7.3. Registers

Address offset	Register	Description							
0x04	RCU_EN	Peripheral module clock control register							
Base address: 0x	5001 0000								
Address offset	Register	Description							
0x1C	FMC_CFG	CFG register							
Base address: 0x3	5005 0400								
Address offset	Register	Description							
0x00	WDT_EN	Watchdog timer enable configuration register							
0x04	WDT_TIME_SEL	Watchdog overflow timing configuration register							
0x08	WDT_INT_CFG	Watchdog interrupt register							

Base address: 0x5000 0000

7.3.1. Peripheral module clock control register (RCU_EN)

Address offset: 0x04

Reset value: 0x0000 0001

23	22	21	20	19	18	17	16
LED_LCD_C	GPIO_CL	CRC_CL	ADC_CL	CDC_CL	WDT_CL	TIMER3_CL	TIMER2_CL
LKEN	KEN	KEN	KEN	KEN	KEN	KEN	KEN
RW	RW	RW	RW	RW	RW	RW	RW

		WDT module operation enable
18	WDT_CLKEN	1: Work
		0: Off, the default is 0

7.3.2. CFG register (FMC_CFG)

Address offset: 0x1C

Reset value: 0xFFFF FFFF

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							

15:5	4	3	2	1	0
	WDT_EN	WDTRST_SD	WDTRST_SP	RDPRT	CFGERR
Reserved	R	R	R	R	R

31:5	-	Reserved
4	WDT_EN	User option bytes loaded by NVR1

		0: The program is not allowed to turn off the watchdog function 1: Allow the program to turn off the watchdog function
		User option bytes loaded by NVR1
3	WDTRST SD	0: When entering idle mode 1, a watchdog reset is generated
5	WDIKSI_SD	1: When entering idle mode 1, no watchdog reset is generated, wake-up standby, and
		WDT interrupt is generated
		User option bytes loaded by NVR1
2	WDTDCT CD	0: When entering idle mode 0, a watchdog reset is generated
2	WDTRST_SP	1: When entering idle mode 0, no watchdog reset is generated, wake up standby, and
		generate WDT interrupt

7.3.3. Watchdog timing enable configuration register (WDT_EN)

Address offset: 0x00

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
											EN[7:0]			
	Reserved										R	W			

31:8	-	Reserved
		Watchdog timer enable configuration register
		When the configuration value of this register is 0x55, the watchdog is turned
7:0	EN[7:0]	off, and when it is configured to other values, it is turned on
		Configuring this register will clear the WDT counter
		Configuration word control enable is closed

7.3.4. Watchdog overflow timer configuration register (WDT_TIME_SEL)

Address offset: 0x04 Reset value: 0x0000 0007															
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Reserved															
					15	5:3						2		l	0
														SEL[2:0)]
					Rese	erved							R	W	

31:3	-	Reserved
		Watchdog overflow timing configuration register, the timing length is as
		follows:
		000: 18ms
		001: 36ms
2.0		010: 72ms
2:0	TIME_SEL[2:0]	011: 144ms
		100: 288ms
		101: 576ms
		110: 1152ms
		111: 2304ms

7.3.5. Watchdog interrupt register (WDT_INT_CFG)

Address offset: 0x08 Reset value: 0x0000 0000

_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Reserved																

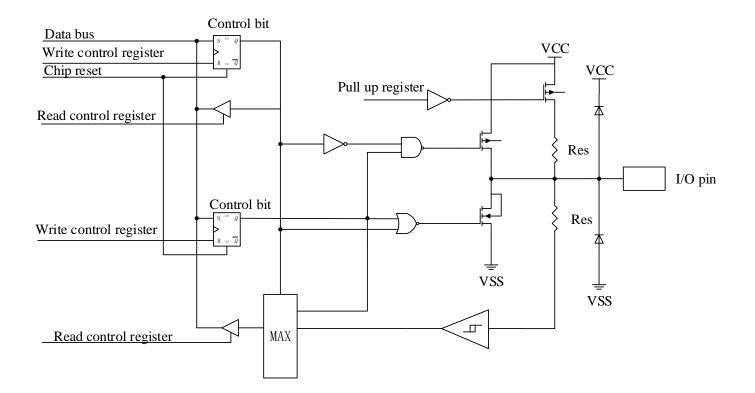
15:2	1	0
	INT_CLR	INT_FLAG
Reserved	W	R

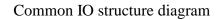
31:2	-	Reserved							
1	NIT CLD	Interrupt status flag clear register							
1	INT_CLR	Write 1 to clear INT_FLAG, write only							
		Interrupt Status Flag Register							
0		1: Counting complete							
0	INT_FLAG	0: Count not completed, read only							
		The option byte controls whether an interrupt is generated in standby mode							

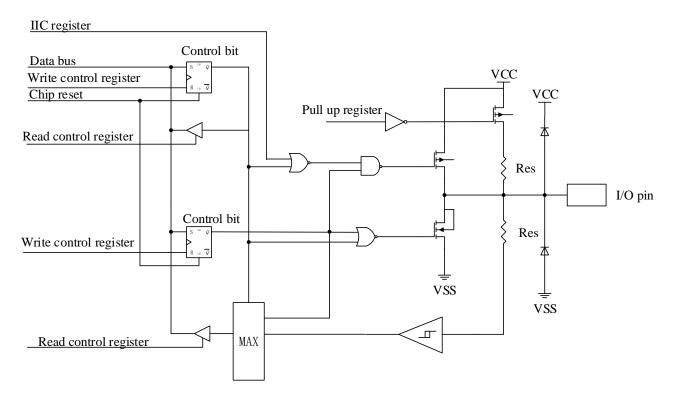
8 GPIO port

8.1. GPIO port description

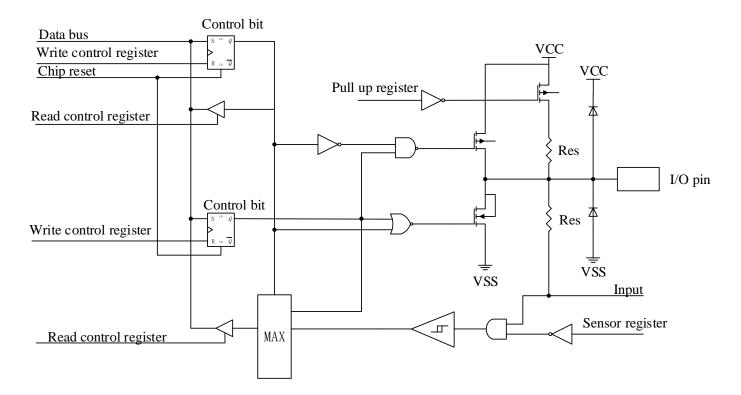
Some pins of the GPIO port are multiplexed with the peripheral functions of the device, and they cannot be configured for multiple functions at the same time, otherwise it will cause functional disorder.

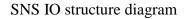

Configure the corresponding registers to achieve the following features:

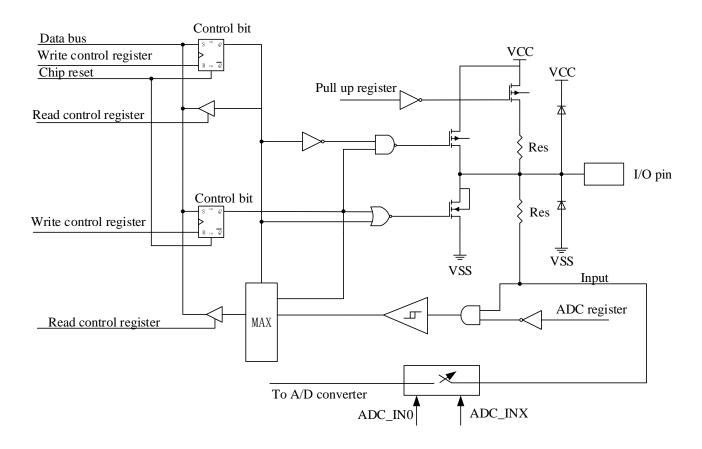

- Direction selection (Px_TRIS) Configuration 1 configures the corresponding pin as an input, and clears it to configure the corresponding pin as an output.
- Output high and low level selection (Px_DATA) Configuration 1 configures the corresponding pin to output high, and clearing it to 0 configures the corresponding pin to output low.
- Internal pull-up resistor (PU_Px) The corresponding pin pull-up resistor of configuration 1 is enabled, and the corresponding pin is cleared to not enable the pull-up resistor, and the pull-up resistor is 33k.

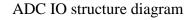

Open drain output (ODRAIN_EN)
 The pin corresponding to configuration 1 enables open-drain output. Clearing to zero will
 disable the open-drain output function. After enabling the IIC function, the open-drain output is
 automatically turned on. IIC/UART recommends using an external pull-up resistor.
 The pin corresponding to configuration 1 enables the high-current drive function, and the pin
 corresponding to 0 is the IO port function.

• All ports can provide external interrupt, and each interrupt can be configured as rising edge trigger, falling edge trigger, double edge trigger, see chapter "External interrupt" for details.








Open drain output IO structure diagram

8.2. Registers

Base address: 0x5000 0000

Dase address. Oxe	0000 0000	
Address offset	Register	Description
0x04	RCU_EN	Peripheral module clock control register
Base address: 0x5	5008 0000	
Address offset	Register	Description
0x24	COM_IO_SEL	COM port selection configuration register
Base address: 0x5	500A 0000	
Address offset	Register	Description
0x00	PA_TRIS	PA direction register
0x04	PB_TRIS	PB direction register
0x08	PC_TRIS	PC direction register
0x0C	PD_TRIS	PD direction register
0x10	PA_DATA	PA data register
0x14	PB_DATA	PB data register
0x18	PC_DATA	PC data register
0x1C	PD_DATA	PD data register
0x20	PU_PA	Port PA pull-up resistor control register
0x24	PU_PB	Port PB pull-up resistor control register
0x28	PU_PC	Port PC pull-up resistor control register
0x2C	PU_PD	Port PD pull-up resistor control register
0x30	SW_IO_EN	SWD port selection enable register
0x34	ODRAIN_EN	Open drain output enable register
0x3C	PWM_OUT_EN	PWM output enable register
0x40	UARTx_IO_SEL	UART control register
0x44	IIC_IO_CTRL	IIC control register
0x48	SPI_CLK_CFG	SPI input clock configuration register
0x4C	HSPEED_EN	SPI high-speed mode enable register
0x50	SPI0_IO_CTRL	SPI select enable register

8.2.1. Peripheral module clock control register (RCU_EN)

Address offset: 0x04 Reset value: 0x0000 0001

23	22	21	20	19	18	17	16
LED_LCD_C	GPIO_CL	CRC_CL	ADC_CL	CDC_CL	WDT_CL	TIMER3_CL	TIMER2_CL
LKEN	KEN	KEN	KEN	KEN	KEN	KEN	KEN
RW	RW	RW	RW	RW	RW	RW	RW

		GPIO module operation enable
22	GPIO_CLKEN	1: Work
		0: Off, the default is 0

8.2.2. Direction registers

8.2.2.1. PA direction register (PA_TRIS)

Address offset: 0x00 Reset value: 0x0000 FFFF

Reset	value:	00000		Г											
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Reserved															

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TR15	TR14	TR13	TR12	TR11	TR10	TR9	TR8	TR7	TR6	TR5	TR4	TR3	TR2	TR1	TR0
RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW

31:16	-	Reserved
		Bit[15]~ Bit[0]: Direction of PA15~PA0 port pins
15:0	TR[15:0]	0: Output;
		1: Input

8.2.2.2. PB direction register (PB_TRIS)

Address offset: 0x04

Reset value: 0x0000 FFFF

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Reserved															

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TR15	TR14	TR13	TR12	TR11	TR10	TR9	TR8	TR7	TR6	TR5	TR4	TR3	TR2	TR1	D
RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	Res.

31:16	-	Reserved
15:1	TR[15:1]	Bit[15]~ Bit[1]: PB15~PB1 port pin direction 0: Output; 1: Input
0	-	Reserved

8.2.2.3. PC direction register (PC_TRIS)

Addres	Address offset: 0x08														
Reset v	Reset value: 0x0000 FFFF														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TR15	TR14	TR13	TR12	TR11	TR10	TR9	TR8	TR7	TR6	TR5	TR4	TR3	TR2	TR1	TR0
RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW

31:16	-	Reserved
15:0	TR [15:0]	Bit[15]~ Bit[0]: PC15~PC0 port pin direction 0: Output;
		1: Input

8.2.2.4. PD direction register (PD_TRIS)

Address offset: 0x0C

Reset value: 0x0000 0FFF

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	D 1				TR10	TR9	TR8	TR7	TR6	TR5	TR4	TR3	TR2	TR1	TR0
	Rese	erved		RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW

31:12	-	Reserved
		Bit[11]~ Bit[0]: PD11~PD0 port pin direction
11:0	TR[11:0]	0: Output;
		1: Input

8.2.3. Data registers

8.2.3.1. PA data register (PA_DATA)

Address offset: 0x10 Reset value: 0x0000 FFFF 31 30 29 28 25 27 26 24 23 22 21 20 19 18 17 16 Reserved

 15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW

31:16	-	Reserved
		Bit[15]~ Bit[0]: PA15~PA0 data register
15.0		Configurable output level when IO port of PA group is used as GPIO port
15:0	D[15:0]	The read value is the current level state of the IO port (input) or the configured
		output value (output)

8.2.3.2. PB data register (PB_DATA)

Address offset: 0x14

Reset value: 0x0000 FFFF

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D
RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	Res.

31:16	-	Reserved
		Bit[15]~ Bit[1]: PB15~PB1 data register
15.1	D[15.1]	Configurable output level when PB group IO port is used as GPIO port
15:1	D[15:1]	The read value is the current level state of the IO port (input) or the configured
		output value (output)
0	-	Reserved

8.2.3.3. PC data register (PC_DATA)

Address offset: 0x18 Reset value: 0x0000 FFFF

Reset															
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW

31:16	-	Reserved
15:0	D[15:0]	Bit[15]~ Bit[0]: PC15~PC0 data register

Configurable output level when IO port of PC group is used as GPIO port
The read value is the current level state of the IO port (input) or the configured
output value (output)

8.2.3.4. PD data register (PD_DATA)

Address offset: 0x1C

Reset value: 0x0000 0FFF

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
Reserved		RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW		

31:12	-	Reserved
		Bit[11]~ Bit[0]: PD11~PD0 data register
11.0	DI11 01	Configurable output level when PD group IO port is used as GPIO port
11:0	D[11:0]	The read value is the current level state of the IO port (input) or the configured
		output value (output)

8.2.4. Pull-up resistor control registers

8.2.4.1. PA pull-up resistor control register (PU_PA)

1	Addres	ss offs	et: 0x2	20												
I	Reset	value:	0x000	000 000	0											
-	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
								Rese	erved							
_																

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
PU15	PU14	PU13	PU12	PU11	PU10	PU9	PU8	PU7	PU6	PU5	PU4	PU3	PU2	PU1	PU0
RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW

31:16	-	Reserved
		Bit[15]~ Bit[0]: PA15~PA0 pull-up resistor control register
15:0	PU[15:0]	1: PAx port pull-up resistor is enabled
		0: PAx port pull-up resistor is not enabled

8.2.4.2. PB pull-up resistor control register (PU_PB)

Addres	ss offse	et: 0x24	4												
Reset v	value: ()x0000) 3000												
31	30	29	28	27	26	25	24	23	22	21	20	19) 1	8	17 16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
PU15	PU14	PU13	PU12	PU11	PU10	PU9	PU8	PU7	PU6	PU5	PU4	PU3	PU2	PU1	D
RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	Res.

31:16	-	Reserved
15:1	PU[15:1]	Bit[15]~ Bit[1]: PB15~PB1 pull-up resistor control register 1: PBx pull-up resistor is enabled 0: PBx pull-up resistor is not enabled
0	-	Reserved

8.2.4.3. PC pull-up resistor control register (PU_PC)

Address offset: 0x28

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Reserv	ved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
PU15	PU14	PU13	PU12	PU11	PU10	PU9	PU8	PU7	PU6	PU5	PU4	PU3	PU2	PU1	PU0
RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW

31:16	-	Reserved
		Bit[15]~ Bit[0]: PC15~PC0 pull-up resistor control register
15:0	PU[15:0]	1: PCx pull-up resistor is enabled
		0: PCx pull-up resistor is not enabled

8.2.4.4. PD pull-up resistor control register (PU_PD)

Addre	ss offs	et: 0x2	2C												
Reset	value:	0x000	000 000	0											
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

	PU11	PU10	PU9	PU8	PU7	PU6	PU5	PU4	PU3	PU2	PU1	PU0
Reserved	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW

31:12	-	Reserved
11:0	PU[11:0]	Bit[11]~ Bit[0]: PD11~PD0 pull-up resistor control register 1: PDx pull-up resistor is enabled
		0: PDx pull-up resistor is not enabled

8.2.5. Open drain output enable register (ODRAIN_EN)

Address offset: 0x34

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
1.7	1.4	10	10	1.1	10	0	0	-	~	~		~	•	1	0

15	14	13	12	11	10	9	8	1	6	5	4	3	2	1	0
					P							OD3	OD2	OD1	OD0
					Rese	rved						RW	RW	RW	RW

31:4	-	Reserved
		PB13 port open drain output enable
		1: Open drain output
3	OD3	0: CMOS output
		Note: When IIC is enabled, the open-drain output enable of the corresponding
		port is automatically turned on, 2-way IIC mapping.
		PB12 port open drain output enable
2	OD2	1: Open drain output
		0: CMOS output
		PA13 port open drain output enable
1	OD1	1: Open drain output
		0: CMOS output
		PA12 port open drain output enable
0	OD0	1: Open drain output
		0: CMOS output

8.2.6. COM port selection configuration register (COM_IO_SEL)

Addres	ss offs	et: 0x2	24												
Reset	value:	0x000	0 0 0 0	C											
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							

15:8	7	6	5	4	3	2	1	0
	COM7	COM6	COM5	COM4	COM3	COM2	COM1	COM0
Reserved	RW							

31:8	-	Reserved
		COM port selection configuration register, bit[0]~bit[7] correspond to
		PA0~PA7 ports
-		1: Select COM port mode
7:0	COM[7:0]	0: Select IO port mode
		Note: This register is valid when selecting LED row-column matrix mode, valid
		when selecting high-current IO port driver enable, and invalid in other cases

8.2.7. IO multiplex registers

8.2.7.1. SWD port selection enable register (SW_IO_EN)

Address offset: 0x30

Reset	Reset value: 0x0000 0001														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							

15:1	0
	SW_SEL
Reserved	RW

31:1	-	Reserved
		SWD port selection enable
0	SW_SEL	1: PB12/PB13 are SWD functions
		0: PB12/PB13 are GPIO functions

8.2.7.2. PWM output enable register (PWM_OUT_EN)

Address offset: 0x3C

Reset value: 0x000 0000

The output of different PWM modules on the same port has priority: PWM0 prior to PWM1

	31:17														16	
															/M4A	
	Reserved														RW	
15	15 14 13 12 11 10 9 8 7 6 5 4 3 2													1	0	

BF7807AMXX

PWM	PW	PWM	PW	PWM	PW	PW	PW	PW	PW	PWM	PW	PW	PW	PW	PW
3A1	M3A	2A1	M2A	1A1	M1E	M1D	M1C	M1B	M1A	0A1	M0E	M0D	M0C	M0B	M0A
RW															

		PWM4A port output enable
16	PWM4	1: Output, 0: No output
		Bit[0]: PWM3A port output enable
15.14		Bit[1]: PWM3A1 port output enable
15:14	PWM3x[1:0]	The corresponding bits of PWM3 are:
		1: Output, 0: No output
		Bit[0]: PWM2A port output enable
13:12	DW/M2[1.0]	Bit[1]: PWM2A1 port output enable
15.12	PWM2x[1:0]	The corresponding bits of PWM2 are:
		1: Output, 0: No output
		Bit[0]: PWM1A port output enable
		Bit[1]: PWM1B port output enable
		Bit[2]: PWM1C port output enable
11:6	DWM1[5.0]	Bit[3]: PWM1D port output enable
11:0	PWM1x[5:0]	Bit[4]: PWM1E port output enable
		Bit[5]: PWM1A1 port output enable
		The corresponding bits of PWM1 are:
		1: Output, 0: No output
		Bit[0]: PWM0A port output enable
		Bit[1]: PWM0B port output enable
		Bit[2]: PWM0C port output enable
5.0		Bit[3]: PWM0D port output enable
5:0	PWM0x[5:0]	Bit[4]: PWM0E port output enable
		Bit[5]: PWM0A1 port output enable
		The corresponding bits of PWM0 are:
		1: Output, 0: No output

8.2.7.3. UART port control register (UARTx_IO_SEL)

Address offset: 0x40 Reset value: 0x000 0000											
31	30	29 2	28 27	26	25 24	4 23	22	21 20	19	18 17	7 16
					R	leserved					
15	:14	13:12	11:10	9:8	7:6	5	4	3	2	1	0
D	1	UART	UART	UART	UART	UART	UART	UART	UART	UART	UART
Res	erved	4_SEL	3_SEL	2_SEL	1_SEL	0_SEL	4_EC	3_EC	2_EC	1_EC	0_EC

		RW	RW	RW	RW	RW	RW	RW	RW	RW	RW			
	1													
31:14	-			Reserve										
					-	tion enable								
					-	select UAI								
13:12	UA	RT4 _SEL			-	select UAF								
					-	select UAF								
					-	select UAI		on						
					UART3 port selection enable									
11:10	UA	RT3 _SEL		00: PA0/PA1 port select UART3 function										
					-	ort select U								
				10: PC5	/PC6 port	select UAF	RT3 function	on						
				UART2	port select	tion enable								
				00: PD0	/PD1 port	select UAI	RT2 function	on						
9:8	UA	RT2_SEL		01: PD2	/PD3 port	select UAI	RT2 function	on						
				10: PD5	/PD6 port	select UAI	RT2 function	on						
			11: PD7/PD5 port select UART2 function											
				UART1 port selection enable										
7:6	IIA	RT1_SEL	00: PB14/PB15 port select UART1 function											
7.0	UA	KII_5LL		01: PC3/PC4 port select UART1 function										
				10: PC6	/PC7 port	select UAF	RT1 function	on						
				UART0 port selection enable										
5	UA	RT0_SEL		0: PB12/PB13 port select UART0 function										
				1: PA12/PA13 port select UART0 function										
				UART4 port TXD/RXD pin interchange										
4	UA	RT4_EC		1: Pin in	terchange									
				0: Pins are not interchangeable										
				UART3	port TXD	/RXD pin i	nterchange	e						
3	UA	RT3_EC		1: Pin ir	terchange									
				0: Pins a	are not inte	rchangeab	le							
				UART2	port TXD	RXD pin i	nterchange	e						
2	UA	RT2_EC		1: Pin ir	terchange									
				0: Pins a	are not inte	rchangeab	le							
				UART1 port TXD/RXD pin interchange										
1	UA	RT1_EC		1: Pin interchange										
				0: Pins are not interchangeable										
				UART0 port TXD/RXD pin swap										
0	UA	RT0_EC		1: Pin ir	terchange									
				0: Pins a	are not inte	rchangeab	le							

8.2.7.4. IIC control register (IIC_IO_CTRL)

Addre	Address offset: 0x44														
Reset	Reset value: 0x0000 0002														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							

15:3	2	1	0
	DFIL_SEL	AFIL_SEL	IIC_SEL
Reserved	RW	RW	RW

31:3	-	Reserved							
		IIC function digital filter enable							
2	DFIL_SEL	1: Enable							
		0: Disable							
		IIC function analog filter enable							
1	AFIL_SEL	1: Enable							
		0: Disable							
		IIC port selection enable							
0	IIC_SEL	0: PB12/PB13 port select IIC function							
		1: PA12/PA13 port select IIC function							

8.2.7.5. SPI input clock configuration register (SPI_CLK_CFG)

Addre	Address offset: 0x48														
Reset	Reset value: 0x0000 0000														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														

15:2	1	0
	SPI1_CLK_CFG	SPI0_CLK_CFG
Reserved	RW	RW

31:2	-	Reserved
		SPI1 input clock selection configuration
1	SPI1_CLK_CFG	1: Use digital internally generated clock (existing in master mode)
		0: Use analog input signal
		SPI0 input clock selection configuration
0	SPI0_CLK_CFG	1: Use digital internally generated clock (existing in master mode)
		0: Use analog input signal

8.2.7.6. SPI high-speed mode enable register (HSPEED_EN)

Addre	ddress offset: 0x4C														
Reset	Reset value: 0x0000 0000														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Reserv	ved							
15	5:9	8		7	6	,	5	4	Ļ	3		2	1		0

Γ	21.0									
		RW								
	Reserved	HSSEL8	HSSEL7	HSSEL6	HSSEL5	HSSEL4	HSSEL3	HSSEL2	HSSEL1	HSSEL0

31:9	-	Reserved
		Bit0: SPI communication port PA11 configuration high-speed mode enable
		Bit1: SPI communication port PA12 configuration high-speed mode enable
		Bit2: SPI communication port PA13 configuration high-speed mode enable
		Bit3: SPI communication port PB12 configuration high-speed mode enable
		Bit4: SPI communication port PB13 configuration high-speed mode enable
8:0	HSSEL[8:0]	Bit5: SPI communication port PB14 configuration high-speed mode enable
		Bit6: SPI communication port PC8 configuration high-speed mode enable
		Bit7: SPI communication port PC9 configuration high-speed mode enable
		Bit8: SPI communication port PC10 configuration high-speed mode enable
		The corresponding bits of HSSEL[8:0] are:
		1: High-speed mode; 0: Normal mode

8.2.7.7. SPI0 select enable register (SPI0_IO_CTRL)

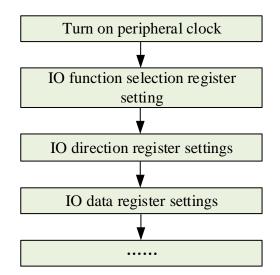
Address offset: 0x50

Reset value: 0x0000 00	00

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							

15:1	0
	SPI0_SEL
Reserved	RW

31:1	-	Reserved
		SPI0 port selection enable
0	SPI0_SEL	0: PB12/PB13/PB14/PB15 port select SPI0 function
		1: PA10/PA11/PA12/PA13 port select SPI0 function



8.3. GPIO configuration process

PB12 and PB13 are SW download and debugging function ports by default. Configuration register SW_IO_EN = 0x00, PB12 and PB13 are set as common IO ports.

To set the port as GPIO, the following 3 sets of registers need to be set accordingly.

9 Interrupt controller (NVIC)

9.1. Interrupt source and entry address

There are 26 interrupt sources in BF7807AMXX. Some of these interrupts will multiplex an interrupt request flag. This flag can be set by software and hardware. If multiple IO are used as External interrupt to multiplex the same interrupt entry, you should refer to the interrupt source settings. INT1/INT2/INT3 can only have one IO as an external interrupt at a time, and INT0 is not restricted.

The built-in simple 24-bit down-counting timer (SysTick) is used as the tick timer of the realtime operating system (RTOS), or as a simple counter. SysTick counts down from a preset value, and when it reaches zero, a system interrupt is generated. For details, see the "SysTick timer" chapter.

Interment priority	Interrupt	CPU	Interrupt	Description
Interrupt priority	number	interrupt list	vector address	Description
-1	-13	HardFault	0x0C	Hardware error
Programmable	-5	SVCall	0x2C	Request management call realized by SVC
Programmable	-2	PendSV	0x38	Suspendable system service request
Programmable	-1	SysTick	0x3C	System tick timer
Programmable	0	IRQ0	0x40	WDT (only exists after wake-up from standby mode)
Programmable	2	IRQ2	0x48	INT_EXTI0
Programmable	3	IRQ3	0x4C	INT_EXTI1
Programmable	4	IRQ4	0x50	INT_EXTI2
Programmable	5	IRQ5	0x54	INT_EXTI3
Programmable	10	IRQ10	0x68	INT_IIC
Programmable	11	IRQ11	0x6C	INT_UART0
Programmable	12	IRQ12	0x70	INT_UART1
Programmable	13	IRQ13	0x74	INT_UART2
Programmable	14	IRQ14	0x78	INT_UART3
Programmable	15	IRQ15	0x7C	INT_UART4
Programmable	16	IRQ16	0x80	INT_SPI0
Programmable	17	IRQ17	0x84	INT_SPI1
Programmable	18	IRQ18	0x88	INT_TIMER0
Programmable	19	IRQ19	0x8C	INT_TIMER1
Programmable	20	IRQ20	0x90	INT_TIMER2
Programmable	21	IRQ21	0x94	INT_TIMER3

Programmable	22	IRQ22	0x98	INT_CDC
Programmable	23	IRQ23	0x9C	INT_ADC
Programmable	24	IRQ24	0xA0	INT_LED_LCD
Programmable	25	IRQ25	0xA4	INT_PWM0
Programmable	26	IRQ26	0xA8	INT_PWM1
Programmable	27	IRQ27	0xAC	INT_PWM2
Programmable	28	IRQ28	0xB0	INT_PWM3
Programmable	29	IRQ29	0xB4	INT_PWM4
Programmable	30	IRQ30	0xB8	INT_LVDT

9.2. Interrupt function

9.2.1. Features

- Flexible interrupt management
- Support nested interrupt
- Programmable priority

9.2.2. Interrupt enable and interrupt clear

The interrupt control register is programmable and used to control the enable and disable of interrupt requests.

For example: Enable or clear interrupt 2:

```
*( (volatile unsigned long*) (0xE000E100)) = 0x4; // Enable interrupt 2
```

((volatile unsigned long) (0xE000E180)) = 0x4; // Disable interrupt 2

Address	Register	Description
0xE000E100	SETENA	Interrupt set enable register
0xE000E180	CLRENA	Interrupt clear enable register

9.2.2.1. Interrupt set-enable register (SETENA)

Bit	Description	RW	Reset value
	Set enable interrupt 0 to 31, write 1 to set the bit to 1, writing 0		
	has no effect		
	Bit[0]: Used for interrupt 0		
31:0	Bit[1]: Used for interrupt 1	R/W	0x0000000
	Bit[30]: Used to interrupt 30		
	Bit[31]: Reserved		

9.2.2.2. Interrupt clear enable register (CLRENA)

Bit	Description	RW	Reset value
	Clear enable interrupt 0 to 31, write 1 to set the bit to 1, writing		
	0 has no effect		
	Bit[0]: Used for interrupt 0		
31:0	Bit[1]: Used for interrupt 1	R/W	0x0000000
	Bit[30]: Used to interrupt 30		
	Bit[31]: Reserved		

9.2.3. Interrupt suspension and clear suspension

If an interrupt occurs but cannot be processed immediately, the interrupt request will be suspended. Access or modify the interrupt pending status by operating the interrupt to set the pending register and the interrupt clear-pending register.

The interrupt pending status register allows software to trigger interrupts. If the interrupt has been enabled and has not been shielded, and there is no higher priority interrupt currently running, the interrupt service routine will be executed immediately.

For example: Trigger interrupt 2:

* ((volatile unsigned long*) ($0xE000E100$)) = $0x4$;	// Enable interrupt 2

* ((volatile unsigned long*) (0xE000E200)) = 0x4; // Pending interrupt 2

Clear the suspended state of interrupt 2:

* ((volatile unsigned long*) (0xE000E280)) = 0x4;

// Clear the suspended state of
 interrupt 2

Address	Register	Description
0xE000E200	SETPEND	Interrupt set pending register
0xE000E280	CLRPEND	Interrupt clear pending register

9.2.3.1. Interrupt set-pending register (SETPEND)

Bit	Description	RW	Reset value
31:0	Set the suspended state of interrupts 0 to 31, write 1 to set the bit to 1, writing 0 has no effect Write, 1: Change interrupt pending state; 0: No effect Read, 1: Interrupt pending; 0: Interrupt not pending Bit[0]: Used for interrupt 0 Bit[1]: Used for interrupt 1 Bit[30]: Used for interrupt 30	R/W	0x0000000

Bit[31]: Reserved	
The read value indicates the current suspended state	

9.2.3.2. Interrupt clear-pending register (CLRPEND)

Bit	Description	RW	Reset value
31:0	Clear the suspended state of interrupts 0 to 31, write 1 to set the bit to 1, writing 0 has no effect Bit[0]: Used for interrupt 0 Bit[1]: Used for interrupt 1 Bit[30]: Used for interrupt 30 Bit[31]: Reserved The read value indicates the current suspended state	R/W	0x00000000

9.2.4. Interrupt priority

The CPU contains 8 32-bit register configurations. Each interrupt entry corresponds to an 8-bit priority register, of which only the highest two bits [7:6] are valid, and the priority levels that can be used are 0x00 (highest), 0x40, 0x80 and 0xC0 (lowest). The default priority is interrupt 0 to 31.

If two interrupts occur at the same time and their priority is the same, the interrupt with the smaller interrupt number will be executed first. The ongoing interrupt service routine can only be interrupted by high-priority interrupt requests.

Address	[31:30]	[29:24]	[23:22]	[21:16]	[15:14]	[13:8]	[7:6]	[5:0]
0xE000E41C	Reserved		IRQ30		IRQ29		IRQ28	
0xE000E418	IRQ27		IRQ26		IRQ25		IRQ24	
0xE000E414	IRQ23		IRQ22		IRQ21		IRQ20	
0xE000E410	IRQ19		IRQ18		IRQ17		IRQ16	
0xE000E40C	IRQ15		IRQ14		IRQ13		IRQ12	
0xE000E408	IRQ11		IRQ10		Reserved		Reserved	
0xE000E404	Reserved		Reserved		IRQ5		IRQ4	
0xE000E400	IRQ3		IRQ2		Reserved		IRQ0	

Interrupt priority register

Note: The gray is an unused bit, the write operation is invalid, and the readout is 0.

Each access to the priority register is equivalent to accessing the priority of 4 interrupts. If you change one of them, you need to read the entire word, modify one byte, and then write the entire word back.

For example: Set the priority of interrupt #2 to 0xC0: unsigned long temp; temp = * ((volatile unsigned long *) (0xE000E400)); temp = temp & (0xFF00FFFF) | (0xC0<<16); * ((volatile unsigned long*) (0xE000E400)) = temp;

// A temporary variable
// Get IRP0
// Modify priority
// Set up IRP0

9.3. External interruption

9.3.1. Features

- All IO ports support external interrupt function (rising edge, falling edge, double edge)
- Trigger source type: Rising edge, falling edge or both edges
- Standby mode: High and low level trigger mode can wake up the chip
- Single interrupt enable, rising edge trigger enable, falling edge trigger enable, trigger request flag bit

INT1/INT2/INT3 can only have one IO as an external interrupt at a time, which is selected by the EXTIx interrupt source selection register (EXTI_SEL). INT0 is not restricted.

When the selected edge event occurs on the external interrupt line, the corresponding bit of the EXTIx trigger request flag register is set to 1. It can be cleared by writing 1 to this bit.

9.4. External interrupt registers

Base address: 0x:	5000 0000	
Address offset	Register	Description
0x04	RCU_EN	Peripheral module clock control register
Base address: 0x:	500A 0100	
Address offset	Register	Description
0x00	EXTI_EN	EXTIx enable register
0x04	EXTI_RTEN	EXTIx rising edge trigger enable register
0x08	EXTI_FTEN	EXTIx falling edge trigger enable register
0x0C	EXTI_PR	EXTIx trigger request flag register
0x10	EXTI_SEL	EXTIx interrupt source selection register

Base address: 0x5000 0000

9.4.1. Peripheral module clock control register (RCU_EN)

Address offset: 0x04

Reset value: 0x0000 0001

23	22	21	20	19	18	17	16
LED_LCD_C	GPIO_CL	CRC_CL	ADC_CL	CDC_CL	WDT_CL	TIMER3_CL	TIMER2_CL
LKEN	KEN	KEN	KEN	KEN	KEN	KEN	KEN

BF7807AMXX

R	W RW	RW	RW	RW	RW	RW	RW
		GPIO m	odule work er	nable			
22	GPIO_CLKEN	1: Work					
		0: Off, tl	ne default is 0				

9.4.2. EXTIx enable register (EXTI_EN)

Address offset: 0x00

Reset value: 0x0000 0000

31:19	18	17	16
	EXTI3	EXTI2	EXTI1
Reserved	RW	RW	RW

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Е	XTI	EXTI	EXTI	EXTI	EXTI	EXTI	EXT									
0)_15	0_14	0_13	0_12	0_11	0_10	I0_9	I0_8	I0_7	I0_6	I0_5	I0_4	I0_3	I0_2	I0_1	I0_0
F	RW															

31:19	-	Reserved
		External interrupt 3 interrupt enable
18	EXTI3	1: Enable;
		0: Disable
		External interrupt 2 interrupt enable
17	EXTI2	1: Enable;
		0: Disable
		External interrupt 1 interrupt enable
16	EXTI1	1: Enable;
		0: Disable
		Bit[15]~ Bit[0]: External interrupt 0, INT0_15~INT0_0 interrupt enable
		Bit[0]: INT0_0
15.0	EVTIO[15.0]	Bit[1]: INTO_1
15:0	EXTI0_x[15:0]	
		Bit[15]: INT0_15
		The corresponding bits are: 1: Enable; 0: Disable

9.4.3. EXTIx rising edge trigger enable register (EXTI_RTEN)

Address offset: 0x04

Reset value: 0x0000 0000

The trigger mode is rising edge, and the high level wakes up the standby; in the case of

EXTI_INTEN=0, the configuration is modified.

					31:	:19							18	17	16
					P							R	Т3	RT2	RT1
					Rese	rved						F	RW	RW	RW
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
RT0	RT0	RT0	RT0	RT0	RT0	RT0	RT0	RT0	RT0	RT0	RT0	RT0	RT0	RT0	RT0
_15	_14	_13	_12	_11	_10	_9	_8	_7	_6	_5	_4	_3	_2	_1	_0
RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW

31:19	-	Reserved
		External interrupt 3 rising edge trigger enable
18	RT3	1: The rising edge trigger is valid;
		0: The rising edge trigger is invalid
		External interrupt 2 rising edge trigger enable
17	RT2	1: The rising edge trigger is valid;
		0: The rising edge trigger is invalid
		External interrupt 1 rising edge trigger enable
16	RT1	1: The rising edge trigger is valid;
		0: The rising edge trigger is invalid
		Bit[15]~ Bit[0]: External interrupt 0, INT0_15~INT0_0 rising edge trigger
		enable
		Bit[0]: INT0_0 rising edge trigger enable
15:0	RT0_x[15:0]	Bit[1]: INT0_1 rising edge trigger enable
13:0	K10_X[13:0]	
		Bit[15]: INT0_15 rising edge trigger enable
		The corresponding bits are: 1: The rising edge trigger is valid; 0: The rising
		edge trigger is invalid

9.4.4. EXTIx falling edge trigger enable register (EXTI_FTEN)

Address offset: 0x08 Reset value: 0x0007 FFFF The trigger mode is falling edge/double edge, low-level wake-up standby; in the case of EXTI_INTEN=0, the configuration is modified.

Reserved FT3 FT RW RW	
	DIV
	RW
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1	0

BF7807AMXX

| FT0 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| _15 | _14 | _13 | _12 | _11 | _10 | _9 | _8 | _7 | _6 | _5 | _4 | _3 | _2 | _1 | _0 |
| RW |

31:19	-	Reserved
		External interrupt 3 falling edge trigger enable
18	FT3	1: Falling edge trigger is valid;
		0: The falling edge trigger is invalid
		External interrupt EXTI2 falling edge trigger enable
17	FT2	1: Falling edge trigger is valid;
		0: The falling edge trigger is invalid
		External interrupt EXTI1 falling edge trigger enable
16	FT1	1: Falling edge trigger is valid;
		0: The falling edge trigger is invalid
		Bit[15]~ Bit[0]: External interrupt 0, INT0_15~INT0_0 falling edge trigger
		enable
		Bit[0]: INT0_0
15.0		Bit[1]: INT0_1
15:0	FT0_x[15:0]	
		Bit[15]: INT0_15
		The corresponding bits are: 1: Falling edge trigger is valid; 0: Falling edge
		trigger is invalid

9.4.5. EXTIx trigger request flag register (EXTI_PR)

Address offset: 0x0C

Reset value: 0x0000 0000

This bit is set to 1 when the selected edge event occurs on the external interrupt line. Writing a 1 to this bit clears it.

	31:19]	18	17	1	6
											P	R3	PR2	P	R1
				R	eserved						RC	-W1	RC-W	I RC-	-W1
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
PR0	PR0	PR0	PR0	PR0	PR0	PR0	PR0	PR0	PR0	PR0	PR0	PR0	PR0	PR0	PR0
_15	_14	_13	_12	_11	_10	_9	_8	_7	_6	_5	_4	_3	_2	_1	_0
RC-	RC-	RC-	RC-	RC-	RC-	RC-	RC-	RC-	RC-	RC-	RC-	RC-	RC-	RC-	RC-
W1	W1	W1	W1	W1	W1	W1	W1	W1	W1	W1	W1	W1	W1	W1	W1

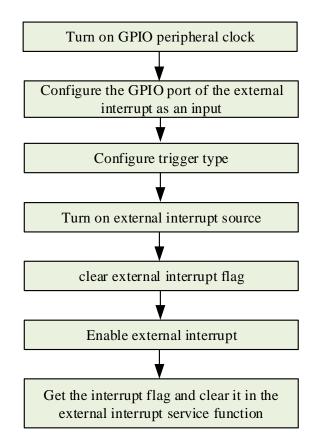
31:19	-	Reserved

-					
		External interrupt EXTI3 trigger request			
18	PR3	1: The selected trigger request occurred			
		0: No trigger request occurred			
		External interrupt EXTI2 trigger request			
17	PR2	1: The selected trigger request occurred			
		0: No trigger request occurred			
		External interrupt EXTI1 trigger request			
16	PR1	1: The selected trigger request occurred			
		0: No trigger request occurred			
		Bit[15]~ Bit[0]: External interrupt 0, INT0_15~INT0_0 trigger request			
		Bit[0]: INT0_0			
		Bit[1]: INT0_1			
15:0	PR0_x [15:0]				
		Bit[15]: INT0_15			
		The corresponding bits are: 1: The selected trigger request has occurred; 0: The			
		trigger request has not occurred			

9.4.6. EXTIx interrupt source selection register (EXTI_SEL)

Address	offset:	0x10
---------	---------	------

Reset value: 0x0000 0000


31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	P				EXT	'I3_S			EXT	'I2_S			EXT	I1_S	
	Rese	erved			R	W			R	W		RW			

31:12	-	Reserved			
		EXTI3 interrupt source selection			
		0000: PC0			
		0001: PC1			
11:8	EXTI3_S				
		1010: PC10			
		1011: PC11			
		Other values are invalid			
		EXTI2 interrupt source selection			
		0000: Reserved			
7:4	EXTI2_S	0001: PB1			
		1110: PB14			

		1111: PB15
		EXTI1 interrupt source selection
		0000: PA0
3:0	EXTI1_S	0001: PA1
5.0	LAIII_5	
		1110: PA14
		1111: PA15

9.5. External interrupt configuration flow

10 Timer

10.1. Features

- 16-bit up counting Timer0/1/2/3
- Timer0/Timer1/Timer3 is connected to PLL48M, the internal frequency of the counting clock is 1/2/4/8/16/32/64/128
- Timer2 can select internal LIRC 32kHz and external crystal oscillator clock XTAL, frequency 32768Hz/4MHz/8MHz
- 16-bit automatic reload timing and manual reload timing
- Timer0/1/2/3 can wake up idle mode 0
- When Timer2 count clock selects XTAL/LIRC, it supports interrupt wake-up idle mode 1

10.2. Function description

10.2.1. Timer0/1/3

Timer0, Timer1 and Timer3 have the same functions.

Two working modes are supported: Single timing mode and automatic reload mode, and no matter which mode, the timing is complete can be configured to generate an interrupt.

Single timing mode: After a timing is completed, the hardware will automatically pull down TIMERx_CFG[0] to stop timing.

Automatic reload mode: the hardware will automatically reload the setting value, and the register TIMERx_CFG[0] will continue to maintain 1, and the next time will be restarted; the software will stop counting by writing 0 to the register TIMERx_CFG[0], or modify the timing mode midway.

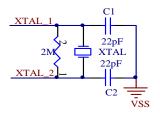
Timing duration formula:

 $T_{\text{TIMER}} = T_{\text{CLK}} * (\text{TIMERx}_\text{SET}+1)$

Note: It is strictly forbidden to change the relevant configuration during the timing process. If TIMERx_SET and TIMERx_CFG are configured, the counter will be cleared. If the current count enable is valid, it will count from zero again.

10.2.2. Timer2

Two working modes are supported: Single timing mode and automatic reload mode, and no matter which mode, the timing is complete can be configured to generate an interrupt.


Single timing mode: After a timing is completed, the hardware will automatically pull down TIMER2_CFG[0] to stop timing.

Auto-reload mode: The hardware will automatically reload the setting value, and the register TIMER2_CFG[0] will continue to maintain 1, and the next time will be restarted; the software will stop counting by writing 0 to the register TIMER2_CFG[0], or modify the timing mode midway.

Timing duration formula:

 $T_{TIMER2} = T_{CLK}*(TIMER2_SET+1)$

Note: Any configuration of TIMER2_SET and TIMER2_CFG in the timing process can clear the counter. If the current counting enable is valid, it will count from zero again.

External crystal oscillator circuit reference

Note:

- 1. The external crystal oscillator circuit is for reference only, and the actual parameters refer to the crystal oscillator specifications;
- 2. XTAL 32768Hz excitation power is recommended to be greater than 1μ W;
- 3. XTAL 32768Hz recommends parallel resistance of $2M\Omega$;
- 4. XTAL 4M/8M recommends parallel resistance of $1M\Omega$.

10.3. Registers

Base address:	0x5000 0000
---------------	-------------

Address offset	Register	Description					
0x04	RCU_EN	Peripheral module clock control register					
0x0C	XTAL_HS_SEL	Comparator hysteresis voltage selection register in crystal oscillator					
0x10	ANA_CFG	Analog module switch register					

Base address: Timer0: 0x5005_0000; Timer1: 0x5005_0100; Timer2: 0x5005_0200; Timer3: 0x5005_0300

Timer0, Timer1 and Timer3 registers have the same function: x=0/1/3.

Address offset	Register	Description
0x00	TIMERx_CFG	TIMER0/1/3 configuration register
0x04	TIMERx_SET	TIMER0/1/3 counting cycle configuration register
0x08	TIMERx_INT_CFG	TIMER0/1/3 interrupt configuration register
Timer?	•	·

Timer2:

Address offset	Register	Description
0x00	TIMER2_CFG	TIMER2 configuration register
0x04	TIMER2_SET	TIMER2 counting cycle configuration register
0x08	TIMER2_INT_CFG	TIMER2 interrupt configuration register

10.3.1. Peripheral module clock control register (RCU_EN)

Address offset: 0x04

Reset value: 0x0000 0001

23	22	21	20	19	18	17	16
LED_LCD_C	GPIO_CL	CRC_CL	ADC_CL	CDC_CL	WDT_CL	TIMER3_CL	TIMER2_CL
LKEN	KEN	KEN	KEN	KEN	KEN	KEN	KEN
RW	RW	RW	RW	RW	RW	RW	RW

15	14	13	12	11	10	9	8
TIMER1_CL	TIMER0_CL	PWM4_CL	PWM3_CL	PWM2_CL	PWM1_CL	PWM0_CL	IIC_CL
KEN	KEN	KEN	KEN	KEN	KEN	KEN	KEN
RW	RW	RW	RW	RW	RW	RW	RW

17	TIMER3_CLKEN	TIMER3 module operation enable 1: Work 0: Off, the default is 0
16	TIMER2_CLKEN	TIMER2 module operation enable 1: Work

		0: Off, the default is 0			
		TIMER1 module operation enable			
15	TIMER1_CLKEN	1: Work			
		0: Off, the default is 0			
		TIMER0 module operation enable			
14	TIMER0_CLKEN	1: Work			
		0: Off, the default is 0			

10.3.2. Timer0/1/3 registers

10.3.2.1. Timer0/1/3 configuration register (TIMERx_CFG)

Address offset: 0x00

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							

15:5	4	3	2	1	0
	0	CLK_SE	L	RLD	EN
Reserved		RW		RW	RW

31:5	-	Reserved
		Timer0/1/3 module clock selection
		000: Select PLL48M
		001: Select PLL24M
		010: Select PLL12M
		011: Select PLL6M
1.2		100: Select PLL3M
4:2	CLK_SEL	101: Select PLL1.5M
		110: Select PLL0.75M
		111: Select PLL0.375M
		Regardless of the mode, configuring this register during the counting process
		will clear the counter, and if the current counting enable is valid, it will count
		from zero again
		Counting mode selection
		1: Auto reload mode
1		0: Manual reload mode
1	RLD	Regardless of the mode, configuring this register during the counting process
		will clear the counter, and if the current counting enable is valid, it will count
		from zero again
0	EN	Count enable

1: Enable counting
0: Stop counting
In the manual reload mode, the counting will stop after the counting is
completed. The software needs to write 0 to the register during interrupt
processing. To re-count requires the software to write 0 to the register and then
write 1; in the automatic reload mode, it will be after the counting is completed.
Automatically restart counting from zero.
Regardless of the mode, configuring this register during the counting process
will clear the counter, and if the current counting enable is valid, it will count
from zero again

10.3.2.2. Timer0/1/3 counting cycle configuration register (TIMERx_SET)

Address offset: 0x04 Reset value: 0x0000 0000 Reserved 7 6 TIMERx_SET[15:0] RW

31:16	-	Reserved
		Counting cycle configuration register, configuring this register during counting
		will clear the counter, if the current counting enable is valid, it will count from
15:0	SET[15:0]	zero again
		Note: When the configuration selects PLL_48M, the counting period should be
		greater than 4

10.3.2.3. Timer0/1/3 interrupt configuration register (TIMERx_INT_CFG)

	Address offset: 0x08 Reset value: 0x0000 0000												
31	30	29	28	27	26	25	24	23	22	21	20	19 18	17 16
							Rese	erved					
					15:3						2	1	0
											INT_CLR	INT_FLAG	INT_EN
	Reserved W R RW									RW			
													<u>.</u>
31:3	-				Reserv	ed							

2	INT_CLR Interrupt status flag clear Write 1 to clear INT_FLAG, write only			
1	INT_FLAG Interrupt status flag register 1: Counting is complete 0: Count incomplete, read only			
0	INT_EN	Interrupt enable register 1: Interrupt enable 0: Interrupt disabled (used in polling mode)		

10.3.3. Timer2 registers

10.3.3.1. Comparator hysteresis voltage selection register in crystal oscillator (XTAL_HS_SEL)

Address offset: 0x0C

Reset value: 0x0000 0001

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							

15:2	1	0
	HS_SI	EL[1:0]
Reserved	R	W

31:2	-	Reserved
		The hysteresis voltage selection of the comparator in the crystal oscillator
		00: 300mV
1:0	HS_SEL[1:0]	01: 400mV
		10: 500mV
		11: 600mV

10.3.3.2. Analog module switch register (ANA_CFG)

Address	Address offset: 0x10														
Reset va	Reset value: 0x0000 0007														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														

15:5	4	3	2	1	0	
	XTAL_HFR_SEL	XTAL_SEL	PD_XTAL	PD_CDC	PD_ADC	
Reserved	RW	RW	RW	RW	RW	

31:5	-	Reserved
		Analog high frequency crystal oscillator circuit selection
4	XTAL_HFR_SEL	0: 4MHz
		1: 8MHz
		Analog crystal oscillator circuit frequency selection
3	XTAL_SEL	0: 32768Hz
		1: 4MHz/8MHz
		Analog crystal oscillator circuit (32768Hz/4MHz/8MHz) control register
2	PD_XTAL	1: Off
		0: On, off by default

10.3.3.3. Timer2 configuration register (TIMER2_CFG)

Address offset: 0x00

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							

15:3	2	1	0
	CLK_SEL	RLD	EN
Reserved	W	R	RW

31:3	-	Reserved
		Count clock selection register
		1: Select the clock XTAL
2	CLK_SEL	0: Select clock LIRC
		No matter which mode, configuring this register during counting will clear the
		counter.
		Counting mode selection register
		1: Auto reload mode
1	RLD	0: Manual reload mode
		No matter which mode, configuring this register during counting will clear the
		counter.
		Count enable register
		1: Enable counting
		0: Stop counting
0	EN	In manual reload mode, it will stop counting after the count is completed. The
0	EIN	software needs to write 0 to the register during interrupt processing. To re-count
		requires software to write 0 to this register and then write 1; in automatic reload
		mode, it will be after the count is completed. Automatically restart counting
		from zero.

	Regardless of the mode, configuring this register during the counting process
	will clear the counter, and if the current counting enable is valid, it will count
	from zero again.

10.3.3.4. Timer2 counting cycle configuration register (TIMER2_SET)

Address offset: 0x04 Reset value: 0x0000 0000 Reserved 8 7 TIMER2_SET[15:0] RW

31:16	-	Reserved
15:0	SET[15:0]	Counting cycle configuration register, configuring this register during counting will clear the counter, if the current counting enable is valid, it will count from zero again.

10.3.3.5. Timer2 interrupt configuration register (TIMER2_INT_CFG)

Addre	Address offset: 0x08														
Reset	value:	0x000	000 000	0											
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														

15:3	2	1	0
	INT_CLR	INT_FLAG	INT_EN
Reserved	W	R	RW

31:3	-	Reserved
2		Interrupt status flag clear register
2	INT_CLR	Write 1 to clear INT_FLAG, write only
		Interrupt status flag register
		1: Counting is complete
1	INT_FLAG	0: Count incomplete, read only
		The way to clear the interrupt flag: System reset; write 1 to INT_CLR to clear;
		configure register CFG/TIMER2_SET.
0		Interrupt enable register
0	INT_EN	1: Interrupt enable

	0: Interrupt disabled (used in polling mode)
	The wake-up function is only available when the interrupt is enabled.

10.4. Configuration process

- 1. Turn on the peripheral clock;
- 2. Configure the clock selection register TIMERx_CFG[2] and the counting cycle configuration register TIMERx_SET;
- 3. Configure the counting mode selection register TIMERx_CFG[1];
- 4. Configure the counting enable register TIMERx_CFG[0], turn on the timing TIMERx_CFG[0] = 0x1;
- 5. Stop timing $TIMERx_CFG[0] = 0x0$.

No matter which mode, after the count is completed, TIMERx_INT_CFG[1] is set. If interruption is required, the interrupt enable can be configured.

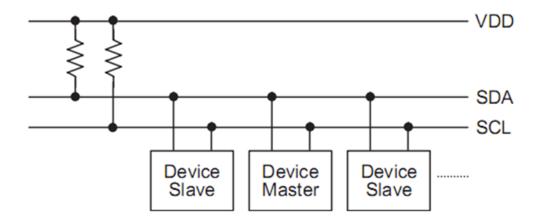
Interrupt processing flow:

One-shot timing mode: Configure TIMERx_INT_CFG[2]=1 in the interrupt handler to clear the interrupt flag. If you want to turn it on again, you need to configure TIMERx_CFG[0]= 0x0, and then configure TIMERx_CFG[0]= 0x1.

Auto-reload mode: Configure TIMERx_INT_CFG[2] = 1 in the interrupt handler to clear the interrupt flag, and do not allow the TIMERx_SET and TIMERx_CFG registers to be configured. To stop counting, configure TIMERx_CFG[0] = 0x0 directly.

Note:

- **1.** The TIMERx_CFG[0]=0x1 operation should be placed at the end of all configurations.
- 2. During the timing of TIMER, it is strictly forbidden to change the relevant configuration. If you want to modify it, you need to stop the timing first.
- **3.** For precise timing, configuration of the TIMERx_SET and TIMERx_CFG registers is not allowed in interrupt handling in auto-reload mode.


11 IIC bus

11.1. IIC slave mode

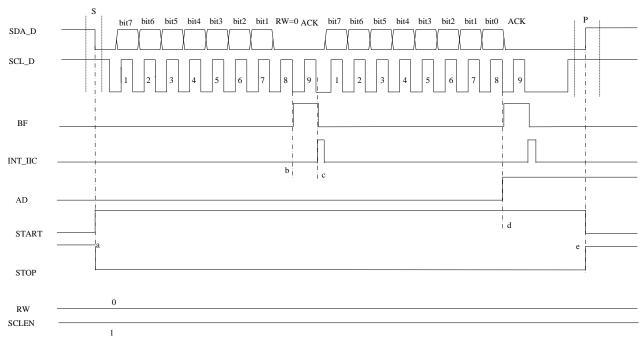
11.1.1. Features

- Two serial interfaces: Serial data line SDA and serial clock line SCL
- Compliant with the standard communication protocol of philips
- Support standard mode 100kHz, fast mode 400kHz, super fast mode 1MHz^①
- Support 7-bit address addressing
- With the function of extending the low level of the clock
- The core can be woken up by IIC interrupt in standby mode
- Detect write conflict and buffer BUF overflow abnormal situation

Note ①: When the communication rate of the slave device reaches 1MHz or the slave device needs to process other transactions, the slave device can lengthen the low level time of the clock line by pulling down the clock line, thereby reducing the communication frequency.

IIC master-slave connection diagram

The master and slave are connected by SCL (serial clock) line and SDA (serial data) line. SCL and SDA must be connected with pull-up resistors (4.7k~10k recommended).


11.1.2. Port configuration

The BF7807AMXX provides register IIC_IO_CTRL[0] to select IIC function. Write 0 to the register IIC_IO_CTRL[0], then configure PB12 and PB13 as IIC functions: SCL0A, PB12 are IIC serial clock lines; SDA0A, PB13 are IIC serial data lines. Write 1 to the register IIC_IO_CTRL[0] to configure PA12 and PA13 as IIC functions: SCL0B, PA12 are IIC serial clock lines; SDA0B, PA13 are IIC serial data lines.

11.2. IIC slave communication timing

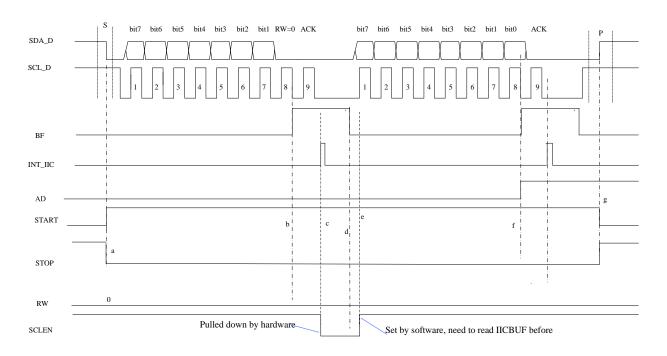
The BF7807AMXX adopts hardware slave. When the master reads/writes data, after the slave receives the address, if the address matches, an interrupt is generated and a valid response signal is sent. And an interrupt is generated after the eighth clock when the master writes data, and the interrupt signal will not be generated when the master sends a stop signal. The following is a simple sequence diagram of IIC communication:

IIC master write timing description

IIC write not pull down clock line diagram

As shown in the figure above, it is a schematic diagram of the master not pulling down the clock line during write operation, from which you can see the changes of the IIC bus and the changes of some internal signals.

First, the master sends the start signal START, and the slave sets the START status bit after detecting the START signal, as shown by the dotted line a in the figure.


Then, the master sends the address byte and the read and write flag bits, and the slave hardware automatically matches its own address after receiving the address byte. Compare and set BF after the falling edge of the 8th clock if there is a match, as shown by the dotted line b.

The interrupt signal INT_IIC will be generated after the falling edge of the ninth clock. As shown by the dotted line c, the MCU needs to read IICBUF during the execution of the interrupt subroutine. Even if this data is useless, the operation of reading IICBUF will indirectly clear BF.

The master continues to send data, BF is also set after the falling edge of the 8th clock of the 2nd byte, and the AD flag is also set, indicating that the currently received byte is data, as shown by the dotted line d, the stop signal has no effect on the AD flag, that is, when the stop signal STOP is

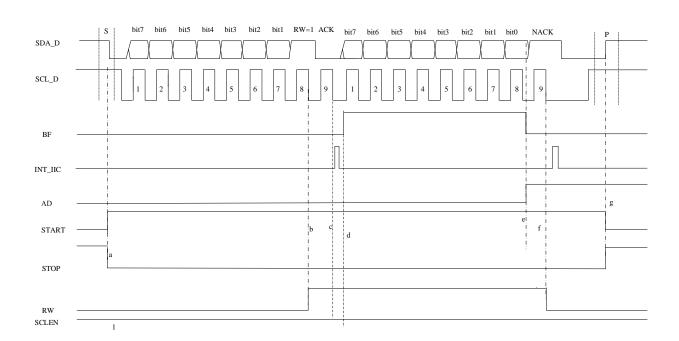
detected, the AD flag will not be cleared; an interrupt will also be generated after the falling edge of the ninth clock, and the interrupt subroutine needs to do the same operation.

If the master wants to send multiple bytes, it can continue to send. The above figure only shows the situation where the host sends one data. Finally, the host sends a stop signal STOP after sending all the data, which marks the end of the communication, releases the IIC bus, and the bus enters the idle state.

IIC master write pull low timing description

IIC master write pull low clock line diagram

As shown in the figure above, it is a schematic diagram of pulling down the clock line during the master write operation, from which you can see the changes of the IIC bus and the changes of some internal signals.


First, the master sends the start signal START, and the slave sets the START status bit after detecting the START signal, as shown by the dotted line a in the figure.

Then, the master sends the address byte and the read and write flag bits, and the slave hardware automatically matches its own address after receiving the address byte. Compare and set BF after the falling edge of the 8th clock if there is a match, as shown by the dotted line b. The interrupt signal INT_IIC is generated after the falling edge of the ninth clock, as shown by the dotted line c.

After the falling edge of the ninth clock, SCLEN will be automatically cleared by hardware. During this period, it is used for slave processing or reading data. Even if the data is useless, the operation of reading IICBUF will indirectly clear BF, such as the dotted line d. shown. Then software sets SCLEN to release the clock line, as shown by the dotted line e. After the master detects that the slave releases SCL, it will continue to send the synchronous clock. After the falling edge of the 8th clock of the 2nd byte, BF will also be set, and the AD flag will also be set, indicating that the current received Byte is data, as shown by the dotted line f, the stop signal has no effect on the AD flag bit, that is, if the stop signal STOP is detected, the AD flag bit will not be cleared; an interrupt will also be generated after the falling edge of the ninth clock.

If the master wants to send multiple bytes, it can continue to send, as shown in the figure above, only the host sends one data. It should be noted that when the host sends the last data, the function of pulling down the clock line is not enabled.

Finally, the host sends a stop signal STOP after sending all the data, which marks the end of the communication, releases the IIC bus, and the bus enters the idle state.

IIC master read timing description

Semiconductor

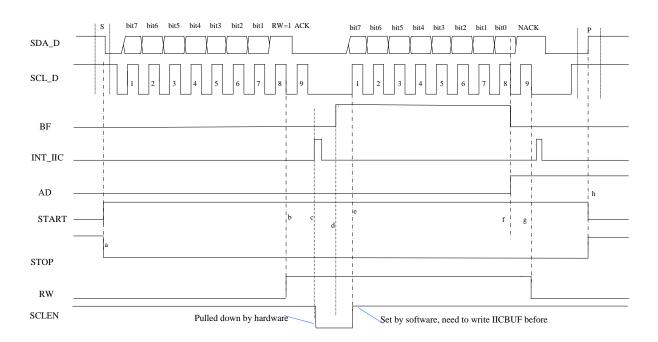
IIC master reading does not pull down the clock line diagram

As shown in the figure above, it is the timing diagram of the master reading the slave clock line low. From the figure, we can know the changes of the bus and the changes of the internal signals of some circuits.

First, the master sends a START signal to mark the beginning of communication. As shown by the dotted line a, the internal circuit sets the status flag bit START after detecting the timing of the START signal.

Then, after the START signal, the master sends the address byte, and RW=1, which means that the master reads the slave. In the case of address matching, after the falling edge of the eighth clock, the status bit RW is set, as shown by the dotted line b. If the address does not match, RW will not be set.

After the falling edge of the ninth clock, an interrupt signal is generated, as shown by the



dashed line c. And ballast the data in IICBUFFER to IICBUF, BF is set, as shown by the dotted line d, and the highest bit is sent to the bus. After 8 clocks, one byte of data is sent, and the BF flag is cleared; at the same time, the address data flag is also set, indicating the byte data currently being sent. As shown by the dotted line e.

After the falling edge of the ninth clock, an interrupt will be generated. If the master needs to continue to read the slave, the master will reply with a valid acknowledge bit ACK and continue communication; if the data required by the master has been read, the master will reply with an invalid reply NACK, and then Send the stop signal STOP to terminate the communication. In the schematic diagram, the master only reads one piece of data, and replies with NACK, and then sends a STOP signal to terminate the communication. When NACK is detected, the read and write flag bit RW is cleared by hardware, as shown by the dotted line f.

If the master sends a NACK, the slave SCLEN will not be automatically pulled down, this should be paid attention to in the application.

Finally, the master sends a stop signal STOP after reading all the data, which marks the end of communication. When the STOP signal is detected, the status bit STOP is set, START is cleared, and the IIC bus is released. As shown by the dotted line g, the bus enters idle state.

IIC master read pull low timing description

IIC master reads and pulls down the clock line diagram

As shown in the figure above, it is the timing diagram of the master reading the slave clock line low. From the figure, we can know the changes of the bus and the changes of the internal signals of some circuits.

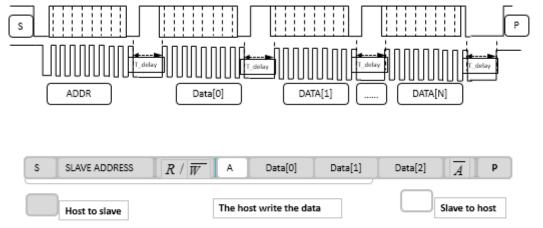
First, the master sends a START signal to mark the beginning of communication. As shown by

the dotted line a, the internal circuit sets the status flag bit START after detecting the timing of the START signal.

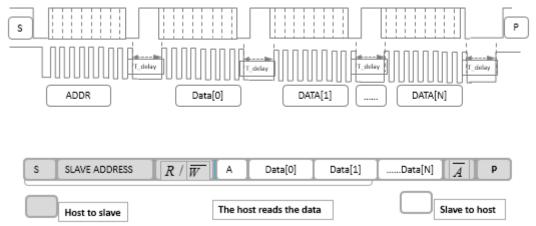
Then, after the START signal, the master sends the address byte, and RW=1, which means that the master reads the slave. In the case of address matching, after the falling edge of the eighth clock, the status bit RW is set, as shown by the dotted line b. If the address does not match, RW will not be set.

After the falling edge of the ninth clock, an interrupt signal is generated, as shown by the dashed line c. After the falling edge of the ninth clock, SCLEN will also be automatically pulled low by the hardware. During this period, it is used by the slave to process or prepare data, and then write the prepared data into IICBUF, and then the software sets SCLEN to release the clock line. As shown by the dashed line d, after writing data into IICBUF, BF will be set to indicate that IICBUF is full. As shown by the dotted line e, the software sets SCLEN and releases the clock line.

After the master detects that the slave releases the SCL, it will continue to send the synchronous clock and read the data from the slave. After the falling edge of the eighth clock, one byte of data is sent, and the BF flag bit is cleared; at the same time, the address data flag The bit will also be set to indicate the byte data currently being sent. As shown by the dashed line f.


After the falling edge of the 9th clock, an interrupt will be generated. If the master needs to continue to read the slave, it will reply with the valid response bit ACK and continue communication; if the data required by the master has been read, it will reply with an invalid response NACK, and then stop sending The signal STOP terminates the communication. In the schematic diagram, the master only reads one piece of data, and replies with NACK, and then sends a STOP signal to terminate the communication. When NACK is detected, the read and write flag bit RW is cleared by hardware, as shown by the dotted line g.

Finally, the master sends a stop signal STOP after reading all the data, marking the end of communication. When the STOP signal is detected, the status bit STOP is set, START is cleared, and the IIC bus is released. As shown by the dotted line h, the bus enters idle state.


Semiconductor

IIC master write data diagram

PS: T_delay: Reserve slave interrupt time, generally 60us^300us, if the slave IIC interrupts the service processing time at100us, suggest T_delay>200us.

IIC master read data diagram

PS: T_delay: Reserve slave interrupt time, generally 60us^300us, if the slave IIC interrupts the service processing time at100us, suggest T_delay>200us.

The slave gives an ACK signal on the falling edge of the eighth clock, and an IIC interrupt is generated after the falling edge of the ninth clock. It is recommended that the master delay 60μ s~ 300μ s to reserve the slave IIC when the ninth clock falling edge is sent. Interrupt the service data preparation time, and then send the clock signal.

11.3. IIC slave registers

Base address: 0x5	Base address: 0x5000 0000										
Address offset	Register	Description									
0x04	RCU_EN	Peripheral module clock control register									
Base address: Slave: 0x5004_0000											
Address offset	Register	Description									
0x00	IICADD	IIC address register									
0x04	IICBUF	C send and receive data register									
0x08	IICCON	IIC configuration register									
0x0C	IICSTAT	IIC status register									
0x10	IICBUFFER	IIC transmit and receive data buffer register									
Base address: 0x5	500A 0000										
Address offset	Register	Description									
0x44	IIC_IO_CTRL	IIC control register									

11.3.1. Peripheral module clock control register (RCU_EN)

Address offset: 0x04

Reset value: 0x0000 0001

23	22	21	20	19	18	17	16
LED_LCD_C	GPIO_CL	CRC_CL	ADC_CL	CDC_CL	WDT_CL	TIMER3_CL	TIMER2_CL
LKEN	KEN	KEN	KEN	KEN	KEN	KEN	KEN
RW	RW	RW RW		RW RW		RW	RW

15	14	13	12	11	10	9	8
TIMER1_CL	TIMER0_CL	PWM4_CL	PWM3_CL	PWM2_CL	PWM1_CL	PWM0_CL	IIC_CL
KEN	KEN	KEN	KEN	KEN	KEN	KEN	KEN
RW	RW	RW	RW	RW	RW	RW	RW

22	GPIO_CLKEN	GPIO module operation enable 1: Work 0: Off, the default is 0
8	IIC_CLKEN	IIC module operation enable 1: Work 0: Off, the default is 0

11.3.2. IIC address register (IICADD)

	Address offset: 0x00 Reset value: 0x0000 0000																	
Reset v	alue:	0x000	000 000	0														
31	30	29	28	27	26	25	24	23	3	22	21	20	19	18	17	16		
Reserved																		
15		14	12	12	11	10	9	8	7	6	5	4	3	2	1	0		
15		14	13	12	11	10	9	0	/	0	3				1	0		
	Reserved										IICADD[7:0]							
			IX.		•				RW									
31:8	-				Reser	ved												
7:0	IIC	ADD[7	7:0]		Addre	ess regis	ster											
	11.3.3. IIC send and receive data register (IICBUF) Address offset: 0x04																	
Reset v	alue:	0x000	000 000	0														
31	30	29	28	27	26	25	24	23	3	22	21	20	19	18	17	16		

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
									IICBUF [7:0]								
Reserved											R	W					

Reserved

31:8	-	Reserved
7:0	IICBUF [7:0]	IIC transmit and receive data buffer

The specific application process is as follows:

In the sending state, after the data is ballasted into IICBUF, the data is shifted and sent out in turn under the synchronization clock of the master, with the high bit first. After 8 clocks, one byte is sent.

In the receiving state, after 8 clocks from the master, the data is written into the BUF. After the 9th clock, an interrupt is generated to tell the CPU to read the data in IICBUF.

The operation of writing data into IICBUF is conditional. When RD_SCL_EN=1, only RW=1 and SCLEN=0 can the data be written into IICBUF; otherwise, the operation of writing IICBUF is prohibited. In other words, if the conditions are not met, the operation of writing IICBUF cannot be successful, the data cannot be written in, and the data of IICBUF will not change, and it will also cause write conflicts.

BF7807AMXX

Semiconductor

For example: IICBUF already has data 55h, if the conditions for writing IICBUF are not met, I want to write data 00h into IICBUF. The result is that the data in IICBUF is still 55h, and the write conflict flag WCOL is set to tell the user that the operation is abnormal.

When RD_SCL_EN=0, the data to be sent by the slave is obtained by ballasting the IICBUFFER register value when the interrupt signal is generated.

11.3.4. IIC configuration register (IICCON)

Reset value: 0x0000 0010 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Reserved	Addre	Address offset: 0x08														
	Reset	value:	0x000	0 001	0											
Reserved	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		Reserved														

15:6	5	4	3	2	1	0
D	IIC_RST	RD_SCL_EN	WR_SCL_EN	SCLEN	SR	IICEN
Reserved	RW	RW	RW	RW	RW	RW

31:6	-	Reserved							
		IIC module reset signal							
5	IIC_RST	1: IIC module reset operation							
		0: IIC module works normally							
		The master reads and pulls the clock line control bit low							
4	RD_SCL_EN	1: Enable the master to read and pull down the clock line function							
		0: Disable the function of pulling down the clock line when the master reads							
		The master writes and pulls the clock line low control bit							
3	WR_SCL_EN	1: Enable the function of writing and pulling down the clock line							
		0: Disable the function of writing and pulling down the clock line							
		IIC clock enable bit							
2	SCLEN	1: The clock works normally							
		0: Pull down the clock line							
		IIC conversion rate control bit							
1	SR	1: The conversion rate control is turned off to adapt to the standard speed mode							
1	SK	(100K)							
		0: Conversion rate control is enabled to adapt to fast speed mode (400K)							
		IIC work enable bit							
0	IICEN	1: IIC works normally							
		0: IIC does not work							

The IICCON register is used to control the communication operation.

IIC_EN is the enable signal of the IIC module, and the circuit works only when IIC_EN=1.

SR is the conversion rate control bit, SR=1, the conversion rate control is closed, and the port is adapted to 100Kbps communication.

SCLEN is the clock enable control bit. Although the slave cannot generate the communication clock, the slave can extend the low-level time of the clock according to the protocol. The clock line with SCLEN=0 is locked at low level, and the clock line with SCLEN=1 is released. The prerequisite for extending the clock low level is IIC_EN=1, otherwise the internal circuit will not have any impact on the IIC bus. SCLEN is often used to extend the low-level time and make the master enter the waiting state, so that the slave has enough time to process the data.

WR_SCL_EN is the control bit of the write pull-low line. When it is 1, it enables the interrupt pull-down function of the clock line. When it is 0, it does not enable the interrupt pull-down function of the clock line.

In the case of IIC_RW=0, you can decide whether to pull down the clock line according to the communication rate of the master and the time to process the interrupt, that is, configure the WR_SCL_EN bit.

When the CPU can process the interrupt and exit the interrupt within 8 IIC clocks, WR_SCL_EN=0 disables the function of pulling down the clock line. At this time, the hardware will not automatically pull down the clock line when the interrupt comes. When the CPU cannot finish processing the interrupt and exit within 8 IIC clocks, WR_SCL_EN=1 enables the function of pulling down the clock line. At this time, the hardware automatically pulls down the clock line when the interrupt comes, forcing the master to enter the waiting state. After the data in IICBUF is read by the CPU, the software sets SCLEN.

RD_SCL_EN is the read pull-low control bit. When it is 1, it enables the interrupt pull-down function of the clock line. When it is 0, it does not enable the interrupt pull-down function of the clock line.

When RD_SCL_EN=1, when the slave receives an address byte or sends a byte and the master sends an ACK, SCLEN will be automatically pulled low by the hardware, forcing the master to enter the waiting state. To release the IIC clock from the slave, the following two operations are required: first write the data to be sent into the IICBUF, and then the software sets SCLEN. The purpose of this design is to ensure that the data to be sent has been written in IICBUF before SCL is pulled high.

When RD_SCL_EN=0, when the slave receives an address byte or sends a byte and the master sends an ACK, the slave will immediately load the data prepared in the IICBUFFER register to the sending buffer register, and then send it to the data line superior. Therefore, in order to ensure that the data transmitted each time is correct, IICBUFFER prepares the next data to be sent in the interrupt service routine. The data received by the master is the data processed by the previous interrupt, and the first received data is prepared during initialization.

Note: When the clock line needs to be pulled down, that is, WR_SCL_EN/RD_SCL_EN=1, before sending and receiving the last Byte data, the software should turn off the function of pulling down the clock line, that is, WR_SCL_EN/RD_SCL_EN=0, after finishing sending and receiving the last Byte data after that, software should turn on writing to pull down the clock line. This kind of operation can be adjusted by itself according to the host computer is software and hardware, and the interrupt processing time.

IIC_RST is the IIC module control enable bit. When it is 1, it enables the reset function of the

IIC module; when it is 0, it does not enable the reset function of the IIC module. Pay attention to configuration 1 to reset all DFF flip-flops of the IIC module during application. The reset terminal of IIC_RST is a global reset, and the other reset terminals are iic_rst_n. All the iic_rst bits are written to 0 before operating other register configurations.

11.3.5. IIC status register (IICSTAT)

Address	offset:	0x0C
---------	---------	------

Reset value: 0x0000 0044

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Reserved															

15:8	7	6	5	4	3	2	1	0
	START	STOP	RW	AD	BF	ACK	WCOL	RECOV
Reserved	R	R	R	R	R	R	RW	RW

31:8	-	Reserved							
		Start signal flag							
7	START	1: Indicates that the start bit is detected							
		0: Indicates that the start bit is not detected							
		Stop signal flag							
6	STOP	1: Indicates that it is in a stopped state							
		0: Indicates that the stop bit is not detected							
		Read and write flags							
		Record the read/write information obtained from the address byte after the last							
5	RW	address match							
		1: Indicates read operation							
		0: Indicates write operation							
		Address data flag							
4	AD	1: Indicates that the most recently received or sent byte is data							
		0: Indicates that the most recently received or sent byte is an address							
		IICBUF full flag							
		When receiving in IIC bus mode:							
		1: Indicates that the reception is successful and the buffer is full							
		0: Indicates that the reception is not completed and the buffer is still empty							
3	BF	When sending in IIC bus mode:							
		1: Indicates that data transmission is in progress (not including the response bit							
		and stop bit), and the buffer is still full;							
		0: Indicates that the data transmission has been completed (not including the							
		response bit and stop bit), and the buffer is empty							

		Response flag
2	ACK	1: Indicates an invalid response signal
		0: Indicates a valid response signal
		Write conflict flag
1	WCOL	1: Indicates that when the IIC is sending the current data, new data is trying to
1	WCOL	be written into the sending buffer; the new data cannot be written into the buffer
		0: No write conflict occurred
		Receive overflow flag
	DECOV	1: Indicates that new data is received when the previous data received by IIC
0	RECOV	has not been taken away, and the new data cannot be received by the buffer
		0: Indicates that there is no receiving overflow

The IIC status register is used to reflect the status in the communication process and can be inquired by the user.

START: Start signal status bit. When the start signal is detected, START will be set, indicating that the bus is busy.

STOP: Stop signal status bit. STOP will be set when the chip is in the stop state, indicating that the bus is in an idle state, and cleared by hardware when the start signal is detected, indicating that the communication has started.

AD: Address data flag bit. It indicates that the byte currently received or sent is an address or data. AD=0 indicates that the byte received or sent is an address; AD=1 indicates that the byte received or sent is data. The start signal, stop signal, and non-acknowledgment signal have no effect on this status bit. The change of this status bit occurs on the falling edge of the eighth clock.

RW: Read and write flag bit. This flag bit records the read and write information bits obtained from the address byte after the address matches. RW=1 means that the master reads from the slave, and RW=0 means that the master writes to the slave. The start signal, stop signal, and non-acknowledgment signal (NACK) will all clear RW. The change of this status bit occurs on the falling edge of the ninth clock.

BF: Buffer full flag bit. It indicates that the transceiver buffer is currently full or empty. BF=0 means that the buffer is not receiving data and the buffer is empty; BF=1 means that the buffer has received data and the buffer is full. This status bit can only be set and cleared indirectly, not directly.

When the address matches and RW=0, BF will be set after the falling edge of the 8th clock, which indicates that IICBUF has received data. IICBUF should be read during the execution of the interrupt program, and the operation of reading IICBUF will indirectly clear the BF flag bit. If IICBUF is not read and the master continues to send data, a reception overflow will occur. Although the slave still receives the data sent by the master and ballasts it to IICBUF, it will still send a NACK signal and give an invalid response.

When the address matches and RW=1, the BF flag will not be set after the slave receives the address byte; RW=1 means the master reads the operation of the slave, and the slave needs to write data into IICBUF, and the slave writes The operation of IICBUF will set BF, and then the software will set SCLEN to release the clock line; the master will send the synchronous clock. After the

eighth clock, after the data in IICBUF is sent out, BF is cleared by hardware.

ACK: Acknowledgement status bit. Regardless of whether the master is a read operation or a write operation, the slave will sample the data line on the rising edge of the 9th clock and record the response information. The response bit is divided into a valid response bit ACK and an ineffective response bit NACK. That is to say, the rising edge of the ninth clock samples the data as "0", which means that the ACK is effectively acknowledged, and at the same time ACK is cleared. If the data is sampled as "1", ACK is set, which means non-acknowledgment. After the non-response signal, the master will send a stop signal to announce the end of the communication. The start signal will clear this status bit.

WCOL: Write conflict flag bit. IICBUF can be written by CPU only when RW=1, RD_SCL_EN=1, SCLEN=0. Attempting to write IICBUF under any other circumstances is prohibited. If the above conditions are not met and an operation to write IICBUF occurs, the data will not be written to IICBUF, and the write conflict flag WCOL is set, indicating that a write conflict has occurred, This flag bit needs to be cleared by software.

RECOV: Receive overflow flag bit. When IICBUF is full, that is, when there is data in IICBUF, when IIC receives new data, a receive overflow will occur, RECOV will be set, and the data in IICBUF will not be updated. Newly received data Will be lost. This status bit also needs to be cleared by software, otherwise it will affect the subsequent communication process. This situation will only occur when RW=0, BF=1, and the CPU does not read IICBUF.

11.3.6. IIC data transmission buffer register (IICBUFFER)

Address offset: 0x10												
Reset value: 0x0000 0000												
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17	16											
Reserved												
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1	0											
IICBUFFER [7:0]												
Reserved RW												

31:8	-	Reserved
7:0	IICBUFFER [7:0]	IIC data transmission buffer register

The specific application process is as follows:

When RD_SCL_EN is 0, when the master reads data, it sends the data in IICBUFFER to the slave send buffer register 2 clocks after the interrupt, as the data sent by the slave. So prepare IICBUFFER interrupt data before interrupt generation.

11.3.7. IIC control register (IIC_IO_CTRL)

Addre	ss offs	et: 0x4	14												
Reset	value:	0x000	0 0002	2											
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Reserved															

15:3	2	1	0
	DFIL_SEL	AFIL_SEL	IIC_SEL
Reserved	0	1	0

31:3	-	Reserved
		IIC function digital filter enable
2	DFIL_SEL	1: Enable
		0: Disable
		IIC function analog filter enable
1	AFIL_SEL	1: Enable
		0: Disable
		IIC port selection enable
0	IIC_SEL	1: PA12/PA13 port select IIC function
		0: PB12/PB13 port select IIC function

11.4. IIC master mode

11.4.1. Features

- Multi-master arbitration mode function is optional
- Support standard mode 100kHz, fast mode 400kHz, super fast mode 1MHz
- 7-bit addressing mode
- All 7-bit address response mode
- The timing and time parameters are configurable
- Easy to use interrupt event management
- Support detection of slave clock low-level extension function
- The master extends the clock low level when it is not ready for data and when it is not receiving data
- Support register close enable reset internal state machine and related timing
- Independent clock: iic_clk (24MHz) to make communication speed unaffected by system clock changes

11.4.2. Port configuration

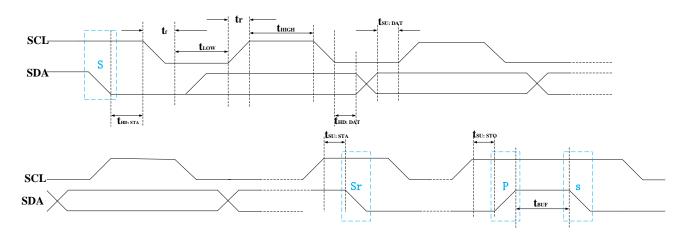
The BF7807AMXX provides register IIC_IO_CTRL[0] to select IIC function.

Write 0 to the register IIC_IO_CTRL[0], then configure PB12 and PB13 as IIC functions:

SCL0A, PB12 are IIC serial clock lines;

SDA0A, PB13 are IIC serial data lines.

Write 1 to the register IIC_IO_CTRL[0] to configure PA12 and PA13 as IIC functions:


SCL0B, PA12 are IIC serial clock lines;

SDA0B, PA13 are IIC serial data lines.

11.4.3. IIC master communication time

The BF7807AMXX meets IIC communication requirements. The following time parameters can be configured. For details, see the description of register IIC_TIMINGR.

S: Start signal, SCL and SDA lines are high at the same time, and a signal from high to low appears on the SDA line.

Sr: Repeated start signal, when there is no stop signal between two start signals, a repeated start signal is generated.

P: Stop signal, when the SCL line is high, a low to high signal appears on the SDA line.

t_{HIGH}: The high level of the SCL clock, which is configured by SCLH;

t_{LOW}: SCL clock low level, configured by SCLL;

t_{HD: DAT}: The holding time of SDA data is configured by SDADEL;

t_{HD: STA}: Hold time of the initial condition, configured by SCLH;

 $t_{SU: STA}$: The establishment time of the repeated start condition, which is configured by SCLL;

t_{SU: STO}: The establishment time of the stop condition, which is configured by SCLH;

 t_{BUF} : Bus idle time between stop and start conditions, configured by SCLL.

• Without extending the clock low level:

The response signal holding time is fixed as: 3*hclk + 4*iic_clk

The setup time of the highest bit of data is: $t_{LOW} - (3*hclk + 4*iic_clk)$

Limiting situation: When the IIC communication frequency is 1M and the system clock is 12M, 3*hclk + 4*iic_clk=416.3ns, the SCLL configuration can be enlarged appropriately, and the SCLH configuration can be reduced.

• In the case of extending the clock low level:

 t_{LOW} must be greater than 3*hclk + 2*iic_clk. In the mode of restarting after the transmission is stopped, the START bit needs to be written after the STOPF flag is detected, otherwise the stop bit may not be transmitted successfully. Therefore, the minimum value of t_{LOW} is 3*hclk + 4*iic_clk + $t_{SU: SDA}$.

- t_{HIGH} is at least greater than 3*iic_clk.
- $t_{HD: DAT}$: SDA data retention time (SDADEL+1)*(PRESC+1)* iic_clk.

Limit case: Both SDADEL and PRESC are configured to 0, and the minimum data retention time is 1 iic_clk.

11.4.4. Interrupt event management

To ensure proper communication, the IIC master mode has several interrupt management events. Open the corresponding enable configuration is valid. For specific configuration, see the IIC_ISR register and the IIC timing description.

- The sending data register is empty INT_TXIS: The data to be sent is not yet ready at the first clock. It occurs when the transmit data register is empty (TXE=1) after the 9th SCL falling edge. This interrupt will not be generated after the last data transmission in non-reload mode is completed.
- Transmission completion interrupt INT_TC: Transmission completion (TC) or transmission completion waiting for reload (TCR). Generates the 9th SCL falling edge when the last data in non-reload mode is completed or 255 data in reload mode is completed.
- The receive data register is not empty INT_RXNE: The last received data has not been read until the eighth clock falling edge. Generated on the 8th SCL falling edge, when the receive data register is full (RXNE = 1).
- Received negative acknowledgement interrupt INT_NACK: Received negative acknowledgement. Generated on the 9th SCL falling edge.
- Stop bit detection interrupt INT_STOP: The master has issued a stop bit.
- Error interrupt INT_ERRIR: Arbitration loss (ARLO) or bus error detection (BERR). This interrupt is generated when arbitration loss or bus error occurs during transmission.

Parameter	After the 8th	After the 9th SCL	Number of CPU	
	SCL falling edge	falling edge	interrupts during 1-9	
	Send			
Sending	-	INT_TXIS	1	
Send the reloaded 255th data + do not			1	
extend the clock low level	-	INT_TXIS + INT_TC	1	
Send the reloaded 255th data + extend			2	
the clock low level	-	INT_TXIS + INT_TC	2	
Send the last non-reload data +		NT TO	1	
software end	-	INT_TC	1	
Send the last data of non-reload + auto			0	
end	-	-	0	
	Receive			
In the process of receiving	INT_RXNE	-	1	
Receive reloaded 255th data	INT_RXNE	INT_TC	2	
Receive the last non-reloaded data +	-	INT_TC	1	

[1		1
software end			
Receive the last data of non-reload + auto end	-	-	0
	Other case	28	
NACK received, NACKEND=1	-	INT_NACK	1
Received NACK+NACKEND=0 during sending	-	INT_NACK + INT_TXIS	1
Send the reloaded 255th data and receive NACK+Do not extend the clock low level	-	INT_NACK + INT_TXIS + INT_TC	1
Send the reloaded 255th data and receive NACK + extended clock low level	-	INT_NACK + INT_TXIS + INT_TC	2
Send the last data and receive NACK++NACKEND=0+software end	-	INT_NACK + INT_TXIS + INT_TC	1
Send the last data and receive NACK+NACKEND=0+automatically end	-	INT_NACK	1

11.4.5. Software reset

A software reset can be performed by clearing the PE bit in the I2C_CR1 register. In this case, the I2C lines SCL and SDA are released. The internal state machine is reset, and the communication control bits and status bits are restored to their reset values. The configuration registers are not affected.

The affected register bits are listed below:

IIC_CR2 register: START and STOP

IIC_ISR register: TXE, TXIS, RXNE, NACKF, STOPF, TC, TCR, BERR, ARLO, BUSY

When arbitration loss and bus error occur, the internal state machine can be reset by setting the ERR_RST_EN bit in the IIC_CR2 register to 1, release SCL and SDA, and the register will not be affected.

System reset will reset the entire IIC module.

11.5. IIC master registers

Base address: 0x5000 0000									
Address offset	Register	Description							
0x04	RCU_EN	Peripheral module clock control register							
Base address: Ma	Base address: Master: 0x5004_0100								
Address offset	Register	Description							
0x00	IIC_CR1	IIC control register 1							
0x04	IIC _CR2	IIC control register 2							
0x08	IIC _TIMINGR	IIC timing register							
0x0C	IIC_ISR	IIC interrupt and status register							
0x10	IIC_ICR	IIC interrupt clear register							
0x14	IIC _RXDR	IIC receive data register							
0x18	IIC _TXDR	IIC send data register							
Base address: 0x5	500A 0000								
Address offset	Register	Description							
0x44	IIC_IO_CTRL	IIC control register							

11.5.1. Peripheral module clock control register (RCU_EN)

Address offset: 0x04 Reset value: 0x0000 0001

23	22	21	20	19	18	17	16
LED_LCD_C	GPIO_CL	CRC_CL	ADC_CL	CDC_CL	WDT_CL	TIMER3_CL	TIMER2_CL
LKEN	KEN	KEN	KEN	KEN	KEN	KEN	KEN
RW	RW	RW	RW	RW	RW	RW	RW

15	14	13	12	11	10	9	8
TIMER1_CL	TIMER0_CL	PWM4_CL	PWM3_CL	PWM2_CL	PWM1_CL	PWM0_CL	IIC_CL
KEN	KEN	KEN	KEN	KEN	KEN	KEN	KEN
RW	RW	RW	RW	RW	RW	RW	RW

22	GPIO_CLKEN	GPIO module operation enable1: Work0: Off, the default is 0
8	IIC_CLKEN	IIC module operation enable 1: Work 0: Off, the default is 0

11.5.2. IIC control register 1 (IIC_CR1)

Address offset: 0x00

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							

 15:14	13	12:8	7	6	5	4	3	2	1	0
	IIC_SR	Reserved	ERRIE	TCIE	STOPIE	NACKIE		RXIE	TXIE	PE
Reserved	RW		RW	RW	RW	RW	Res.	RW	RW	RW

31:14	-	Reserved
		Conversion rate control bit
		1: The conversion rate control is turned on to adapt to the standard speed mode
13	IIC_SR	(100K)
		0: The conversion rate control is turned off to adapt to the fast speed mode
		(400K)
12:8	-	Reserved
		Error interrupt enable
		0: Disable error detection interrupt
7	ERRIE	1: Enable error detection interrupt
		Any of the following errors will generate an interrupt: Arbitration Loss
		(ARLO), Bus Error Detection (BERR)
		Transfer complete interrupt enable
		0: Disable transmission completion interrupt
6	TCIE	1: Enable transfer completion interrupt
		Any of the following errors will generate an interrupt: transfer completion (TC),
		transfer completion waiting for reload (TCR)
		Stop bit detection interrupt enable
5	STOPIE	0: Disable stop bit detection (STOPF) interrupt
		1: Enable stop bit detection (STOPF) interrupt
		Receive negative acknowledge interrupt enable
4	NACKIE	0: It is forbidden to receive a negative acknowledgement (NACKF) interrupt
		1: Enable the reception of a negative acknowledgement (NACKF) interrupt
3	-	Reserved
		RX interrupt enable
2	RXIE	0: Disable receiving (RXNE) interrupt
		1: Enable receive (RXNE) interrupt
1	TXIE	TX interrupt enable
1		0: Disable sending (TXIS) interrupt

		1: Enable transmit (TXIS) interrupt
		Peripheral enable
0	PE	0: Disable peripherals
		1: Enable peripherals

11.5.3. IIC control register 2 (IIC_CR2)

Address offset: 0x04

Reset value: 0x1000 0000

31:29	28	27	26	25	24	23:16
	NACKEND	ERR_RST_EN	1	AUTOEND	RELOAD	NBYTES[7:0]
Reserved	RW	RW	Res.	RW	RW	RW

15	14	13	12 11	10	9	8	7	6	5	4	3	2	1	0
n	STOP	START	D 1	RD_WRN	D	1	SADD[7:1]							D
Res.	Res. RW RW	Reserved	RW	Reserved		RW						Res.		

31:29	-	Reserved
		Receive NACK automatic end mode, set and cleared by software
28	NACKEND	0: Not affected after receiving NACK, continue transmission
		1: Stop bit will be sent automatically after receiving NACK
		Error reset-enable, set and cleared by software
27	ERR_RST_EN	0: Lost arbitration, continue transmission after a bus error occurs
21	EKK_KSI_EN	1: Loss of arbitration, reset sequence after bus occurrence. Including releasing the
		SCL line and SDA line of IIC and resetting the internal state machine
26	-	Reserved
		Auto end mode (main mode), set and cleared by software
		0: Software end mode: When the NBYTES data transmission is completed, the
		TC flag will be set to 1, and the low level time of SCL will be extended until the
25	AUTOEND	end of the corresponding software operation. (Set the START or STOP position to
23	AUTOEND	1)
		1: Auto end mode: When the NBYTES data transmission is completed, the stop
		bit will be sent automatically
		Note: When RELOAD is set to 1, this bit has no effect
		NBYTES reload mode
		Set and cleared by software
24	RELOAD	0: After transmitting NBYTES data (followed by stop bit or repeated start bit), the
24	KELOAD	transmission is completed
		1: After transmitting NBYTES data, the transmission is not completed (NBYTES
		will be reloaded). When the NBYTES data transmission is completed, the TCR

	1	
		flag will be set to 1, and the low time of SCL will be extended until the end of the
		corresponding software operation. (NBYTES writes a non-zero value)
		Number of bytes
23:16	NBYTES[7:0]	Set the number of bytes to be sent/received here
		Note: When the START position is 1, it is not allowed to change these bits
15	-	Reserved
		Stop bit generation (main mode)
		Set by software, and can be cleared by hardware when the stop bit is detected or
		when PE=0
14	STOP	In main mode:
		0: Do not generate stop bits
		1: Generate a stop bit after the current byte transfer is completed
		Note: Writing "0" to this bit has no effect
		Start bit generation
		Set by software, and can be cleared by hardware after sending the start bit
		(followed by the address sequence), when arbitration is lost, or when PE=0. It can
		also be cleared by software by writing "1" to the ADDRCF bit in the IIC_ICR1
		register
		0: Do not generate start bit
13	START	1: Generate repeated start/start bit
		If AUTOEND=0, then this bit will generate a repeated start bit after the NBYTES
		transmission ends and RELOAD=0
		Note: Writing "0" to this bit has no effect
		Set the START bit to 1 even if the bus is busy
		When RELOAD is set to 1, this bit has no effect
12:11	-	Reserved
		Transmission direction (main mode)
1.0		0: The master device requests a write transfer
10	RD_WRN	1: The master device requests a read transfer
		Note: When the START position is 1, it is not allowed to change this bit
9:8	-	Reserved
		Slave address bits[7:1] (master mode)
		In 7-bit addressing mode: These bits should be written to the 7-bit slave address to
7:1	SADD[7:1]	be transmitted Note: This bit is not allowed to be changed when the START bit is
		set
0	-	Reserved
	1	

11.5.4. IIC timing register (IIC_TIMINGR)

Address offset: 0x08 Reset value: 0x0000 0000

BF7807AMXX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
PRESC									SDADEL						
	R	W					Rese	erved					R	W	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SCLH							SCLL								
	RW										R	W			

		Timing prescaler factor
31:28	PRESC	This field is used to prescale IIC_CLK (24MHz) to generate clock period tPRESC
51:28	PRESC	for data setup and hold counters and SCL high and low counters
		$t_{PRESC} = (PRESC+1) * t_{IIC_CLK}$
27:20		Reserved
		Data retention time
		This field is used to generate the delay t_{SDADEL} between the falling edge of SCL
19:16	SDADEL	and the edge of SDA. The low time of the SCL line will be extended during
19:10	SDADEL	tsdadel
		$t_{SDADEL} = (SDADEL+1) * t_{PRESC}$
		Note: SDADEL is used to generate t _{HD: DAT} timing
		SCL high period
15.9	SCLU	This field is used to generate SCL high level period
15:8	SCLH	$t_{SCLH} = (SCLH+1) * t_{PRESC}$
		Note: SCLH is also used to generate $t_{SU: STO}$ and $t_{HD: STA}$ timing
		SCL low period, not configured as 0
7.0	SCLL	This field is used to generate SCL low period
7:0	SCLL	$t_{SCLL} = (SCLL+1) * t_{PRESC}$
		Note: SCLL is also used to generate t_{BUF} and $t_{SU: STA}$ timing

11.5.5. IIC interrupt and status register (IIC_ISR)

R

R

Address Reset va				l										
31	30	29	28	27	26	25	24	23	22	21 20	19	9 18	17	16
							Rese	rved						
15		14:	10		9	8	7	6	5	4	3	2	1	0
BUSY					ARLO	BERR	TCR	TC	STOPF	NACKF		RXNE	TXIS	TXE
		Resei	rved		_	_	_	_	_	_	Res.	_	_	

SI:10 - Reserved	31:16	-	Reserved
------------------	-------	---	----------

R

R

R

R

R

R

R

RS

BF7807AMXX

		Bus is busy
15	BUSY	This flag is used to indicate that there is communication on the bus. When the
15	DUDI	start bit is detected, the bit is set by hardware; when the stop bit is detected or
		PE=0, this bit is cleared by hardware
14:10	-	Reserved
		Arbitration lost
0		When arbitration is lost, this flag is set by hardware
9	ARLO	This flag is cleared by software by setting ARLOCF to 1
		Note: When PE=0, this bit is cleared by hardware
		Bus error
		When a misplaced start bit or stop bit is detected, and the peripheral is also
8	BERR	involved in the transmission, the flag is set by hardware. This flag is cleared by
		software by setting BERRCF to 1
		Note: When PE=0, this bit is cleared by hardware
		Transmission is complete and waiting for reload
		When RELOAD=1 and NBYTES data transmission is completed, this flag is set
7	TCR	by hardware
1	Tek	When NBYTES writes a non-zero value, the flag is cleared by software
		Note: When PE=0, this bit is cleared by hardware
		Transfer complete (main mode)
		When RELOAD=0, AUTOEND=0 and NBYTES data transmission is
6	ТС	completed, this flag is set by hardware. When the START bit or STOP bit is set
0		
		to 1, the flag is cleared by software
		Note: When PE=0, this bit is cleared by hardware
		Stop bit detection flag
		When the stop bit is detected on the bus and the peripheral is also participating
5	STOPF	in this transfer, the flag is set by hardware. The premise of this bit is that the
		peripheral has issued a stop bit
		This flag is cleared by software by setting STOPCF to 1
		Note: When PE=0, this bit is cleared by hardware
		Negative response sign received
4	NACKF	When a NACK is received after the byte is transmitted, the flag is set by
		hardware. This flag is cleared by software by setting NACKF to 1.
		Note: When PE=0, this bit is cleared by hardware
3	-	Reserved
		Receive data register is not empty (receiver)
		When the received data has been copied to the IIC_RXDR register and is ready
2	RXNE	for reading, this flag is set by hardware. When reading IIC_RXDR, this bit will
		be cleared
		Note: When PE=0, this bit is cleared by hardware

		Transmit interrupt status (transmitter)
		When the IIC_TXDR register is empty, this bit is set by hardware. The data to
1	TXIS	be sent must be written into the IIC_TXDR register. When the next data to be
1	1 712	sent is written to the IIC_TXDR register, this bit is cleared
		Write "1" to this bit, invaild
		Note: When PE=0, this bit is cleared by hardware
		Send data register is empty (transmitter)
		When the IIC_TXDR register is empty, this flag is set by hardware. When the
		next data to be sent is written to the IIC_TXDR register, this bit is cleared
0	TXE	This bit can be written "1" by software to refresh the transmit data register
		IIC_TXDR
		After the last data is sent, the hardware is set to 1
		Note: When PE=0, this bit is set by hardware

11.5.6. IIC interrupt clear register (IIC_ICR)

Addre	ss offs	et: 0x1	10												
Reset	Reset value: 0x0000 0000														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							

15:10	9	8	7 6	5	4	3:0	
	ARLOCF	BERRCF	1	STOPCF	NACKCF		
Reserved	W	W	Res.	W	W	Reserved	

31:10	-	Reserved
9	ARLOCF	Arbitration lost flag cleared
9	AKLOCF	Write 1 to this bit, the ARLO flag in the IIC_ISR register will be cleared
	DEDDCE	Bus error flag is cleared
8	BERRCF	Write 1 to this bit, the BERR flag in the IIC_ISR register will be cleared
7:6	-	Reserved
-	STODOL	Clear the stop bit detection flag
5	STOPCF	Write 1 to this bit, the STOPF flag in the IIC_ISR register will be cleared
		Negative response flag is cleared
4	NACKCF	Write 1 to this bit, the NACKF flag in the IIC_ISR register will be cleared
3:0	-	Reserved

11.5.7. IIC receive data register (IIC_RXDR)

Address offset: 0x14 Reset value: 0x0000 0000

BY		Semi	cond	uctor									B	F78	07A	MXX
31	30	29	28	27	26	25	24	2	3	22	21	20	19	18	17	16
							Re	served	d							
15		14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			n									RXDA	ATA[7:0	0]		
			K	eserved	1							1	RW			

31:8	-	Reserved			
7.0		8-bit receive data			
7:0	RXDATA[7:0]	Data byte received from IIC bus			

11.5.8. IIC transmit data register (IIC_TXDR)

Address offset: 0x18

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	2	3	22	21	20	19	18	17	16
							Re	eserve	d							
15		14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

15	14	13	12	11	10	9	ð	/	6	5	4	3	2	1	0
		D									TXDA	TA[7:0]]		
		R	eserve	d							R	W			

31:8	-	Reserved
		8-bit send data
7:0	TXDATA[7:0]	Data bytes to be sent to the IIC bus
		Note: These bits can only be written when TXE=1

11.5.9. IIC control register (IIC_IO_CTRL)

Address offset: 0x44

Reset value: 0x0000 0002

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							

15:3	2	1	0
	DFIL_SEL	AFIL_SEL	IIO_SEL
Reserved	RW	RW	RW

31:3	-	Reserved
2	DFIL_SEL	IIC function digital filter enable

		1: Enable
		0: Disable
		IIC function analog filter enable
1	AFIL_SEL	1: Enable
		0: Disable
		IIC port selection enable
0	IIC_SEL	1: PA12/PA13 port select IIC function
		0: PB12/PB13 port select IIC function

11.6. IIC master configuration process

The master mode configuration process is performed according to the following steps:

- 1. Clear the PE (peripheral enable) in IIC_CR1.
- 2. Configure digital filter IIC_DFIL_SEL and analog filter IIC_AFIL_SEL.
- 3. Configure SDADEL[3:0], SCLH[7:0] and SCLL[7:0] in IIC_TIMINGR.
- 4. Set the PE bit (peripheral enable) in IIC_CR1 to 1.
- 5. Slave address to be sent: SADD[7:1]; transmission direction: RD_WRN; number of bytes to be transmitted: NBYTES[7:0]; and other enable control bits.
- a) The maximum value of NBYTES[7:0] is 255, so if the data to be transmitted is greater than 255, a combination of reload mode and non-reload mode must be used. When the data to be transmitted is less than or equal to 255, just use the non-reload mode.
- b) When the number of bytes to be transmitted is less than or equal to 255, RELOAD=0 must be configured. Configure AUTOEND=1 to automatically generate a stop bit after the end of the transmission; configure AUTOEND=0 to detect the TC flag after the end of the transmission, so that the configuration can restart (START) or stop (STOP). (The above configuration can be reconfigured before the configuration restarts). When the number of bytes to be transmitted is equal to 255, NBYTES[7:0] must be filled with 0xFF during initialization.
- c) When the number of bytes to be transmitted is greater than 255, RELOAD=1 must be configured, and NBYTES[7:0] must be filled with 0xFF during initialization. After the 255 data is transmitted, TCR is detected. If the remaining number to be transmitted is still greater than 255, NBYTES[7:0] must be filled with 0xFF again. Until the remaining number to be transmitted is less than or equal to 255, when TCR is detected, configure RELOAD=0, and configure AUTOEND and NBYTES[7:0].
- 6. Detect that the BUSY flag is 0, set the START bit in the IIC_CR2 register to 1. When the START bit is 1, it is not allowed to change all the bits in step 5. TXDATA[7:0] can be configured in step 5 or after the START bit is set.
- 7. When it detects that the bus is free, it will automatically send the start bit after a delay of t_{BUF} , and then send out the slave device address.

Note:

- 1. Before opening the peripheral enable, the filter and timing registers should be configured. After the enable is turned on, the filtering and timing configuration are not allowed to be changed.
- 2. If NBYTES[7:0] is filled with 0, the stop bit will be sent automatically after sending the address.

12 Serial peripheral interface (SPI)

12.1. SPI function description

The SPI of BF7807AMXX is a serial, synchronous, full/half duplex communication bus, which supports intermittent communication and high-speed continuous communication. The BF7807AMXX contains two modules, SPI0 and SPI1.

The maximum communication frequency of the master is 8M. The slave receives the highest communication frequency of 4M, and sends the highest communication frequency of 4M.

SPI normal mode: MCU writes into SPI transmit buffer SPID through interrupt (when SPI enable is turned on, immediately generates send empty interrupt) or polling, data is automatically loaded into shift register, and sent to SPI_MOSI synchronously via SCLK; at the same time from SPI_MISO receives data and loads it into the SPI receive buffer. When a receive full interrupt is generated, the received data can be read from SPID.

SPI high-speed mode: MCU advances to SRAM to write and send data (up to 4K can be written), during communication, SPI directly reads the data to be sent from SRAM without interrupting or polling; at the same time, each time a piece of data is received (8Bits), write the corresponding address of SRAM immediately. When the communication is completed, the SPI simultaneously generates the empty sending flag and the receiving full flag, and sends an interrupt. Only one SPI high-speed communication is allowed at the same time.

12.1.1. Features

- Standard SPI, two-wire SPI mode
- SPI master mode, SPI slave mode
- Multi-slave function
- In the slave mode, the master can pull up the chip select to reset the SPI counter, and recommunication in the high-speed mode
- Four communication modes are optional
- There is a first level cache for sending and receiving
- High-speed mode supports communication completion interrupt
- SPI baud rate baudrate= F_{HCLK} / [(SPR+1) *2], SPI clock duty cycle is 50%
- The effective bit width of the SPI data buffer is configurable: 8/9/10/11/12/16/24/32 bits, the high-speed mode can only operate SRAM by word according to the selection
- High-speed mode supports SRAM address overflow interrupt. In the high-speed mode, after the access to the SRAM address reaches the maximum value, the SPI stops working and generates an interrupt when the SRAM address reaches the maximum value to prevent the system from entering hardfault

Hardfault: Read the corresponding overflow flag, turn off the high-speed mode, reconfigure the corresponding register, and restart the high-speed mode.

12.1.2. Port configuration

To use the SPI0 function, you need to configure the relevant port as an SPI channel, and select the corresponding port input through SPI0_IO_CTRL[0] register. As shown in the

SPI0_IO_CTRL[0]= 1	SPI0_IO_CTRL[0]= 0
SPI0B_CS: PA10, SPI chip selection signal	SPI0B_CS: PB12, SPI chip selection signal
SPI0B_CLK: PA11, SPI clock	SPI0B_CLK: PB13, SPI clock
SPI0B_MOSI: PA12, SPI master data output	SPI0B_MOSI: PB14, SPI master data output
SPI0B_MISO: PA13, SPI master data input	SPI0B_MISO: PB15, SPI master data input

SPI high-speed mode: Only one channel is allowed at the same time, through the SRAM_SPI_SEL[0] register configuration:

SRAM_SPI_SEL[0]= 1	SRAM_SPI_SEL[0]=0
SPI1	SPIO

12.1.3. SPI multi-slave function

- 1. In SPI master mode, the SPI_CS chip select port is a normal IO port; when SPI_EN=1, the SPI_MISO port can be used as a normal IO port;
- 2. In SPI slave mode, the SPI_CS chip select port is a dedicated chip select input port for SPI;
- 3. In SPI multi-slave mode (MULTI_SLAVE_EN=1), when SPI_CS=1, MISO is always an input port, and SPI_CS=0 becomes an output port only after SPI_CS=0 is selected;
- 4. In SPI single slave mode (MULTI_SLAVE_EN=0), MISO is always the output port.

12.1.4. Four modes

Four modes of SFR configuration:

- CPOL: Select the clock idle state level:
 - 0: The idle state of the clock is low;
 - 1: The idle state of the clock is high.

CPHA: Select the data moment of each cycle:

0: Data sampling is performed on the first transition edge (rising or falling edge) of the clock;

1: Data sampling is performed on the second transition edge (rising or falling edge) of the clock.

Mode 0 (CPOL=0, CPHA=0): The idle level of the clock is low, and the master and slave are sampling on the rising edge.

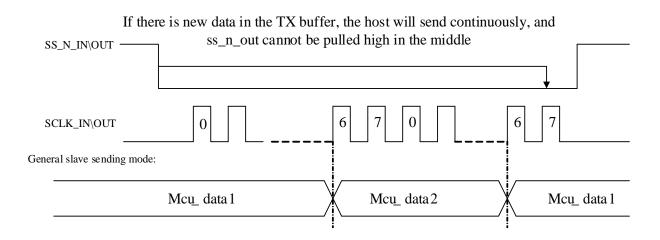
Mode 1 (CPOL=0, CPHA=1): The idle level of the clock is low, and the master and slave are sampling on the falling edge.

Mode 2 (CPOL=1, CPHA=0): The idle level of the clock is high, and the master and slave are sampling on the falling edge.

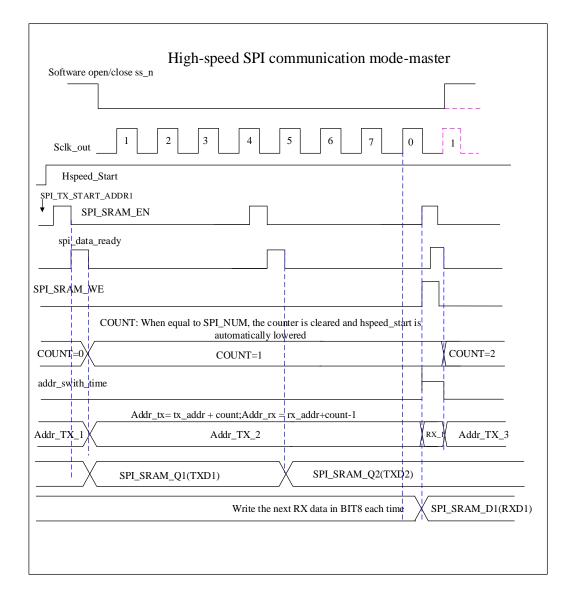
Mode 3 (CPOL=1, CPHA=1): The idle level of the clock is high, and the master and slave are sampling on the rising edge.

Clock signal Polarity 0 Polarity 1	SPI_CLK(CPOL=0)
Slave selection	SPI_CS
Clock phase is 0	CPHA=0
Clock leading edge data sampling	Cycle # CPHA=0 Clock leading edge sampling 4 5 6 7 8
Data output on the	MOSI(CPHA=0) / bit1 b Clock back edge output t4 bit5 bit6 bit7 bit8
back edge of the clock	MISO(CPHA=0) / bit1 / bit2 / bit3 / bit4 / bit5 / bit6 / bit7 / bit8 / -
Clock phase is 1	CPHA=1
Clock leading edge data output	Cycle # CPHA=1 Clock leading edge output 4 5 6 7 8
Data sampling on the	MOSI(CPHA=1)
back edge of the clock	MISO(CPHA=1) - bit1 bit2 bit3 bit4 bit5 bit6 bit7 bit8

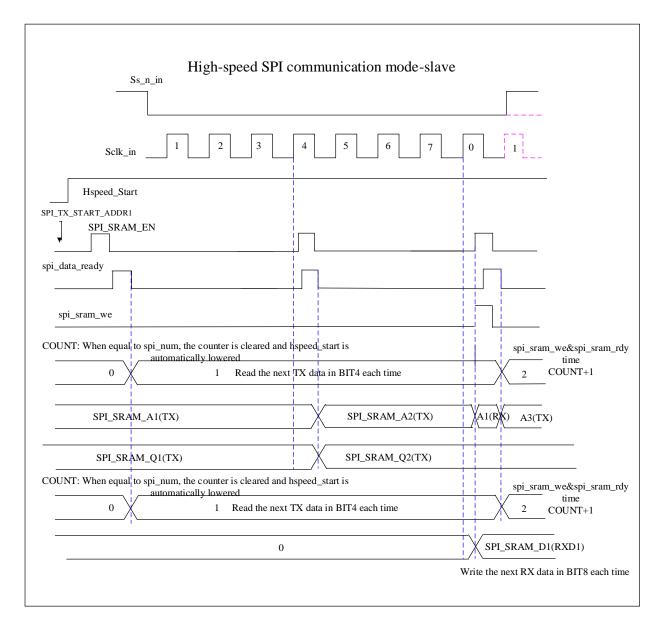
SPI working mode timing diagram


Description: SI: Slave sampling data; SO: Slave sending data; MI: Master sampling data; MO: Master sending data; SPI_CS high level minimum time requirement is 1 SPI clock cycle.

12.1.5. Communication timing


There are three flag bits, two interrupt mask bits and an interrupt vector related to the SPI system. The SPI receive interrupt enable bit (RX_IE) allows interrupts from the SPI receiver full flag (SPRF) to occur. The SPI transmit interrupt enable bit (TX_IE) allows interrupts from the SPI transmit buffer empty flag (SPTIEF) to occur. When a flag bit is set and the related interrupt enable bit is set, the hardware interrupt request is sent to the CPU. If the interrupt enable bit is cleared, the software can poll the relevant flag bit without interruption. The SPI interrupt service routine (ISR) should check the flag bit to determine the event that caused the interrupt. Before returning from the ISR (usually near the starting point of the ISR), the service program should also clear the flag bit.

Schematic diagram of SPI continuous working in normal communication mode:



Schematic diagram of SPI continuous working in high-speed communication mode (master):

Schematic diagram of SPI continuous working in high-speed communication mode (slave):

12.2. Registers

Address offset	Register	Description						
0x04	RCU_EN	Peripheral module clock control register						
0x34	SRAM_SPI_SEL	SPI configuration register						
Base address: SPI0: 0x5002_0000; SPI1: 0x5002_0100; x=0/1								
Address offset	Register	Description						
0x00	SPIx_CFG1	SPI0/1 configuration register 1						
0x04	SPIx_CFG2	SPI0/1 configuration register 2						
0x08	SPIx_STATE	SPI0/1 status register						
0x0C	SPIx_SPID	SPI0/1 cache operation register						
0x10	SPIx_TX_START_ADDR	SPI0/1 high-speed mode transmit buffer first address						
0x14	SPIx_RX_START_ADDR	SPI0/1 high-speed mode receive buffer first address						
0x18	SPIx_NUM	SPI0/1 high-speed mode data buffer address number						

Base address: 0x500A 0000

Address offset	Register	Description
0x48	SPI_CLK_CFG	SPI input clock configuration register
0x4C	HSPEED_EN	SPI high-speed mode enable register
0x50	SPI0_IO_CTRL	SPI0 select enable register

12.2.1. Peripheral module clock control register (RCU_EN)

Address offset: 0x04

Reset value: 0x0000 0001

23	22	21	20	19	18	17	16
LED_LCD_C	GPIO_CL	CRC_CL	ADC_CL	CDC_CL	WDT_CL	TIMER3_CL	TIMER2_CL
LKEN	KEN	KEN	KEN	KEN	KEN	KEN	KEN
RW	RW	RW	RW	RW	RW	RW	RW

 7	6	5	4	3	2	1	0
UART4_C	UART3_C	UART2_C	UART1_C	UART0_C	SPI1_CLK	SPI0_CLK	
LKEN	LKEN	LKEN	LKEN	LKEN	EN	EN	Reserved
RW	RW	RW	RW	RW	RW	RW	

22	GPIO_CLKEN	GPIO module operation enable
22	OFIO_CLKEN	1: Work

		0: Off, the default is 0
		SPI1 module operation enable
2	SPI1_CLKEN	1: Work
		0: Off, the default is 0
		SPI0 module operation enable
1	SPI0_CLKEN	1: Work
		0: Off, the default is 0

12.2.2. SPI configuration register (SRAM_SPI_SEL)

Addre	ss offs	et: 0x.	34												
Reset	value:	0x000	000 00	0											
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
						15.1								0	

 15:1	0
	SRAM_SPI_SEL
Reserved	RW

31:1	-	Reserved
		SPI selection when high-speed SPI0/1 communicates directly with SRAM for
0		reading and writing
0	SRAM_SPI_SEL	0: SPI0
		1: SPI1

12.2.3. SPI0/1 configuration register 1 (SPIx_CFG1)

Address of	ddress offset: 0x00										
Reset valu	eset value: 0x0000 0011										
31 30	29 28	27 26 2	5 24	23	22 2	21 2	20 1	9	18	17 1	16
	Reserved										
15:11	10	9	8	7	6	5	4	3	2	1	0
	MULTI_SLA	HSPEED_OVERFL	HSPEED	RX_	SPI_	TX_	MST	СРО	СРН	LSB	CS_
Reserved	VE_EN	OW_IE	_IE	IE	EN	IE	R	L	А	FE	Ν
	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW

31:11	-	Reserved
10	MULTI_SLAVE_EN	Multi-slave function enable

9	HSPEED_OVERFLOW_I E	 1: SPI is used as a slave and used in a multi-slave environment (MISO is the output port when the chip select is pulled low, and the input port when the chip select is pulled high) 0: SPI as a slave, used in a single-slave environment (MISO is fixed as an output port) High-speed communication SRAM address overflow flag, when the communication address has reached the maximum value of SRAM and the communication is not completed, the interrupt is generated 1: The interrupt is valid 0: Disable interrupt (use polling)
		Note: It needs to be turned on at the same time as the high-speed communication completion interrupt enable to prevent the SRAM address from overflowing and the system enters the hardfault interrupt
		High-speed communication completion interrupt enable
		1: The interrupt is valid
8	HSPEED_IE	0: Disable interrupt (use polling)
		Note: first turn off the transmit interrupt enable TX_IE, then turn on the
		high-speed communication to complete the interrupt enable
		Receive interrupt enable-this is the SPI receive buffer full (SPRF) interrupt
_		enable
7	RX_IE	1: The interrupt is valid
		0: Disable interrupt (use polling)
		SPI enable
6	SPI_EN	1: Module enable is turned on
		0: Module enable is closed
		Transmit interrupt enable-this is the SPI transmit buffer empty (SPTEF)
		interrupt enable
		1: The interrupt is valid
5	TX_IE	0: Disable interrupt (use polling)
		Note: In high-speed mode, you need to turn off the transmit interrupt
		enable, otherwise the high-speed communication will generate high-speed
		completion interrupt and send empty interrupt respectively
		Master-slave mode selection
4	MSTR	1: Master mode
		0: Slave mode
		SCLK active level selection
3	CPOL	1: Active low
		0: Active high
		SCLK phase selection
2	СРНА	1: Send data on the first valid clock edge
		0: Sample data at the first valid clock edge

		LSB first (shifter direction)
1	LSBFE	1: SPI serial data transmission starts from the lowest bit
		0: SPI serial data transmission starts from the most significant bit
		Chip select signal
		Note: The IO corresponding to the chip select is a low-speed IO, and the
		output delay is large. When communicating as a master: When starting
0	CS_N	communication, you need to pull down the IO corresponding to the chip
		select first, and after a delay of 1us, pull CS_N low; end the communication
		When the time, the external IO needs to be pulled high first, after a lus
		delay, then CS_N is pulled high

12.2.4. SPI0/1 configuration register 2 (SPIx_CFG2)

Address offset: 0x04

Reset value: 0x0000 0060

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							

15:14	13	12	11:9	8	7	6	5	4:0
	DMOD	MISO_DI	SPID_SIZ		HSPEED_	HALF_D	BIDIR_SE	CDD
Res.	DMOD	SABLE	Е	Res.	START	UPLEX	LECT	SPR
	RW	RW	RW		RW	RW	RW	RW

31:14	-	Reserved
		DSPI/SPI selection
13	DMOD	0: Standard SPI mode
		1: Two-wire SPI mode
		SPI_MISO port can be used as normal IO port when SPI_EN=1
12	MISO_DISABLE	0: MISO
		1: Ordinary IO
		In general SPI communication, the control bit is SPID_SIZE[2:0], write/read the
		effective data width of the SPI_SPID register (corresponding interrupt flag, the
		setting interval will be extended with this configuration):
		Note: It must be updated under IDLE. If there is an error, it means that the data
11:9		has not been sent. Please update SPID_SIZE in advance.
11:9	SPID_SIZE[2:0]	000: 8 bitsonly for single-line normal mode
		001: 9 bitsonly for single-line normal mode
		010: 10 bitsonly for single-wire normal mode
		011: 11 bitsonly for single-wire normal mode
		100: 12 bitsonly for single-line normal mode

BF7807AMXX

		101: 16 bitsonly for single-line and dual-line normal mode
		110: 24 bits Send odd numbers of data in high-speed mode
		111: 32 bits Send an even number of data in high-speed mode
8	-	Reserved
		The high-speed SPI communication mode is turned on, and the hardware is
		automatically pulled down after the work is completed
		1: High-speed SPI communication mode is on
		0: High-speed SPI communication mode is off
		In high-speed SPI mode, whether in slave or master mode, the chip select signal
7	LISDEED STADT	cannot be pulled high, which will cause the data sent by SPI to be lost
/	HSPEED_START	Note: 1) Only one SPI high-speed communication is allowed at the same time
		2) After HSPEED_OVERFLOW=1, SPI will stop working, the hardware
		pulls down HSPEED_START, and generates HSPEED_OVERFLOW interrupt
		to prevent SRAM address overflow from causing the system to enter hardfault
		(clear the corresponding overflow flag, reconfigure the corresponding register,
		and restart the high-speed mode)
		Half-duplex mode selection
6	HALF_DUPLEX	1: Select half duplex mode
		0: Select full duplex mode
		Half-duplex mode, sending and receiving direction selection
5	BIDIR_SELECT	1: Send
		0: Receive
		SPI baud rate coefficient, the highest communication frequency of master: 8M,
4:0	SPR	the highest communication frequency of slave receiving is 4M, and the highest
4:0	SEK	communication frequency of sending is 4M
		Baudrate=F _{HCLK} / [(SPR+1)*2]

12.2.5. SPI status register (SPIx_STATE)

Address offset: 0x08

Reset value: 0x0000 0001

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							

_	15:8	7	6	5	4	3	2	1	0
	D 1	HSPEED_OVERFLOW	RE	CE_N	UM	HSPEED_FLG	SPRF	OVERFLOW_RX	SPTEF
	Reserved	RC_W0	ŀ	RC_W)	RC_W0	RC_W0	RC_W0	R

31:8	-	Reserved
7	HSPEED_OVERFLO	High-speed communication SRAM address overflow flag, software writes 0 to

	W	clear (Once the SRAM address overflows, the system enters the hardfault
		interrupt, so the detection FLAG is added)
		Note:
		1) Used to remind the user that the configured SPI_TX_START_ADDR,
		SPI_RX_START_ADDR, and SPI_NUM have reached the maximum address
		of SRAM 0x7FF during the incomplete high-speed communication
		2) Once the flag is set to 1, after reconfiguring the register, it is necessary to add
		a delay of the length of SPI data, and then clear the HSPEED_OVERFLOW
		flag, otherwise it will generate a receiving full interrupt flag; then restart
		HSPEED_START=1 (because if In receiving mode, when receiving SRAM
		address = 0x7FF, it is found that COUNT <spi_num, and="" hardware<="" td="" the="" when=""></spi_num,>
		pulls down HSPEED_START, the next data is ready, so another extra data will
		be sent, but SRAM will not be accessed again)
		The valid number of currently received data (byte/piece), used for the last data
		in slave mode to stop working without interruption, query the flag bit to
		determine the valid number of received data:
		Write 0 to clear 0. It is recommended to read this state twice at a reasonable
6:4	RECE_NUM	interval and clear it to 0 to avoid losing valid data. Writing 1 is invalid.
		001: RECE_BUF[7:0]
		011: RECE_BUF[15:0]
		111: RECE_BUF[23:0]
		Note: Only applicable to SPID_SIZE selection: 8/16/24/32
3	HSPEED_FLG	High-speed communication complete mark, software write 0 to clear
2	SPRF	Read buffer full mark, software write 0 to clear
		In the normal communication mode, when the receiving overflow is caused by
		not reading in time, OVERFLOW_RX=1, the signal will not generate
1	OVERFLOW_RX	interruption, only mark
1	OVERFLOW_KA	In high-speed SPI communication mode, it is invalid (when the number of
		received data is equal to the configured {SPI_NUM_H, SPI_NUM_L}, the
		work will end, SPRF will be set, and a full interrupt will be generated)
		Send buffer empty mark, write into SPID hardware to clear automatically. In the
0	SPTEF	SPI idle state, the first data written to SPID will be directly stored in the shift
U	ST LEF	register, and the second data written will be loaded into the transmit buffer, and
		SPTEF will be automatically pulled low

12.2.6. SPI0/1 buffer operation register (SPIx_SPID)

Address offset: 0x0C Reset value: 0x0000 0000 SPID[31:16]

							R	W							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							SPID	[15:0]							
							R	W							

before the end of the new transmission, it will cause the receive overflow, and the newly transmitted data will be lost.

12.2.7. SPI0/1 high-speed mode transmit buffer start address (SPIx_TX_START_ADDR)

Address offset: 0x10 Reset value: 0x0000 0000

Reset	value:	0x000	0 0000)											
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	P								ТХ	SA					
	Rese	erved							R	W					

31:12	-	Reserved
		The starting address (IP physical address, word unit) to fetch data from SRAM during SPI fast transmission (configure the address first, and then turn on the fast mode)
11:0	TXSA	Note 1: If the fast communication mode is not activated, the readout value is the register configuration value; if the fast communication mode is activated, the readout value is the real-time count value Note 2: SPI_TX_START_ADDR, SPI_NUM must be in Word (32Bit) as the

unit, otherwise an error will occur

12.2.8. SPI0/1 high-speed mode receive buffer first address (SPIx_RX_START_ADDR)

Address offset: 0x14

Reset value: 0x0000 0000

31 30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						Rese	erved							

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	D	1							RX	SA					
	Rese	erved							R	W					

31:12	-	Reserved
11:0	RXSA	The start address of the data stored in SRAM when SPI is received

12.2.9. SPI0/1 high-speed mode data buffer address number (SPIx_NUM)

Address offset: 0x18

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1						N	UM[12:	0]					
ŀ	Reserve	d							RW						

31:13	-	Reserved
		SPI fast read/write data number (unit: Word), not working when SPI_NUM=0,
12:0	NUM[12:0]	SPI_NUM_MAX= 0x1000
		Note: 2K Word -1> the configuration value must be greater than 2

12.2.10. SPI input clock configuration register (SPI_CLK_CFG)

Addre	ss offs	et: 0x4	48												
Reset	value:	0x000	000 00	0											
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
					15:2							1		0	

Semiconductor

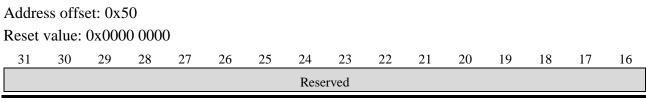
BF7807AMXX

	SPI1_CLK_CFG	SPI0_CLK_CFG
Reserved	RW	RW

31:2	-	Reserved
		SPI1 input clock selection configuration
1	SPI1_CLK_CFG	1: Use digital internally generated clock (master mode exists)
		0: Use analog input signal
		SPI0 input clock selection configuration
0	SPI0_CLK_CFG	1: Use digital internally generated clock (master mode exists)
		0: Use analog input signal

12.2.11. SPI high-speed mode enable register (HSPEED_EN)

Address offset: 0x4C

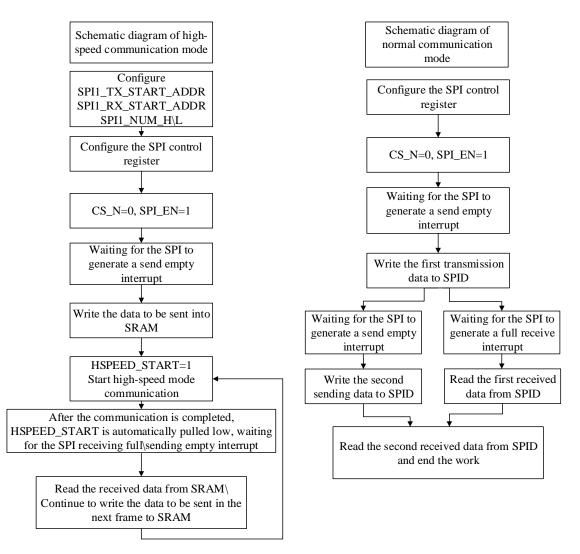

Reset value: 0x0000 0000

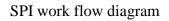
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							

_	15:9	8	7	6	5	4	3	2	1	0
	D 1	HSSEL8	HSSEL7	HSSEL6	HSSEL5	HSSEL4	HSSEL3	HSSEL2	HSSEL1	HSSEL0
	Reserved	RW								

31:9	-	Reserved
		Bit0: SPI communication port PA11 configuration high-speed mode enable
		Bit1: SPI communication port PA12 configuration high-speed mode enable
		Bit2: SPI communication port PA13 configuration high-speed mode enable
		Bit3: SPI communication port PB12 configuration high-speed mode enable
		Bit4: SPI communication port PB13 configuration high-speed mode enable
8:0	HSSEL[8:0]	Bit5: SPI communication port PB14 configuration high-speed mode enable
		Bit6: SPI communication port PC8 configuration high-speed mode enable
		Bit7: SPI communication port PC9 configuration high-speed mode enable
		Bit8: SPI communication port PC10 configuration high-speed mode enable
		The corresponding bits of HSSEL[8:0] are:
		1: High-speed mode; 0: Normal mode

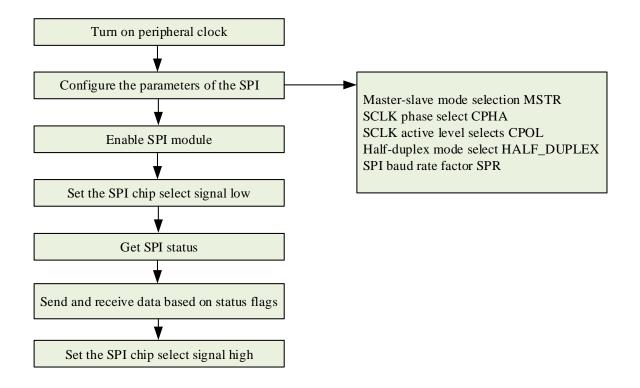
12.2.12. SPI0 select enable register (SPI0_IO_CTRL)



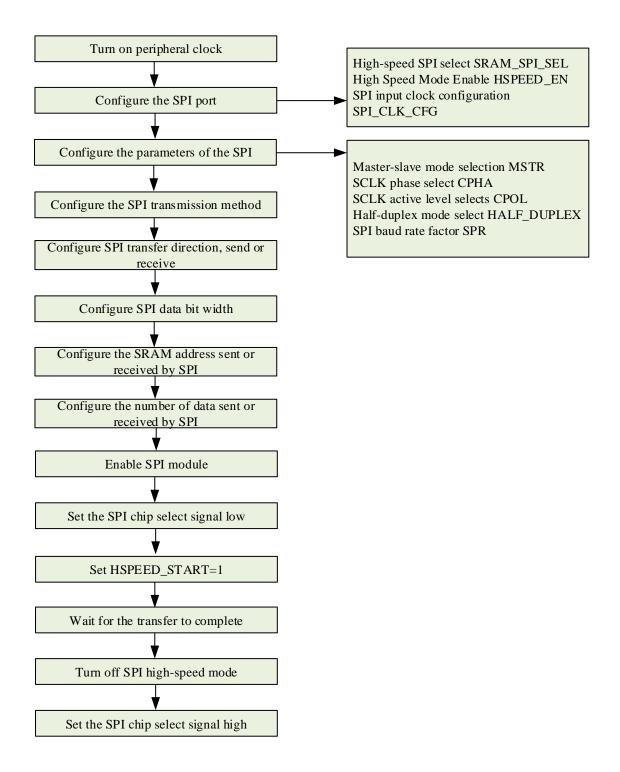

15:1	0
	SPI0_SEL
Reserved	RW

31:1	-	Reserved
		SPI0 port selection enable
0	SPI0_SEL	0: PB12/PB13/PB14/PB15 port select SPI0 function
		1: PA10/PA11/PA12/PA13 port select SPI0 function

12.3. SPI work flow chart


Note:

- 1. Configure CPOL and CPHA when chip select is high, otherwise SCLK has glitches (master, slave).
- 2. In the high-speed mode, hspeed_start will be automatically pulled low after the work is completed. At this time, the master cannot send SCLK anymore, otherwise an indeterminate state will occur.
- 3. In slave mode, after the chip select is pulled low, SPI_EN cannot be turned off. Otherwise, when the SPI EN is reopened and the chip select becomes low again, the internally generated SCLK will have a glitch. That is, while SPI is selected, SPI_EN cannot be turned off.
- 4. In the slave mode, if the chip select is always 0, if you need to switch CPOL/CPHA/LSBFE midway, the slave can only switch after the master raises the chip select.
- 5. In the high-speed mode, if an odd number of data is sent in each frame, the chip select signal needs to be pulled up once between each frame.


12.4. SPI configuration process

12.4.1. Common way configuration process

12.4.2. High speed mode configuration flow

13 Universal asynchronous receiver transmitter (UART)

13.1. Features

There are 5 UART modules in the BF7807AMXX series. Features of UART interface in UART system:

- Support full-duplex, half-duplex serial communication
- With independent double-buffered receiver, single-buffered transmitter
- Programmable baud rate (13-bit analog-to-digital frequency divider)
- Interrupt-driven or polling operation:
 - Delivery completed
 - Receive full
 - Receive overflow, parity check error, frame error
- Support hardware parity verification generation and inspection
- Programmable 8-bit or 9-bit character length
- Choose 1 or 2 STOP bit
- Support multi-processor mode
- Optional digital filter for receiving port
- Support TXD/RXD independent enable, and support pin interchange
- Support wake-up in standby mode

13.2. Function description

13.2.1. Baud rate generation

Baud rate generation modulus Baud_Mod = UART_BD [12:0]}.

Baud rate calculation formula: When Baud_Mod=0, the baud rate clock is not generated, when Baud_Mod>1, the baud rate = BUSCLK/ (16xBaud_Mod). BUSCLK uses the frequency division clock of the system clock source and is fixed at 48M.

Every time the baud rate register is configured, the internal counter will be cleared to regenerate the baud rate signal.

Communication requires the transmitter and receiver to use the same baud rate.

The allowable baud rate deviation range for communication: 8/(11*16)=4.5%.

13.2.2. Transmitter function

The transmitter is enabled by setting the TE bit in the UARTx_CON1 register. The entire sending process must be carried out when the module is enabled.

Sending data flow: Start sending by writing the UARTx_BUF value, set the sending interrupt after sending the stop bit, and clear the interrupt flag by software, and wait for the next write. The

idle state of the transmitter output pin (TXD) defaults to a logic high state.

By writing data into the data register (UARTx_BUF), the data will be directly saved to the sending data buffer and the sending process will be started. In the subsequent complete sending process, the data buffer is locked, and the configuration write data register is invalid until the sending is completed after the stop bit, the transmission interrupt flag is set, and UARTx_BUF is written again to restart a new transmission.

The central element of the serial port transmitter is the transmit shift register with a length of 10/11/12 bits (depending on the setting in the DATA_M control bit). Assuming DATA_M=0, select the normal 8-bit data mode. In 8-bit data mode, there are 1 start bit, 8 data bits, and 1/2 stop bits in the shift register.

Both sending and receiving are in little-endian mode (LSB first).

13.2.3. Receiver function

The receiver is enabled by setting the RE bit in the UARTx_CON1 register. The entire receiving process must be carried out when the module is enabled.

Receiving data flow: When the receiving enable is valid, the data is received at any time, the receiving interrupt is set after the stop bit is received, and the software clears the interrupt flag.

The currently received data will have a detection mechanism, which can detect three types of errors: receiving overflow, frame error, and parity error, all of which require software to clear the flag. It is recommended that after detecting the receiving interrupt, read the status flag, read the data BUF, and finally clear all the received data status flags (UARTx_STATE[3:0]).

The data character consists of a logic 0 start bit, 8 (or 9) data bits (LSB first) and a logic 1 stop bit (1bit). After receiving the stop bit into the receive shifter, if the receive data register is not full (RXFUF = 0), the data characters are transferred to the receive data register, and the receive data register is full status flag (RXFUF = 1) is set. If you have set the receive data register full (RXFUF) at this time, set the receive overflow flag (RXOVF), and the new data will be lost. Because the receiver is double-buffered, the program has a full character time for reading after setting the receive data register full (RXFUF) and before reading the data in the receive data buffer to avoid receiver overflow. When the program detects that the receive data register is full (RXFUF = 1), it obtains data from the receive data register by reading UART_BUF.

13.2.4. Receiver sampling method

The receiver uses a 16 times baud rate clock for sampling. The receiver searches for the falling edge on the RXD serial data input pin by extracting logic level samples at 16 times the baud rate. The falling edge is defined as logic 0 samples after 3 consecutive logic 1 samples. The 16 times baud rate clock is used to divide the bit time into 16 segments, labeled RT1 to RT16 respectively.

The receiver then samples at each bit time of RT8, RT9 and RT10, including the start bit and stop bit, to determine the logic level of the bit. The logic level is the logic level of the vast majority of samples taken during the bit time. When the falling edge is positioned, the logic level is 0 to

ensure that this is the real start bit, not noise. If at least two of these three samples are 0, the receiver assumes that it is synchronized with the receiver character and starts Shift receives the following data, if the above conditions are not met, exit the state machine and return to the state of waiting for the falling edge.

The falling edge detection logic keeps looking for a falling edge. If an edge is detected, the sample clock resynchronizes the bit time. In this way, when noise or baud rate is not matched, the reliability of the receiver can be improved.

13.2.5. Multiprocessor mode

Multiprocessor mode, only works in 9-bit mode. When the received R8 bit=1, the receive interrupt is set, otherwise it is not set. The function of this mechanism is to use hardware detection to eliminate the software overhead of processing unimportant information characters. Allows the receiver to ignore characters in messages used for different receivers.

In this application system, all receivers estimate the address character of each message (the 9th bit = 1). Once it is determined that the information is intended for different receivers, subsequent data characters (the 9th bit = 0) will not be received.

Configuration process: Configure receiving enable, configure multi-processor mode, receive address data (the 9th bit = 1), receive and generate an interrupt, the application confirms whether the address matches, and if it matches, the configuration closes the multi-processor mode, and all subsequent data (the 9th bit = 0) can be received and interrupted, until the next time the address data is received, and the address does not match, the multi-processor mode is turned on, and all subsequent data will not be received until the next address data, and loop in turn application.

13.2.6. Standby mode wake-up function

In idle mode 0, the UART clock is turned on, the module supports normal reception, and the receive interrupt can interrupt the wake-up core work, provided that the receive interrupt configuration is enabled.

In idle mode 1, the UART clock is turned off, the module does not support normal reception, but supports wake-up interrupt wake-up core work, provided that wake-up enable, receive enable and module enable are configured. When the receiving port inputs a low level, the wake-up process starts, and the UART interrupt processing function (wake-up status flag bit) is executed after the system wakes up.

13.3. Registers

Address offset	Register	escription									
0x04	RCU_EN	Peripheral module clock control register									
Base address: UA	Base address: UART0: 0x5003_0000; UART1: 0x5003_0100; UART2: 0x5003_0200;										
U	UART3: 0x5003_0300; UART4: 0x5003_0400; x=0/1/2/3/4										
Address offset	Register	Description									
0x00	UARTx_BD	Baud rate control register									
0x04	UARTx_CON1	Mode control register 1									
0x08	UARTx_CON2	Mode control register 2									
0x0C	UARTx_STATE	Status flag register									
0x10	UARTx_BUF	Data register									
0x14	UARTx_STATE_CLI	R Status flag clear register									
0x18	UARTx_SLEEP	Wake up control register									
Base address: 0x	500A 0000										
Address offset	Register	Description									
0x40	UARTx_IO_SEL	UARTx IO port control register									

13.3.1. Peripheral module clock control register (RCU_EN)

Address offset: 0x04 Reset value: 0x0000 0001

23	22	21	20	19	18	17	16	
LED_LCD_C	GPIO_CL	CRC_CL	CRC_CL ADC_CL CDC_CL		WDT_CL TIMER3_CL		TIMER2_CL	
LKEN	KEN	KEN	KEN	KEN	KEN	KEN	KEN	
RW RW		RW	RW	RW	RW	RW	RW	

7	6	5	4	3	2	1	0
UART4_C	UART3_C	UART2_C	UART1_C	UART0_C	SPI1_CLK	SPI0_CLKE	
LKEN	LKEN	LKEN	LKEN	LKEN	EN	Ν	Reserved
RW	RW	RW	RW	RW	RW	RW	

		GPIO module operation enable
22	GPIO_CLKEN	1: Work
		0: Off, the default is 0
		UART4 module operation enable
7	UART4_CLKEN	1: Work
		0: Off, the default is 0
6	UART3_CLKEN	UART3 module operation enable

		1: Work
		0: Off, the default is 0
		UART2 module operation enable
5 UA	UART2_CLKEN	1: Work
		0: Off, the default is 0
		UART1 module operation enable
4	UART1_CLKEN	1: Work
		0: Off, the default is 0
		UART0 module operation enable
3	UART0_CLKEN	1: Work
		0: Off, the default is 0

13.3.2. Baud rate control register (UARTx_BD)

Address offset: 0x00 Reset value: 0x0000 0000															
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved			BD[12:0]											
K						RW									

31:13	-	Reserved
12:0	BD[12:0]	Baud rate modulus divisor register

13.3.3. Mode control register 1 (UARTx_CON1)

Address offset: 0x04

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														

15:8	7	6	5	4	3	2	1	0
D	UART_EN	TE	RE	MULTI_M	STOP	DATA_M	PCE	PS
Res.	RW	RW	RW	RW	RW	RW	RW	RW

31:8	-	Reserved
7	UART_EN	Module enable

		1: Module enable
		0: The module is off
		Transmitter enable
6	TE	1: Transmitter is enabled
		0: Transmitter is off
		Receiver enable
5	RE	1: The receiver is turned on
		0: The receiver is off
		Multi-processor communication mode
4	MULTI_M	1: Mode enable
		0: Mode disabled
		STOP bit width selection
3	STOP	1: 2 bits
		0: 1 bit
		Data mode selection
2	DATA_M	1: 9-bit mode
		0: 8-bit mode
		1: Parity check enabled
		0: Parity check is disabled
1	PCE	In 8-bit mode: parity check enable is invalid
		In 9-bit mode: When parity is enabled, the ninth bit is the calculated parity bit;
		When parity check is not enabled: the ninth bit is T8 written in
		Parity selection
0	PS	1: Odd parity
		0: Even parity

13.3.4. Mode control register 2 (UARTx_CON2)

Address offset: 0x08

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Reserved															
					15:	3						2	1		0

13.5	2	1	0
	TXIEN	RXIEN	DFILEN
Reserved	RW	RW	RW

31:3	-	Reserved
		Transmit interrupt enable
2	TXIEN	1: Interrupt enable

		0: Interrupt disabled (used in polling mode)
		Receive interrupt enable
1	RXIEN	1: Interrupt enable
		0: Interrupt disabled (used in polling mode)
		Filtering is enabled, the input signal of the receiving port can be configured to
		select the filter function
0	DFILEN	1: Enable
		0: Disable

13.3.5. Status flag register (UARTx_STATE)

Address offset: 0x0C

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	3 22	21	20 19	18	17	16
							Rese	erved	l					
	31:7									4	3	2	1	0
										TXEMF	RXFUF	RXOVF	FEF	PEF
	Reserved									R	R	R	R	R

31:7	-	Reserved
6	R8	The 9th data of the receiver, read only
F	TO	The 9th data of the transmitter, cannot be written in 9-bit mode and parity check
5	Т8	is enabled, and can be written and read in other cases
		Send interrupt flag
4	TXEMF	1: The sending buffer is empty
		0: The sending buffer is full, read only
		Receive interrupt flag
3	RXFUF	1: The receive buffer is full
		0: The receive buffer is empty, read-only
		Receive overflow flag
2	RXOVF	1: Receive overflow (new data is lost)
		0: No overflow, read only
		Frame error flag
1	FEF	1: Frame error detected
		0: No frame error detected, read only
		Parity error flag
0	PEF	1: Receiver parity error
		0: Receiver parity check is correct, read only

13.3.6. Data register (UARTx_BUF)

Addres	ss offs	et: 0x1	10												
Reset	value:	0x000	0 00F	F											
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			n								BUF	[7:0]			
Reserved											R	W			

31:8	-	Reserved
		Data register
7:0	BUF[7:0]	Read returns the contents of the read-only receive data buffer, write into the
		write-only transmit data buffer

13.3.7. Status flag clear register (UARTx_STATE_CLR)

Address offset: 0x14

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							

15:5	4	3	2	1	0
	TXEMFCL	RXFUFCL	RXOVFCL	FEFCL	PEFCL
Reserved	W	W	W	1 FEFCL W	W

31:5	-	Reserved
4	TXEMFCL	Send interrupt flag to clear, write 1 to clear
3	RXFUFCL	Receive interrupt flag is cleared, write 1 to clear
2	RXOVFCL	Receive overflow flag to clear, write 1 to clear
1	FEFCL	Frame error flag is cleared, write 1 to clear
0	PEFCL	Clear parity error flag, write 1 to clear

13.3.8. Wake-up control register (UARTx_SLEEP)

Addre	ddress offset: 0x18														
Reset	value:	0x000	000 000	0											
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														

15:3	2	1	0
	WASFCL	WASF	WAKEN
Reserved	W	R	RW

31:3	-	Reserved			
	WASFCL	Idle mode 1 wake-up state clear flag			
2	WASFCL	Write 1 to clear zero, write only			
1	WASF	Idle mode 1 wake-up status flag, read only			
		Idle mode 1 wake-up enable			
0	WAEN	1: Enable			
		0: Disable			

13.3.9. UART port control register (UARTx_IO_SEL)

Address offset: 0x40

Reset value: 0x000 0000

31 3	30 29	28	27	26	25	24	23	22	21	20	19	18	17	16
						Rese	rved							

15:14	13:12	11:10	9:8	7:6	5	4	3	2	1	0
	UART4	UART3	UART2	UART1	UART0	UART4	UART3	UART2	UART1	UART0
Res.	_SEL	_SEL	_SEL	_SEL	_SEL	_EC	_EC	_EC	_EC	_EC
	RW									

31:14	-	Reserved
		UART4 port selection enable
		00: PA6/PA7 port select UART4 function
13:12	UART4_SEL	01: PB6/PB7 port select UART4 function
		10: PB5/PB6 port select UART4 function
		11: PD8/PD9 port select UART4 function
		UART3 port selection enable
11:10	LIADT2 CEL	00: PA0/PA1 port select UART3 function
11:10	UART3 _SEL	01: PA14/PA15 port select UART3 function
		10: PC5/PC6 port select UART3 function
		UART2 port selection enable
		00: PD0/PD1 port select UART2 function
9:8	UART2_SEL	01: PD2/PD3 port select UART2 function
		10: PD5/PD6 port select UART2 function
		11: PD7/PD5 port select UART2 function
7:6	LIADTI SEL	UART1 port selection enable
7.0	UART1_SEL	00: PB14/PB15 port select UART1 function

		01: PC3/PC4 port select UART1 function
		10: PC6/PC7 port select UART1 function
		UART0 port selection enable
5	UART0_SEL	0: PB12/PB13 port select UART0 function
		1: PA12/PA13 port select UART0 function
		UART4 port TXD/RXD pin exchange
4	UART4_EC	1: Pin exchange
		0: The pins are not exchange
		UART3 port TXD/RXD pin exchange
3	UART3_EC	1: Pin exchange
		0: The pins are not exchange
		UART2 port TXD/RXD pin exchange
2	UART2_EC	1: Pin exchange
		0: The pins are not exchange
		UART1 port TXD/RXD pin exchange
1	UART1_EC	1: Pin exchange
		0: The pins are not exchange
		UART0 port TXD/RXD pin exchange
0	UART0_EC	1: Pin exchange
		0: The pins are not exchange

13.4. UART configuration process

- 1. Turn on the peripheral clock;
- 2. Configure the UART port control register (UARTx_IO_SEL) to select the corresponding IO port;
- 3. Configure module enable, send enable, receive enable, mode selection: UARTx_CON1;
- 4. Configure the baud rate and turn on the interrupt enable: UARTx_BD, UARTx_CON2;
- 5. Write UARTx_BUF to start sending data. After detecting the sending interrupt, clear the sending interrupt flag TXEMF. Once the sending process is completed, wait for the next write to UARTx_BUF to start the sending process (it is not allowed to configure the next data during the sending process, including UARTx_BUF and T8);
- 6. Detect the receiving interrupt, first read the receiving status UARTx_STATE, then read R8 and UARTx_BUF, and finally clear the receiving status flag, once the receiving process is completed, wait for the next receiving interrupt;
- 7. If the configuration interrupt is not enabled, the program polls to perform the UART function, and also reads the status flag first, then reads R8 and UARTx_BUF, and finally clears the receiving status flag.

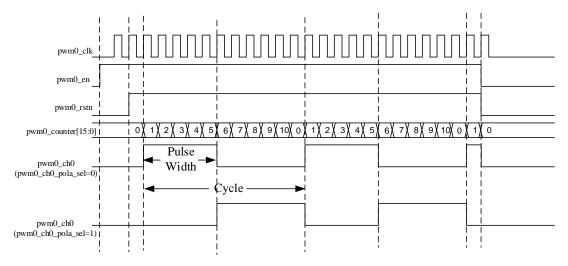
Note:

- 1. When clearing the interrupt flag bit, note that only the clear bit (UARTx_STATE_CLR) corresponding to the flag bit to be cleared needs to be set to 1, and other bits need to be written to 0, which can prevent false clearing;
- 2. After turning off the module enable, all states are cleared, and you need to wait at least 0.5us before turning on the module enable;
- 3. It is not recommended to modify the configuration during communication: UARTx_BD and UARTx_CON1[3:0] (STOP /DATA_M/PCE/PS), otherwise the current frame communication will be invalid.

14 Pulse width modulation module (PWM)

The BF7807AMXX contains 5 independent 16-bit PWM modules. The PWM module clock is divided by 1/2/4/8/16/32/64/128 of PLL48MHz.

14.1. PWM0/1


14.1.1. PWM0/1 overview

The period and pulse width of PWM0/1 pulse width modulation module can be configured through registers. Once the configuration value is updated after counting starts, the register value will be updated when the counter changes from (PWMx_MOD -1) to (PWMx_MOD), that is, the period and duty cycle are updated after a complete period, with buffer processing in the middle.

The PWM0/1 counter starts counting up from 0x0000. When PWMx_DUTY_CHx is counted, the output is reversed. This period of time is the pulse width. Continue counting until the count overflows when PWMx_MOD+1 is counted. If PWMx_CH_POLA_SEL=0, the PWM signal enters the low state when the output is inverted, and the PWM signal enters the high state when the count overflows. If PWMx_CH_POLA_SEL=1, the PWM signal enters the high state when the output is inverted, and the PWM signal enters the high state when the output is inverted, and the PWM signal enters the high state when the output is inverted, and the PWM signal enters the high state when the output is inverted, and the PWM signal enters the high state when the output is inverted, and the PWM signal enters the high state when the output is inverted, and the PWM signal enters the high state when the output is inverted, and the PWM signal enters the high state when the output is inverted, and the PWM signal enters the high state when the output is inverted, and the PWM signal enters the high state when the output is inverted, and the PWM signal enters the high state when the output is inverted, and the PWM signal enters the low state when the count overflows.

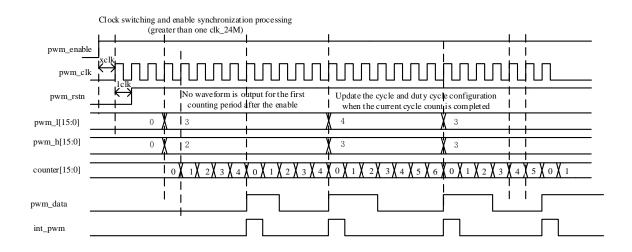
When the channel count register (PWMx_DUTY_CHx) is set to 0x0000, the duty cycle is 0%. When the channel count value register (PWMx_DUTY_CHx) is set to a value greater than the value set by the period configuration register (PWMx_MOD), a 100% duty cycle can be achieved. The counter is automatically reloaded and will not stop by itself. It will not stop until the register ENABLE = 0 and the counter is cleared.

When the count overflows, the interrupt flag will be set, and if the interrupt enable is configured, the interrupt response will be triggered.

PWM0 output waveform (PWM0_DUTY_CH0=5, PWM0_MOD=10, duty_cycle=5/11)

14.1.2. PWM0/1 features

- Share a 16-bit counter, auto-reload, the counting clock is configured by register CLK_SEL
- Support idle mode 0 wake-up
- PWM0 supports 5 channels: PWM0A (or PWM0A1)/PWM0B/PWM0C/PWM0D/PWM0E.
 PWM0A, PWM0A1 support synchronous output or separate output
 - Each channel is individually enabled
 - Share counter
 - The duty cycle of each channel can be configured
 - The polarity of each channel can be configured
- PWM1 supports 5 channels: PWM1A (or PWM1A1)/PWM1B/PWM1C/PWM1D/PWM1E. PWM1A, PWM1A1 support synchronous output or separate output
 - Each channel is individually enabled
 - Share counter
 - The duty cycle of each channel can be configured
 - The polarity of each channel can be configured
- Configure output PWM waveform
 - Output period = $(PWMx_MOD + 1) * T$
 - Output pulse width = PWMx_DUTY_CHx* T
 - Duty cycle = $PWMx_DUTY_CHx/(PWMx_MOD + 1)$
- When the configuration does not output PWM waveform, it is only used as a timer function
 - Timing period = $(PWMx_MOD + 1) * T$
- Support common frequency: 38kHz (infrared application)


14.2. PWM2/3/4

14.2.1. PWM2/3/4 overview

The high and low time of PWM2/3/4 pulse width modulation module can be configured through registers. Once the configuration value is updated after the count is started, it will be updated again after a complete cycle, with buffering processing in the middle.

When the count overflows, the interrupt flag will be set, and if the interrupt enable is configured, the interrupt response will be triggered.

Note: When the duty cycle is 0 or 100%, the counter will not work and no interrupt will be generated.

14.2.2. PWM2/3/4 features

- 16-bit counter, automatic reload, counting clock configured by register register CLK_SEL
- Support idle mode 0 wake-up
- PWM2 supports 1 channel, PWM2A or PWM2A1. PWM2A, PWM2A1 support synchronous output or separate output
- PWM3 supports 1 channel, PWM3A or PWM3A1. PWM3A, PWM3A1 support synchronous output or separate output
- PWM4 supports 1 channel, PWM4A
- Configure output PWM waveform
 - Output period = $(PWM_H + PWM_L)*T$
 - Duty cycle = $PWM_H/(PWM_L + PWM_H)$
- When the configuration does not output PWM waveform, it is only used as a timer function
 - Timing period = $(PWM_H + PWM_L)*T$ (Neither PWM_H nor PWM_L can be zero)
- Support common frequency: 38kHz (infrared application)

14.3. Registers

Base address: 0x5000 0000

Address offset	Register	Description
0x04	RCU_EN	Peripheral module clock control register
D 11 DU		

Base address: PWM0: 0x5005_0500; PWM1: 0x5005_0600;

PWM2: 0x5005_0700; PWM3: 0x5005_0800; PWM4: 0x5005_0900

PWM0/1 registers have the same function, x=0/1

Address offset	Register	Description
0x00	PWMx_MOD	PWM0/1 counting period configuration register
0x04	PWMx_CFG	PWM0/1 control register
0x08	PWMx_INT_CFG	PWM0/1 interrupt control register
0x0C	PWMx_DUTY_CH0	PWM0/1 channel 0 count value configuration register
0x10	PWMx_DUTY_CH1	PWM0/1 channel 1 count value configuration register
0x14	PWMx_DUTY_CH2	PWM0/1 channel 2 count value configuration register
0x18	PWMx_DUTY_CH3	PWM0/1 channel 3 count value configuration register
0x1C	PWMx_DUTY_CH4	PWM0/1 channel 4 count value configuration register
0x20	PWMx_CH_EN	PWM0/1 channel enable register
0x24	PWMx_CH_POLA_SEL	PWM0/1 polarity selection register
0x28	PWMx_CH_CMOD	PWM0/1 duty cycle mode selection register
PWM 2/3/4 regist	ers have the same function,	x= 2/3/4
Address offset	Register	Description
0x00	PWMx_TIME	PWM 2/3/4 level control register
0x04	PWMx_CFG	PWM 2/3/4 control register
0x08	PWMx_INT_CFG	PWM 2/3/4 interrupt control register
Base address: 0x5	00A 0000	
Address offset	Register	Description
0x3c	PWM_OUT_EN	PWM output enable register

14.3.1. Peripheral module clock control register (RCU_EN)

Address offset	: 0x04						
Reset value: 02	x0000 0001						
23	22	21	20	19	18	17	16

Semiconductor

BF7807AMXX

LED_LCD_C	GPIO_CL	CRC_CL	ADC_CL	CDC_CL	WDT_CL	TIMER3_CL	TIMER2_CL
LKEN	KEN	KEN	KEN	KEN	KEN	KEN	KEN
RW	RW	RW	RW	RW	RW	RW	RW

15	14	13	12	11	10	9	8
TIMER1_CL	TIMER0_CL	PWM4_CL	PWM3_CL	PWM2_CL	PWM1_CL	PWM0_CL	IIC_CL
KEN	KEN	KEN	KEN	KEN	KEN	KEN	KEN
RW	RW	RW	RW	RW	RW	RW	RW

		GPIO module operation enable
22	GPIO_CLKEN	1: Work
		0: Off, the default is 0
		PWM4 module operation enable
13	PWM4_CLKEN	1: Work
		0: Off, the default is 0
		PWM3 module operation enable
12	PWM3_CLKEN	1: Work
		0: Off, the default is 0
		PWM2 module operation enable
11	PWM2_CLKEN	1: Work
		0: Off, the default is 0
		PWM1 module operation enable
10	PWM1_CLKEN	1: Work
		0: Off, the default is 0
		PWM0 module operation enable
9	PWM0_CLKEN	1: Work
		0: Off, the default is 0

14.3.2. PWM0 registers

Base address: 0x5005_0500

14.3.2.1. PWM0 counting period configuration register (PWM0_MOD)

Reset value: 0x0000 0000													
Reset value: 0x0000 0000													
<u>31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16</u>													
Reserved													
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0													
MOD[15:0]													

RW

31:16	-	Reserved
15:0	MOD[15:0]	PWM0 counting period configuration register
15.0	MOD[15:0]	Configure the PWM0 output period

14.3.2.2. PWM0 control register (PWM0_CFG)

		ss offs value:			0											
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
								Rese	erved							
-																

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					n	1						С	LK_SE	L	ENABLE
					Rese	rved							RW		RW

	-	Reserved
		PWM0 module clock selection register
		000: 48MHz
		001: 24MHz
		010: 12MHz
3:1	CLK_SEL	011: 6MHz
		100: 3MHz
		101: 1.5MHz
		110: 0.75MHz
		111: 0.375MHz
		PWM0 module enable
0	ENABLE	1: PWM0 function is enabled
		0: PWM0 function disabled

14.3.2.3. PWM0 interrupt control register (PWM0_INT_CFG)

Address offset: 0x08 Reset value: 0x0000 0000															
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
				1	5:3						2		1		0

15:3	2	I	0
	INT_CLR	INT_FLAG	INT_EN
Reserved	W	R	RW

15:3	-	Reserved
		Count overflow interrupt status flag clear register, write only
		Ways to clear the interrupt flag:
2	INT_CLR	a) System reset
		b) Write 1 to clear INT_FLAG
		c) Turn off PWM0 enable
		Count overflow interrupt status flag register
1	INT_FLAG	1: End of counting period
		0: Count incomplete, read only
		Count overflow interrupt enable register
0	INT_EN	1: Interrupt enable
		0: Interrupt disabled (used in polling mode)

14.3.2.4. PWM0 channel 0 count value configuration register (PWM0_DUTY_CH0)

	Address offset: 0x0C Reset value: 0x0000 0000														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							DCH0)[15:0]							
	RW														

31:16	-	Reserved					
	DOUD(15 0)	PWM0 channel 0 count value configuration register					
15:0	DCH0[15:0]	Configure PWM0A (or PWM0A1) output duty cycle					

14.3.2.5. PWM0 channel 1 count value configuration register (PWM0_DUTY_CH1)

Addres	ss offs	et: 0x	10												
Reset v	value:	0x000	000 000	0											
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							DCH1	[15:0]							
							R	W							
31:16	-				Reserv	ed									
Detech	- - 1												Da	ana 176	of 256

Semiconductor

15.0		PWM0 channel 1 count value configuration register
15:0	DCH1[15:0]	Configure PWM0B output duty cycle

14.3.2.6. PWM0 channel 2 count value configuration register (PWM0_DUTY_CH2)

Address offset: 0x14 Reset value: 0x0000 0000 Reserved DCH2[15:0] RW

31:16	-	Reserved				
	D GUQ(15 0)	PWM0 channel 2 count value configuration register				
15:0	DCH2[15:0]	Configure PWM0C output duty cycle				

14.3.2.7. PWM0 channel 3 count value configuration register (PWM0_DUTY_CH3)

Address offset: 0x18 Reset value: 0x0000 0000 Reserved DCH3[15:0] RW

31:16	-	Reserved
1.7.0		PWM0 channel 3 count value configuration register
15:0	DCH3[15:0]	Configure PWM0D output duty cycle

14.3.2.8. PWM0 channel 4 count value configuration register (PWM0_DUTY_CH4)

Addres	ss offs	et: 0x1	lC												
Reset	value:	0x000	0000	0											
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

DCH4[15:0]

RW

31:16	-	Reserved					
15.0		PWM0 channel 4 count value configuration register					
15:0	DCH4[15:0]	Configure PWM0E output duty cycle					

14.3.2.9. PWM0 channel enable register (PWM0_CH_EN)

Address offset: 0x20

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							

15:5	4	3	2	1	0
	CH4_EN	CH3_EN	CH2_EN	CH1_EN	CH0_EN
Reserved	RW	RW	RW	RW	RW

31:5	-	Reserved
4	CHA EN	PWM0E output enable
4	CH4_EN	1: Enable; 0: Disable
2	CH2 EN	PWM0D output enable
3	CH3_EN	1: Enable; 0: Disable
2	CHO EN	PWM0C output enable
2	CH2_EN	1: Enable; 0: Disable
1	CILL EN	PWM0B output enable
1	CH1_EN	1: Enable; 0: Disable
	CHO EN	PWM0A (or PWM0A1) output enable
0	CH0_EN	1: Enable; 0: Disable

14.3.2.10. PWM0 polarity selection register (PWM0_CH_POLA_SEL)

	Address offset: 0x24 Reset value: 0x0000 0000														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
			1	5:5				4		3		2	1		0
											~~~				

	CH4_PS	CH3_PS	CH2_PSL	CH1_PS	CH0_PS
Reserved	RW	RW	RW	RW	RW



31:5	-	Reserved
		PWM0E polarity selection
4	CH4_PS	1: Count value overflow makes the output low;
		0: Count value overflow makes the output high
		PWM0D polarity selection
3	CH3_PS	1: Count value overflow makes the output low;
		0: Count value overflow makes the output high
		PWM0C polarity selection
2	CH2_PS	1: Count value overflow makes the output low;
		0: Count value overflow makes the output high
		PWM0B polarity selection
1	CH1_PS	1: Count value overflow makes the output low;
		0: Count value overflow makes the output high
		PWM0A (or PWM0A1) polarity selection
0	CH0_PS	1: Count value overflow makes the output low;
		0: Count value overflow makes the output high

## 14.3.2.11. PWM0 duty cycle mode selection register (PWM0_CH_CMOD)

Address offset: 0x28

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														

15:4	3	2	1	0
	CH4_CMOD	CH3_CMOD	CH2_CMOD	CH1_CMOD
Reserved	RW	RW	RW	RW

31:4	-	Reserved
		PWM0E duty cycle mode selection register
3	CH4_CMOD	1: Select PWM0A (or PWM0A1) duty cycle
		0: Select own channel duty cycle
		PWM0D duty cycle mode selection register
2	CH3_CMOD	1: Select PWM0A (or PWM0A1) duty cycle
		0: Select own channel duty cycle
		PWM0C duty cycle mode selection register
1	CH2_CMOD	1: Select PWM0A (or PWM0A1) duty cycle
		0: Select own channel duty cycle
0	CU1 CMOD	PWM0B duty cycle mode selection register
0	CH1_CMOD	1: Select PWM0A (or PWM0A1) duty cycle



0: Select own channel duty cycle

#### 14.3.3. PWM1 registers

Base address: PWM1: 0x5005_0600

# 14.3.3.1. PWM1 counting period configuration register (PWM1_MOD)

	Address offset: 0x00 Reset value: 0x0000 0000														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							MOD	[15:0]							
	RW														

31:16	-	Reserved					
	MOD [15 0]	PWM1 counting period configuration register					
15:0 MOD [15:0]		Configure the PWM1 output period					

#### 14.3.3.2. PWM1 control register (PWM1_CFG)

	ss offs value:		.04 00 000	)0													
 31	30	29	28	27	26	25	24	23	22	4	21	20	19	18	17	16	
							Re	served									
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1		0	
									CLK_	SEL	EN	ABLE					
					Reser	ved							RW			RW	

	-	Reserved
		PWM1 module clock selection register
		000: 48MHz
		001: 24MHz
3:1		010: 12MHz
5.1	CLK_SEL	011: 6MHz
		100: 3MHz
		101: 1.5MHz
		110: 0.75MHz



		111: 0.375MHz
		PWM1 module enable
0	ENABLE	1: PWM1 function is enabled
		0: PWM1 function disabled

## 14.3.3.3. PWM1 interrupt control register (PWM1_INT_CFG)

Addre Reset				)											
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							

15:3	2	1	0
	INT_CLR	INT_FLAG	INT_EN
Reserved	W	R	RW

15:3	-	Reserved							
		Count overflow interrupt status flag clear register, write only							
		Ways to clear the interrupt flag:							
2	INT_CLR	a) System reset							
		b) Write 1 to clear INT_FLAG							
		c) Turn off PWM1 enable							
		Count overflow interrupt status flag register							
1	INT_FLAG	1: End of counting period							
		0: Count incomplete, read only							
		Count overflow interrupt enable register							
0	INT_EN	1: Interrupt enable							
		0: Interrupt disabled (used in polling mode)							

## 14.3.3.4. PWM1 channel 0 count value configuration register (PWM1_DUTY_CH0)

Addres	Address offset: 0x0C														
Reset v	value:	0x000	000 000	0											
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							DCH0	[15:0]							
							R	W							
31:16	-				Reserv	ed									

Semiconductor

15.0		PWM1 channel 0 count value configuration register
15:0	DCH0[15:0]	Configure PWM1A (or PWM1A1) output duty cycle

#### 14.3.3.5. PWM1 channel 1 count value configuration register (PWM1_DUTY_CH1)

Address offset: 0x10 Reset value: 0x0000 0000 Reserved DCH1[15:0] RW

31:16	-	Reserved						
15.0		PWM1 channel 1 count value configuration register						
15:0	DH1[15:0]	Configure PWM1B output duty cycle						

#### 14.3.3.6. PWM1 channel 2 count value configuration register (PWM1_DUTY_CH2)

Address offset: 0x14 Reset value: 0x0000 0000 Reserved DH2[15:0] RW

31:16	-	Reserved				
		PWM1 channel 2 count value configuration register				
15:0	DH2[15:0]	Configure PWM1C output duty cycle				

#### 14.3.3.7. PWM1 channel 3 count value configuration register (PWM1_DUTY_CH3)

Addre	ss offs	et: 0x	18												
Reset	value:	0x000	000 000	0											
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0



#### DCH3[15:0]

#### RW

31:16	-	Reserved					
		PWM1 channel 3 count value configuration register					
15:0	DCH3[15:0]	Configure PWM1D output duty cycle					

#### 14.3.3.8. PWM1 channel 4 count value configuration register (PWM1_DUTY_CH4)

Address offset: 0x1C Reset value: 0x0000 0000

-	Cobol	varue.	0/1000	0000												
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
								Rese	erved							
_																
	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0															
ſ								DCH4	[15:0]							

RW

31:16	-	Reserved					
15.0		PWM1 channel 4 count value configuration register					
15:0	DCH4[15:0]	Configure PWM1E output duty cycle					

#### 14.3.3.9. PWM1 channel enable register (PWM1_CH_EN)

Address of	Address offset: 0x20													
Reset valu	e: 0x000	0000	)											
31 30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						Rese	erved							

15:5	4	3	2	1	0
	CH4_EN	CH3_EN	CH2_EN	CH1_EN	CH0_EN
Reserved	RW	RW	RW	RW	RW

31:5	-	Reserved
4	CH4_EN	PWM1E output enable
-		1: Enable; 0: Disable
3	CH3_EN	PWM1D output enable
5	CH5_EN	1: Enable; 0: Disable
2	CHO EN	PWM1C output enable
2	CH2_EN	1: Enable; 0: Disable
1	CH1_EN	PWM1B output enable



		1: Enable; 0: Disable
0	CHO EN	PWM1A (or PWM1A1) output enable
0	CH0_EN	1: Enable; 0: Disable

#### 14.3.3.10. PWM1 polarity selection register (PWM1_CH_POLA_SEL)

Addre	Address offset: 0x24														
Reset	Reset value: 0x0000 0000														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							

15:5	4	3	2	1	0
	CH4_PS	CH3_PS	CH2_PS	CH1_PS	CH0_PS
Reserved	RW	RW	RW	RW	RW

31:5	-	Reserved
		PWM1E polarity selection
4	CH4_PS	1: Count value overflow makes the output low;
		0: Count value overflow makes the output high
		PWM1D polarity selection
3	CH3_PS	1: Count value overflow makes the output low;
		0: Count value overflow makes the output high
		PWM1C polarity selection
2	CH2_PS	1: Count value overflow makes the output low;
		0: Count value overflow makes the output high
		PWM1B polarity selection
1	CH1_PS	1: Count value overflow makes the output low;
		0: Count value overflow makes the output high
		PWM1A (or PWM1A1) polarity selection
0	CH0_PS	1: Count value overflow makes the output low;
		0: Count value overflow makes the output high

#### 14.3.3.11. PWM1 duty cycle mode selection register (PWM1_CH_CMOD)

	Address offset: 0x28 Reset value: 0x0000 0000														
31	30	29	28	27	26	25	24	23	22	2 21	20	19	18	17	16
							Rese	erved							
			15:4					3		2		1		C	
			Reserv	ed			CH	I4_CM	DD	CH3_CM	10D	CH2_CN	MOD	CH1_C	CMOD



# BF7807AMXX

RW	RW	RW	RW

31:4	-	Reserved
		PWM1E duty cycle mode selection register
3	CH4_CMOD	1: Select PWM1A (or PWM1A1) duty cycle
		0: Select own channel duty cycle
		PWM1D duty cycle mode selection register
2	CH3_CMOD	1: Select PWM1A (or PWM1A1) duty cycle
		0: Select own channel duty cycle
		PWM1C duty cycle mode selection register
1	CH2_CMOD	1: Select PWM1A (or PWM1A1) duty cycle
		0: Select own channel duty cycle
		PWM1B duty cycle mode selection register
0	CH1_CMOD	1: Select PWM1A (or PWM1A1) duty cycle
		0: Select own channel duty cycle

## 14.3.4. PWM2 registers

#### 14.3.4.1. PWM2 level control register (PWM2_TIME)

Address offset: 0x00

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							PWM	12_H							
							R	W							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							PWN	/12_L							
							R	W							

31:16	PWM2_H	PWM2 high level control register
15:0	PWM2_L	PWM2 low level control register

#### 14.3.4.2. PWM2 control register (PWM2_CFG)

Addre Reset				0												
31	30	29	28	27	26	25	24	23	22	2	1	20	19	18	17	16
							Res	served								
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1		0



BF7807AMXX

		,
	CLK_SEL	ENABLE
Reserved	RW	RW

31:4	-	Reserved
		PWM2 module clock selection register
		000: 48MHz
		001: 24MHz
		010: 12MHz
3:1	CLK_SEL	011: 6MHz
		100: 3MHz
		101: 1.5MHz
		110: 0.75MHz
		111: 0.375MHz
		PWM2 module enable
0	ENABLE	1: PWM2 function is enabled
		0: PWM2 function disabled

## 14.3.4.3. PWM2 interrupt control register (PWM2_INT_CFG)

Address offset: 0x08

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														

15:3	2	1	0
	INT_CLR	INT_FLAG	INT_EN
Reserved	W	R	RW

15:3	-	Reserved
		Interrupt status flag clear register, write only
		Ways to clear the interrupt flag:
2	INT_CLR	a) System reset
		b) Write 1 to clear INT_FLAG
		c) Turn off PWM2 enable
		Interrupt status flag register, read only
1	INT_FLAG	1: End of counting period
		0: Counting is not completed
		Interrupt enable register
0	INT_EN	1: Interrupt enable
		0: Interrupt disabled (used in polling mode)



## 14.3.5. PWM3 registers

#### 14.3.5.1. PWM3 level control register (PWM3_TIME)

Address offset: 0x00

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							PWN	13_H							
							R	W							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	PWM3_L														
	RW														

31:16	PWM3_H	PWM3 high level control register
15:0	PWM3_L	PWM3 low level control register

#### 14.3.5.2. PWM3 control register (PWM3_CFG)

Address offset: 0x04

31	30	29	28	27	26	25	24	23	22	21		20	19	18	17	16
							Res	erved								
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1		0
					n								CLK_	SEL	EN	ABLE
					Reser	ved							RV	V	]	RW

31:4	-	Reserved
		PWM3 module clock selection register
		000: 48MHz
		001: 24MHz
		010: 12MHz
3:1	CLK_SEL	011: 6MHz
		100: 3MHz
		101: 1.5MHz
		110: 0.75MHz
		111: 0.375MHz
		PWM3 module enable
0	ENABLE	1: PWM3 function is enabled



# BF7807AMXX

0: PWM3 function disabled

## 14.3.5.3. PWM3 interrupt control register (PWM3_INT_CFG)

Address offset: 0x08

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							

15:3	2	1	0
	INT_CLR	INT_FLAG	INT_EN
Reserved	W	R	RW

15:3	-	Reserved					
		Interrupt status flag clear register, write only					
		Ways to clear the interrupt flag:					
2	2 INT_CLR	a) System reset					
		b) Write 1 to clear INT_FLAG					
		c) Turn off PWM3 enable					
		Interrupt status flag register, read only					
1	INT_FLAG	1: End of counting period					
		0: Counting is not completed					
		Interrupt enable register					
0	INT_EN	1: Interrupt enable					
		0: Interrupt disabled (used in polling mode)					

## 14.3.6. PWM4 registers

#### 14.3.6.1. PWM4 level control register (PWM4_TIME)

Address	offse	et: 0x(	)0												
Reset va	Reset value: 0x0000 0000														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							PWN	14_H							
	RW														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							PWN	/14_L							
	RW														
31:16	PW	M4_H			PWM4	high le	evel con	trol reg	ister						

# BF7807AMXX



15:0	PWM4_L	PWM4 low level control register
------	--------	---------------------------------

## 14.3.6.2. PWM4 control register (PWM4_CFG)

Address offset: 0x04

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	2	20	19	18	17	/ 16
							Res	erved								
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1		0
	Reserved										CLK_	SEL	F	ENABLE		
										RV	N		RW			

31:4	-	Reserved
3:1	CLK_SEL	PWM4 module clock selection register 000: 48MHz 001: 24MHz 010: 12MHz 011: 6MHz
		100: 3MHz 101: 1.5MHz 110: 0.75MHz 111: 0.375MHz
0	ENABLE	PWM4 module enable 1: PWM4 function is enabled 0: PWM4 function disabled

#### 14.3.6.3. PWM4 interrupt control register (PWM4_INT_CFG)

Addres	Address offset: 0x08												
Reset	Reset value: 0x0000 0000												
31	30	29	28	27	26	25	24	23	22	21	20	19 18 1	17 16
	Reserved												
					15:3						2	1	0
											INT_CLR	INT_FLAG	INT_EN
	Reserved									W	R	RW	

15:3	-	Reserved				
2	INT CLD	Interrupt status flag clear register, write only				
2 IN	INT_CLR	Ways to clear the interrupt flag:				



		<ul><li>a) System reset</li><li>b) Write 1 to clear INT_FLAG</li><li>c) Turn off PWM4 enable</li></ul>				
1	INT_FLAG	Interrupt status flag register, read only 1: End of counting period 0: Counting is not completed				
0	INT_EN	Interrupt enable register 1: Interrupt enable 0: Interrupt disabled (used in polling mode)				

# 14.3.7. PWM output enable register (PWM_OUT_EN)

Address offset: 0x3C

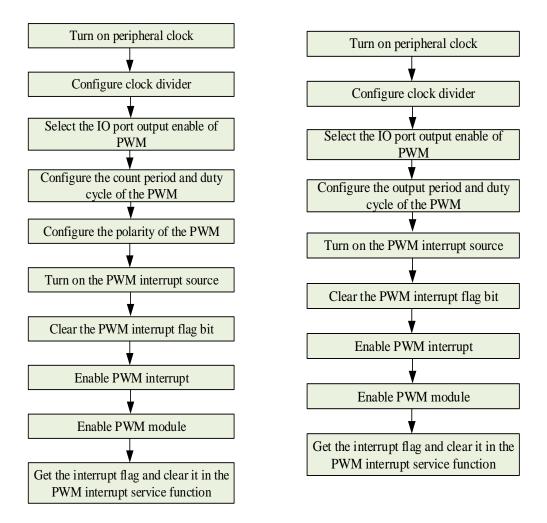
Reset value: 0x000 0000

#### Different PWM module outputs of the same port have priority: PWM0 prior to PWM1

31:17	16
	PWM4A
Reserved	RW

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
PW	PWM	PWM	PW	PWM	PWM	PWM	PWM	PW	PW	PWM	PWM	PWM	PWM	PW	PW
МЗА	3A	2A1	M2A	1A1	1E	1D	1C	M1	M1A	0A1	0E	0D	0C	M0B	M0A
1								В							
RW	RW	RW	RW	RW	RW	RW	RW	RW							

1.6		PWM4A port output enable
16	PWM4	1: Output, 0: No output
		Bit[0]: PWM3A port output enable
		Bit[1]: PWM3A1 port output enable
15:14	PWM3x[1:0]	The corresponding bits of PWM3 are:
		1: Output, 0: No output
		Bit[0]: PWM2A port output enable
10.10		Bit[1]: PWM2A1 port output enable
13:12	PWM2x[1:0]	The corresponding bits of PWM2 are:
		1: Output, 0: No output




		Bit[0]: PWM1A port output enable
		Bit[1]: PWM1B port output enable
		Bit[2]: PWM1C port output enable
11.0	DW/M1[5-0]	Bit[3]: PWM1D port output enable
11:6	PWM1x[5:0]	Bit[4]: PWM1E port output enable
		Bit[5]: PWM1A1 port output enable
		The corresponding bits of PWM1 are:
		1: Output, 0: No output
		Bit[0]: PWM0A port output enable
		Bit[1]: PWM0B port output enable
		Bit[2]: PWM0C port output enable
5.0		Bit[3]: PWM0D port output enable
5:0	PWM0x[5:0]	Bit[4]: PWM0E port output enable
		Bit[5]: PWM0A1 port output enable
		The corresponding bits of PWM0 are:
		1: Output, 0: No output





# 14.4. PWM configuration process



Left: PWM0/1 configuration flow

Right: PWM2/3/4 configuration process

Note: The recommended PWM frequency is shown in the table below

PWM clock(Hz)	Output frequency(Hz)
48M	733 ~ 480 k
24M	367 ~ 240 k
12M	184 ~ 120 k
6M	92 ~ 60 k
3M	46 ~ 30 k
1.5M	23 ~ 15 k
0.75M	12 ~ 7.5 k
0.375M	6 ~ 3.75 k

# 15 Touch key (CDC)

## **15.1. Function description**

Any channel of this module can flexibly configure registers, including detection rate, detection accuracy, pull-up current value, etc. The detection is performed in the way of point scanning, that is, the software only gives one scanning channel address and the corresponding pull-up current value configuration at a time, and sends out an interrupt after scanning.

Scanning process: To start the scan, the software needs to set  $CDC_START = 1$ . After one scan, the result is stored in the data register ( $CDC_DATA$ ), and then an interrupt is triggered, and  $CDC_START$  is automatically cleared. Setting  $CDC_START = 0$  by software will stop the current scan immediately, and the relevant signals inside the module will be reset.

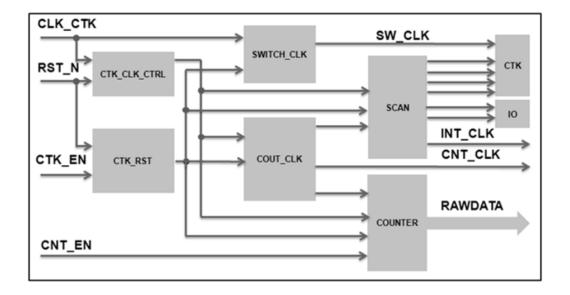
A series of registers are used to realize the application of various functions. The relationship between the capacitance detection correlation quantity and the SFR value is as follows:

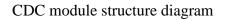
The count value is proportional to RESO, RB resistance, and current source value, and inversely proportional to VTH_SEL. In the case of ensuring complete charging and discharging, it is proportional to the charging and discharging frequency set by PRS_DIV.

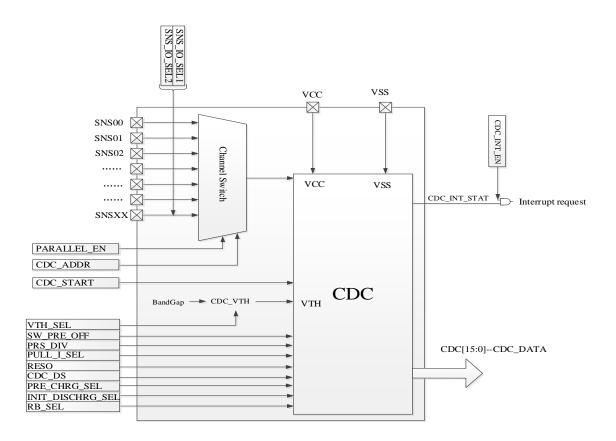
The channel touch change is proportional to RESO and RB, and inversely proportional to VTH_SEL. In the case of ensuring complete charging and discharging, the charging and discharging frequency set by PRS_DIV is proportional to the touch change amount.

The signal-to-noise ratio of touch detection is proportional to VTH_SEL, PULL_I_SEL, and inversely proportional to CDC_DS. When charging and discharging are incomplete, the charging and discharging frequency set by PRS_DIV is inversely proportional to the signal-to-noise ratio.

The time of single key detection is related to RESO and CDC_DS.


Note: When configuring parameters, ensure that the keys are fully charged and discharged.


#### 15.1.1. Features


- 3 modes of CDC charge and discharge clock are select able
  - Fixed frequency division of system clock 6M~369k
  - PRS 1.5M normal distribution
  - PRS 1.5M evenly distributed
- CDC counting clock: 24M, 12M, 6M, 4M optional
- Counting bit width 9~16 bits optional
- Only supports asynchronous scanning mode
- Support multi-channel parallel connection
- Support wake-up in idle mode 0



## 15.1.2. Block diagram







CDC structure block diagram

## **15.1.3.** Sensitivity parameter

A set of parameters with a better signal-to-noise ratio can be obtained through the sensitivity parameter configuration, thereby improving the accuracy of key judgment.

- 1. **RESO:** 0~7 touch key capacitance scan resolution, counter digits: (**RESO + 9**) **bits**, the larger the touch key capacitance scan resolution, the greater the amount of Rawdata downward change, and the noise introduced will follow increase, and vice versa.
- 2. **VTH_SEL:** 0~7, the smaller the reference voltage, the greater the amount of change in Rawdata, and the noise introduced will also increase, and vice versa.
- 3. **CDC_DS:** Detection speed **0: 24M, 1: 12M, 2: 6M, 3: 4M**, the smaller the detection speed, the slower the rawdata sampling time, and vice versa. It is recommended that the default 24M is the fastest and the detection speed is at least 2 times the PRS clock.
- 4. **RB_SEL:** RB resistance selection: **2: 60k; 3: 80k; other: reserved;** the larger the resistance, the greater the amount of change in Rawdata, and the noise introduced will also increase, and vice versa.
- 5. PRS_DIV: Front-end charge and discharge clock frequency selection register: 000000 ~ 111101: Fixed frequency: F=F48M/2/(PRS_DIV+4), that is (6M~369k) 11 1110: Highest frequency 3M, lowest frequency 1M, center frequency 1.5M, normal distribution

11 1111: The highest frequency is 3M, the lowest frequency is 1M, and the center frequency is 1.5M, evenly distributed

The larger the PRS clock is, the larger the variation of Rawdata will be, and the noise introduced will also increase, and vice versa.

6. **PULL_I_SEL:** Pull-up current source

Current source size=255.5-0.5*{PULL_I_SEL}, the smaller the current source, the smaller the count value.

#### Note:

- 1. Rawdata is the real-time raw count value of the touch key capacitance counter.
- 2. In actual applications, it is necessary to view the data through the programming and debugging software and compare the parameters to obtain a set of parameters with a good signal-to-noise ratio.
- 3. The relationship between chip supply voltage and reference voltage: VCC-VTH>0.5V.



## 15.2. Registers

2000 0000000000000000000000000000000000		
Address offset	Register	Description
0x04	RCU_EN	Peripheral module clock control register
0x10	ANA_CFG	Analog module switch register
Base address: 0x5	5006_0000	
Address offset	Register	Description
0x00	CDC_START	CDC scan open register
0x04	CDC_SCAN_CFG1	CDC scan configuration register 1
0x08	CDC_SCAN_CFG2	CDC scan configuration register 2
0x0C	CDC_ADDR_CFG	CDC address configuration register
0x10	CDC_INT_CFG	Interrupt configuration register
0x14	CDC_ANA_CFG	Analog register
0x18	SENSOR_IO_SEL1	SENSOR port selection enable register 1
0x1C	SENSOR_IO_SEL2	SENSOR port selection enable register 2
0x20	PULL_I_SEL	Pull-up power configuration register
0x24	CDC_DATA	Scan result register

Base address: 0x5000 0000

# 15.2.1. Peripheral module clock control register (RCU_EN)

Address offset: 0x04 Reset value: 0x0000 0001

23	22	21	20	19	18	17	16
LED_LCD_C	GPIO_CL	CRC_CL	ADC_CL	CDC_CL	WDT_CL	TIMER3_CL	TIMER2_CL
LKEN	KEN	KEN	KEN	KEN	KEN	KEN	KEN
RW	RW	RW	RW	RW	RW	RW	RW

		CDC module operation enable
19	CDC_CLKEN	1: Work
		0: Off, the default is 0

## 15.2.2. Analog module switch register (ANA_CFG)

Address offset: 0x10

15:5	4	3	2	1	0
	XTAL_HFR_SEL	XTAL_SEL	PD_XTAL	PD_CDC	PD_ADC
Reserved	RW	RW	RW	RW	RW



		CDC work control register
1	PD_CDC	0: The CDC module works normally
		1: The CDC module does not work

## 15.2.3. CDC scan start register (CDC_START)

## Address offset: 0x00

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	7 16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
									START						
						R	eserved								RW

31:1	-	Reserved
		CDC scan open register:
		1: CDC scan is turned on;
		0: CDC scan stop
0	START	START= $0 \rightarrow 1$ ( $\checkmark$ ), start CDC scan, after one scan, the hardware will
0	START	automatically clear to 0. If you want to start the next CDC scan, you must wait
		for the last conversion to complete when CDC_START is 0, and then the
		software will set it to 1 to start the next CDC scan. If CDC_START is cleared to
		0 during the CDC scan process, the scan will end immediately

# 15.2.4. CDC scan configuration register 1 (CDC_SCAN_CFG1)

Addre Reset			-	000													
31	30	29	28	27	7 2	26	25	24	23	22	21		20	19	18	17	16
								Reser	rved								
15	14	13	12	11	10	9	8	7		6		5	4	3	2	1	0
									SW_PRE_OFF PRS_DIV								
			R	eserve	d					RW				]	RW		

31:7	-	Reserved
		Front-end charge and discharge clock switch control
6	SW_PRE_OFF	1: Close sw_clk
		0: Open sw_clk
5:0	PRS_DIV	Front-end charge and discharge clock frequency selection register



	000000 ~ 111101: Fixed frequency: F=F48M/2/(PRS_DIV+4), that is
	(6M~369k)
	11 1110: Highest frequency 3M, lowest frequency 1M, center frequency 1.5M,
	normal distribution
	11 1111: The highest frequency is 3M, the lowest frequency is 1M, and the
	center frequency is 1.5M, evenly distributed

# 15.2.5. CDC scan configuration register 2 (CDC_SCAN_CFG2)

Reset value: 0x0000 0070

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							

15:7	6	5	4	3	2	1	0
		RESO		D	S	PRE_CHRG_SEL	INIT_DISCHRG_SEL
Reserved		RW		RV	W	RW	RW

31:7	-	Reserved								
		Counter bit selection register								
6:4	RESO	000: 9 bits; 001: 10 bits; 010: 11 bits; 011: 12 bits;								
		100: 13 bits; 101: 14 bits; 110: 15 bits; 111: 16 bits								
3:2	DS	Count clock frequency selection register								
5:2	05	00: 24M 01: 12M 10: 6M 11: 4M								
1	DDE CUDC SEL	Pre-charge time selection								
1	PRE_CHRG_SEL	0: 20us 1: 40us								
0	INIT DISCUDE SEL	Pre-discharge time selection								
U	INIT_DISCHRG_SEL	0: 2us 1: 10us								

# 15.2.6. CDC address configuration register (CDC_ADDR_CFG)

Addre	ss off	set: 0	x0C														
Reset	value	: 0x00	00 00	000													
31	30	29	28	3 2	27	26	25	24	23	22	21	20	19	)	18	17	16
								Rese	erved								
15	14	13	12	11	10	9	8	7		6		5	4	3	2	1	0
			р		а				PARA	ALLEL	EN			AI	DDR		
			K	eserve	d				RW RW								



31:7	-	Reserved								
		SNS channel parallel enable register								
6	PARALLEL_EN	1: Multi-channel parallel								
		0: Single channel								
		The address of the detection channel, the channel number can be configured								
		from 0 to 59								
		000000: SNS00 000001: SNS01								
5.0	ADDR	000010: SNS02 000011: SNS03								
5:0	ADDK	000100: SNS04 000101: SNS05								
		000110: SNS06 000111: SNS07								
		111010: SNS58 111011: SNS059								

## **15.2.7.** Interrupt configuration register (CDC_INT_CFG)

# Address offset: 0x10

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							

15:3	2	1	0
	CLR_INT_STAT	INT_STAT	INT_EN
Reserved	W	R	RW

31:3	-	Reserved
2	CLR_INT_STAT	CDC interrupt status clear register, write 1 to clear interrupt status bit, write 0 invalid
1	INT_STAT	CDC interrupt status register 0: CDC scan is not completed 1: CDC scan completed
0	INT_EN	CDC interrupt enable register 0: Interrupt is not enabled; 1: Interrupt enable

## 15.2.8. Analog register (CDC_ANA_CFG)

Address offset: 0x14 Reset value: 0x0000 002F Reserved



BF7807AMXX

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
										]	RB_SEI	<b>_</b>	v	TH_SE	L
				Rese	erved						RW			RW	

31:6	-	Reserved						
		RB resistance size selection						
		010: 60k						
		011: 80k						
		Other: Reserved						
		When using, you need to read the RB80k calibration value from the address						
5.2		[0x203D2] of the chip NVR2:						
5:3	RB_SEL	Scale normalized sensitivity using CBYTE[0x203D2] (k) / CDC_RB_ADJ (k)						
		In the sensitivity debugging stage, the CDC_RB_ADJ program is fixed equal to						
		the read value of the CBYTE[0x203D2] address of the debugging chip, and the						
		normalized ratio is 1. Different chips read different calibration values of RB80k,						
		and the normalized ratio is calculated according to the formula						
		CBYTE[0x203D2] (k) / CDC_RB_ADJ (k)						
		VTH voltage selection signal						
		000: 1.8V 001: 2.1V						
2:0	VTH_SEL	010: 2.5V 011: 2.8V						
		100: 3.2V 101: 3.5V						
		110: 3.9V 111: 4.2V						

# 15.2.9. SENSOR port selection enable register 1 (SENSOR_IO_SEL1)

#### Address offset: 0x18 Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
SNS															
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	Res.
RW															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SNS															
15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
RW															

		SENSOR's IO selection register, each bit corresponds to a sensor
		1: Select the SENSOR function
31:0	SNS[31:0]	0: SENSOR function is not selected
		Bit[16]: Reserved



## 15.2.10. SENSOR port selection enable register 2 (SENSOR_IO_SEL2)

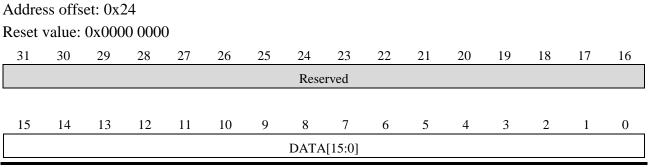
Address offset: 0x1C

Reset value: 0x0000 0000

31:2	8	27	26	25	24		23	22	21	20	19	1	8	17	16
D		NS59	SNS58	SNS57	SNS56	5 SNS	55	SNS54	SNS53	SNS52	SNS5	1 SN	S50	SNS49	SNS48
Res		RW	RW	RW	RW	RV	V	RW	RW	RW	RW	R	W	RW	RW
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SNS	SNS	SNS	S SNS	SNS	SNS	SNS	SNS	SNS	SNS	SNS	SNS	SNS	SNS	SNS	SNS
47	46	45	44	43	42	41	40	39	38	37	36	35	34	33	32
RW	RW	RW	/ RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW

31:28	-	Reserved
		IO selection register of SENSOR, each bit corresponds to a sensor
27:0	SNS[27:0]	1: Select the SENSOR function
		0: SENSOR function not selected

## 15.2.11. Pull-up power configuration register (PULL_I_SEL)

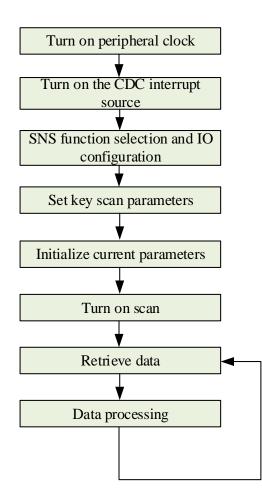

#### Address offset: 0x20

Reset value: 0x0000 0100

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
									PUI[8:0]						
		ŀ	Reserve	d							RW				

31:9	-	Reserved
8:0	PUI[8:0]	CDC pull-up current source size selection switch

## 15.2.12. Scan result register (CDC_DATA)






	R						
31:16	-	Reserved					
15:0	DATA[15:0]	CDC scan channel data					

## **15.3.** Touch key configuration process

Touch key scanning is a query or interrupt mode. First, configure the touch key parameters; then, turn on the touch key scan; finally, the Touch key interrupts to obtain and save the touch key data, and the software algorithm processes the data and determines the output of the keys.



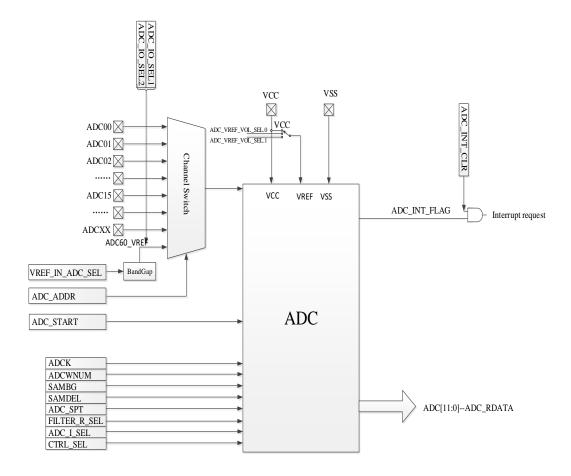


# 16 Analog-to-digital conversion module (ADC)

## **16.1. Module description**

The analog-to-digital converter ADC converts a continuous analog signal into a discrete digital signal. ADC can implement analog-to-digital conversion on any channel selected by software. When  $ADC_START = 0$ , the ADC module is disabled. Configure  $ADC_START = 1$  once to perform an ADC scan. After the conversion is completed, the result is saved in the data register (ADC_RDATA), and then an interrupt is triggered.

ADC_START write 1 to start scanning. After one scan, the hardware will automatically set it to 0. To start the next scan, the software needs to set it to 1 again. If  $ADC_START = 0$  is set during the scanning process, the scanning will be stopped immediately and the relevant signals inside the module will be reset.


#### 16.1.1. Features

- 12 Bit resolution linear successive approximation ADC
- Single conversion mode
- Sampling time and conversion speed are configurable
- Support wake-up in idle mode 0
- Reference voltage: VCC/2V/4V





## 16.1.2. ADC module block diagram



ADC structure block diagram



## 16.1.3. ADC conversion time

The conversion clock can be selected through the configuration register ADC_CFG1[2:0], there are 8 options:

ADC_CLK: 8MHz	6MHz	4MHz	3MHz
2MHz	1.5MHz	1MHz	0.5MHz

As shown in the table, the ADC conversion time formula:

Formula	Instruction
$T_{AD} = T1 + T2 + T3$	ADC conversion time
$T1 = (ADC_SPT+1) *4*T_{ADC_CLK}$	ADC sampling time
$T2 = (3+ADCWNUM+SAMDEL)*T_{ADC_CLK}$	Conversion interval and sampling delay time
T2 ( 2*1 · 12)*T	The time for the sampled signal to be converted
$T3 = (2*1+12)*T_{ADC_{CLK}}$	into data

ADCWNUM: Selection of distance conversion interval after sampling (3+ADCWNUM)*ADC_CLK;

SAMDEL: Sampling delay time selection,	00: 0*(ADC_CLK);	01: 2*(ADC_CLK);
	10: 4*(ADC CLK);	11: 8*(ADC_CLK).

## **16.1.4. Reference voltage**

The BF7807AMXX series has 3 reference sources: VCC/2V/4V

#### • When VCC is selected as the ADC reference voltage:

When the power supply voltage fluctuates greatly or drops, the VCC voltage value can be inversely calculated by formula (1):

 $ADCINNER_Data/VREF_IN_ADC_SEL = 4096/VCC$ (1)

Note:

- ADCINNER_Data: ADC internal channel data;
- VREF_IN_ADC_SEL: The chip calibration value needs to be read;

The Vin voltage value can be inversely calculated by formula (2):

Vin_Data/Vin = 4096/VCC

Note:

- Vin_Data: ADC input channel data;
- Vin: Input voltage;

The Vin voltage value can be obtained by formula (3):

```
Vin = (Vin_Data/ADCINNER_Data)*VREF_IN_ADC_SEL (3)
```

VREF_IN_ADC_SEL needs to read the chip calibration value, first obtain the internal channel data, and then obtain the input voltage Vin_Data data, and the interval between two data acquisitions is as short as possible;

(2)



# Semiconductor

# ● When selecting ADC_VREF_VOL_SEL 2V/4V reference voltage, the frequency must be ≤ 3MHz:

The Vin voltage value can be inversely calculated by formula (4):

Vin_Data/Vin=4096/ ADC_VREF_VOL_SEL

(4)

Note:

- Vin_Data: ADC input channel data;
- Vin: Input voltage (0~ ADC_VREF_VOL_SEL);
- VREF_IN_ADC_SEL: Need to read chip calibration value.

Note: When 4V reference voltage is selected, VCC is greater than 4.5V.

 The chip calibration value is stored in the NVR2 (information block) storage area. The NVR2 needs to be unlocked to read the calibration value, which cannot be changed by the user. For details, please refer to the "NVR2 read" reference chapter: CBYTE[0x203C0] = ADC internal channel input voltage calibration value high eight bits;

CBYTE[0x203C1] = ADC internal channel input voltage calibration value lower eight bits; Read the chip information address ADC internal channel input voltage 1.362V calibration value;

CBYTE [0x203C2] = ADC internal channel input voltage calibration value high eight bits; CBYTE [0x203C3] = ADC internal channel input voltage calibration value high eight bits; Read the chip information address ADC internal channel input voltage 2.253V calibration value;

CBYTE[0x203C4] = ADC internal channel input voltage calibration value high eight bits; CBYTE[0x203C5] = ADC internal channel input voltage calibration value lower eight bits; Read the chip information address ADC internal channel input voltage 3.111V calibration value;

CBYTE [0x203C6] = ADC internal channel input voltage calibration value high eight bits; CBYTE [0x203C7] = ADC internal channel input voltage calibration value high eight bits; Read the chip information address ADC internal channel input voltage 4.082V calibration value;

CBYTE [0x203C8] = ADC internal channel input voltage calibration value high eight bits; CBYTE [0x203C9] = ADC internal channel input voltage calibration value high eight bits; Read the calibration value of the chip information address ADC_VREF2V;

CBYTE [0x203CA] = ADC internal channel input voltage calibration value high eight bits; CBYTE [0x203CB = ADC internal channel input voltage calibration value high eight bits; Read the calibration value of the chip information address ADC_VREF4V.



#### 16.1.5. Single conversion mode

In single conversion mode, only one conversion is performed after the ADC is started.

ADC_START write 1 to start scanning. After one scan, the hardware will automatically set to 0. If you want to start the next scan, you need to set it to 1 again by software. If  $ADC_START = 0$  is set during the scanning process, the scanning will stop immediately and the relevant internal signals of the module will be reset.

Single conversion steps:

- 1. ADC channel is configured as ADC function
- 2. Enable the PD_ADC bit of the ANA_CFG register to 1, enable the ADC module
- 3. Set ADC conversion parameters
  - i. Set ADC sampling time
  - ii. Set the ADC sampling delay time
  - iii. Set the ADC conversion interval time
  - iv. Set the clock ADCK for ADC conversion
- 4. Select ADC reference voltage
- 5. Select ADC scan channel
- 6. Configure ADC_START =1, start scanning
- 7. Get results
- 8. If you need to convert other channels, repeat steps  $5 \sim 7$

Note: ADC_START is not allowed to be configured during scanning. At the same time, if the IO port corresponding to the channel address is not enabled as an ADC port, the ADC_START register cannot be configured to be pulled high, and scanning cannot be started.



## 16.2. Registers

Address offset	Register	Description
0x04	RCU_EN	Peripheral module clock control register
0x10	ANA_CFG	Analog module switch register
Base address: 0x5	007_0000	
Address offset	Register	Description
0x00	ADC_START	ADC scan enable register
0x04	ADC_ADDR	ADC channel address selection register
0x08	ADC_SPT	ADC sampling time configuration register
0x0C	ADC_CFG1	ADC configuration register 1
0x10	ADC_CFG2	ADC configuration register 2
0x14	ADC_RDATA	ADC scan result register
0x18	ADC_INT_CFG	ADC interrupt configuration register
0x1C	ADC_IO_SEL1	ADC selection enable register 1
0x20	ADC_IO_SEL2	ADC selection enable register 2

Base address: 0x5000 0000

## 16.2.1. Peripheral module clock control register (RCU_EN)

This register is a register that allows or prohibits the provision of clock to the ADC. Address offset: 0x04

Reset value: 0x0000 0001

23	22	21	20	19	18	17	16
LED_LCD_C	GPIO_CL	CRC_CL	ADC_CL	CDC_CL	WDT_CL	TIMER3_CL	TIMER2_CL
LKEN	KEN	KEN	KEN	KEN	KEN	KEN	KEN
RW	RW	RW	RW	RW	RW	RW	RW

		ADC module work enable
20	ADC_CLKEN	1: Work
		0: Off, the default is 0

## 16.2.2. Analog module switch register (ANA_CFG)

Address offset: 0x10

15:5	4	3	2	1	0
	XTAL_HFR_SEL	XTAL_SEL	PD_XTAL	PD_CDC	PD_ADC
Reserved	RW	RW	RW	RW	RW



			Analog ADC shutdown control register
0	)	PD_ADC	0: ADC module works normally
			1: ADC module does not work

# 16.2.3. Analog module switch register (ADC_START)

Address offset: 0x00															
Reset value: 0x0000 0000															
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	7 16
Reserved															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
													START		
Reserved												RW			

31:1	-	Reserved
		ADC scan enable register
0	START	START is set to 1 from 0, the ADC starts to scan, after one scan, the START
		hardware is automatically set to 0

# 16.2.4. ADC channel address selection register (ADC_ADDR)

Addres	Address offset: 0x04															
Reset	Reset value: 0x0000 0000															
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
	Reserved															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
												AD	DR			
Reserved											RW					

31:6	-	Reserved
5:0	ADDR	ADC channel address selection register, used to control the selection of the current scan channel 000000: Scan channel ADC00 000001: Scan channel ADC01 000010: Scan channel ADC02 000011: Scan channel ADC03 000100: Scan channel ADC04 000101: Scan channel ADC05 000110: Scan channel ADC06 000111: Scan channel ADC07  111010: Scan channel ADC58 111011: Scan channel ADC59
		111100: ADC_VREF input channel



# 16.2.5. ADC sampling time configuration register (ADC_SPT)

Addres	Address offset: 0x08														
Reset	Reset value: 0x0000 0000														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
											SI	PT			
			Rese	rved						R	W				

31:8	-	Reserved
7.0	CDT	ADC sampling time configuration register
7:0	SPT	Sampling time: T1 = (ADC_SPT+1)*4*Tadc_clk

# 16.2.6. ADC configuration register 1 (ADC_CFG1)

Address offset: 0x0C

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					AD	CWN	JM		SAMBG	SAM	IDEL	1	ADCK		
	Rese	rved				RW			RW	R	W	Res.	RW		

31:12	-	Reserved
11:7	ADCWNUM	Distance conversion interval after sampling: (3+ADCWNUM)*ADC_CLK 00000: Reserved 00001: Reserved 00010: 5*ADC_CLK 00011: 6*ADC_CLK 00100: 7*ADC_CLK  11110: 33*ADC_CLK
		11111: 34*ADC_CLK         Sampling timing and comparison timing interval selection
6	SAMBG	0: Interval 0 1: Interval 1*(ADC_CLK)
5:4	SAMDEL	Sampling delay time selection



	1	
		00: 0*ADC_CLK
		01: 2*ADC_CLK
		10: 4*ADC_CLK
		11:8*ADC_CLK
3	-	Reserved
		ADC_CLK frequency division selection: When ADC_VREF output is selected,
		the frequency must be $\leq$ 3MHZ
		000: 8MHz
		001: 6MHz
2.0	ADCK	010: 4MHz
2:0	ADCK	011: 3MHz
		100: 2MHz
		101: 1.5MHz
		110: 1MHz
		111: 0.5MHz

# 16.2.7. ADC configuration register 2 (ADC_CFG2)

#### Address offset: 0x10

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Reserved															

1	5:9	8	7	6	5	4	3	2	1	0	
	D	VREF_SEL	VREF_VOL_SEL	VREF_IN_	_ADC_SEL	CTRL	_SEL	I_SEI	L[1:0]	FILTER_R_SEL	
ŀ	Res.	RW	RW	R	W	RV	W	R	W	RW	

31:9	-	Reserved
		Select the source of the output signal
8	VREF_SEL	0: Select VCC as the output signal
		1: Select the output of the ADC_VREF module as the output signal
		ADC_VREF output mode selection signal, ADC_CLK frequency must be
7	VDEE VOL SEL	≤3MHZ
/	VREF_VOL_SEL	0: 2V as ADC reference voltage
		1: 4V as ADC reference voltage (VCC is greater than 4.5V)
		Voltage ADC60_VREF input to ADC60
		00: 1.362V
6:5	VREF_IN_ADC_SEL	01: 2.253V
		10: 3.111V
		11: 4.082V



4:3	CTRL_SEL	ADC comparator offset cancellation selection signal, the default value is 10 00/01: To remove the offset first and then sample 10/11: Offset elimination and sampling at the same time 10: The switch of the first-stage comparator is finally disconnected
		11: All switches are disconnected at the same time         ADC bias current size selection register         Select BUFFER bias current
2	I_SEL_1	0: 5uA 1: 4uA
		Select comparator bias current
1	I_SEL_0	0: 5uA 1: 4uA
		Input signal filter selection
0	FILTER_R_SEL	0: No RC filter 1: Add RC filter

# 16.2.8. ADC scan result register (ADC_RDATA)

Address offset: 0x14	
----------------------	--

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Reserved															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	5				RDATA[11:0]										
	Rese	erved			R										

31:12	-	Reserved
11:0	RDATA[11:0]	ADC scan result register

# 16.2.9. ADC interrupt configuration register (ADC_INT_CFG)

	Address offset: 0x18 Reset value: 0x0000 0000													
31	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16													
	Reserved													
	15:3 2 1 0													
				INT_CLR	INT_FLAG	INT_EN								
				R	Reserved						W	R	RW	



31:3	-	Reserved
2	INT_CLR	Interrupt status flag clear register
2	INI_CLK	Write 1 to clear INT_FLAG, write only
		Interrupt status flag register
1	INT_FLAG	1: The interrupt is valid
		0: Interrupt is invalid, read only
		Interrupt enable register
0	INT_EN	1: Interrupt enable
		0: Interrupt disabled (used in polling mode)

## 16.2.10. ADC selection enable register 1 (ADC_IO_SEL1)

Address offset: 0x1C

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
AD															
C31	C30	C29	C28	C27	C26	C25	C24	C23	C22	C21	C20	C19	C18	C17	Res.
RW															

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
AD															
C15	C14	C13	C12	C11	C10	C09	C08	C07	C06	C05	C04	C03	C02	C01	C00
RW															

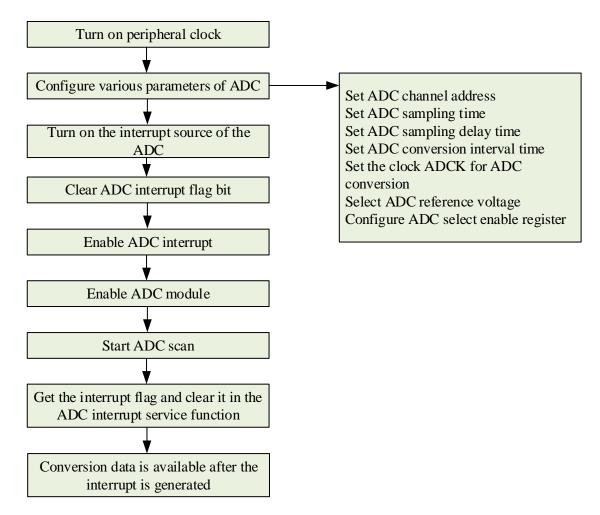
		Pin control enable, each bit corresponds to an ADC
		Bit [0]: ADC00
		Bit [1]: ADC01
21.0	ADC[21.0]	
31:0	ADC[31:0]	Bit [31]: ADC31
		1: Select ADC function;
		0: Do not select ADC function
		Bit [16]: Reserved

# 16.2.11. ADC selection enable register 2 (ADC_IO_SEL2)

Address offset: 0x20

Reset value: 0x0000 0000

31:28	27	26	25	24	23	22	21	20	19	18	17	16
	ADC											
Reserved	59	58	57	56	55	54	53	52	51	50	49	48
	RW											


Datasheet



15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
AD															
C47	C46	C45	C44	C43	C42	C41	C40	C39	C38	C37	C36	C35	C34	C33	C32
RW															

31:28	-	Reserved
		Pin control enable, each bit corresponds to an ADC
		ADC_IO_SEL2[0]: ADC32
		ADC_IO_SEL2[1]: ADC33
27:0	ADC[27:0]	
		ADC_IO_SEL2[27]: ADC59
		1: Select ADC function;
		0: Do not select ADC function

## **16.3. ADC configuration process**



# **17 Low voltage detection (LVDT)**

## **17.1. LVDT function description**

The BF7807AMXX series supports low voltage alarm function, which can effectively monitor the dynamic changes of voltage. Support 8 voltage levels, respectively: 2.7V/3.0V/3.3V/3.6V/3.8V/4.0V/4.2V/4.4V (preset point step-down interrupt, hysteresis 0.1V generates corresponding step-up interrupt). When the voltage monitoring is configured with the above threshold, a voltage drop below this threshold will trigger a low-voltage interrupt, and the system can handle the low-voltage interrupt appropriately according to application needs.

## **17.2. Registers**

Base address: 0x5000 0000

Address offset	Register	Description
0x1C	LVDT_CTRL	LVDT control register
0x20	LVDT_STATE	LVDT status register

## 17.2.1. LVDT control register (LVDT_CTRL)

Address offset: 0x1C

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							

15:8	7	6	5	4	3	2	1	0
		H_S	EL	DELAY	SEL	PD_LVDT	PO_INTEN	BO_INTEN
Reserved		RW		RW		RW	RW	RW

31:8	-	Reserved
		LVDT threshold selection
		000: 2.7V
		001: 3.0V
		010: 3.3V
7:5		011: 3.6V
7:5	VTH_SEL	100: 3.8V
		101: 4.0V
		110: 4.2V
		111: 4.4V
		For the specific corresponding threshold voltage, see the table "Threshold and



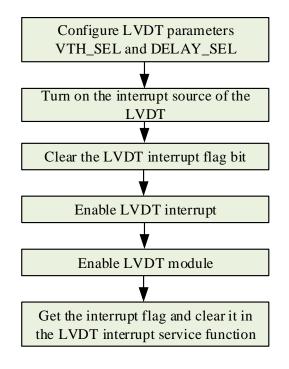
		delay selection"							
		LVDT power-down delay configuration							
		00: Power-down delay 1							
4:3	DELAY_SEL	01: Power-down delay 2							
		10: Power-down delay 3							
		11: Power-down delay 4							
		LVDT control register							
2	PD_LVDT	1: Off							
		0: On, off by default							
		LVDT low voltage boost interrupt enable							
1	PO_INTEN	1: Enable							
		0: Disable							
		LVDT low voltage step-down interrupt enable							
0	BO_INTEN	1: Enable							
		0: Disable							

# 17.2.2. LVDT status register (LVDT_STATE)

31	30	29	28	27	26	25	24	23		22	21	20	19	18 1	7 16
							Res	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
										POF	BOF				
	Reserved										RC_W1	RC_W1			

31:2	-	Reserved						
		LVDT boost interrupt flag						
		1: Effective						
1	POF	0: Invalid						
		When this interrupt occurs, the hardware sets Bit, and the software writes 1 to						
		clear 0						
		LVDT buck interrupt flag						
		1: Effective						
0	BOF	0: Invalid						
		When this interrupt occurs, the hardware sets Bit, and the software writes 1 to						
		clear 0						




# 17.3. Threshold and delay selection

		LVDT           Power down threshold (V)         Recovery threshold (V)         Hysteresis (mV)           2.7         2.8         124.8           2.7         2.8         125.2           2.7         2.8         125.9           2.7         2.8         127.3           3.0         3.1         114.4           3.0         3.1         114.8           3.0         3.1         115.5           3.0         3.1         117.1           3.3         3.4         92.9           3.3         3.4         94.2			
Threshold selection	Delay selection			Hysteresis (mV)	Delay (µs)
	00	2.7	2.8	124.8	7.3
000	01	2.7	2.8	125.2	14.3
000	10	2.7	2.8	125.9	28.5
	11	2.7	2.8	covery threshold (V)Hysteresis (mV)Def $2.8$ 124.8 $2.8$ 125.2 $2.8$ 125.9 $2.8$ 127.3 $3.1$ 114.4 $3.1$ 114.8 $3.1$ 115.5 $3.1$ 117.1 $3.4$ 92.9 $3.4$ 94.2 $3.4$ 95.9 $3.7$ 109.5 $3.7$ 110.9 $3.7$ 110.9 $3.7$ 123.2 $3.9$ 123.7 $3.9$ 124.6 $3.9$ 124.6 $4.1$ 137 $4.3$ 124.8 $4.3$ 124.8 $4.3$ 125.8 $4.5$ 82.3 $4.5$ 83.3	56.7
	00	3.0	3.1	Hysteresis (mV)       I         124.8       I         125.2       I         125.9       I         127.3       I         114.4       I         114.8       I         115.5       I         117.1       I         92.9       I         93.4       I         94.2       I         95.9       I         109.5       I         110       I         110.9       I         112.7       I         123.2       I         123.2       I         123.7       I         124.6       I         136       I         137       I         139       I         124.3       I         124.8       I         125.8       I	8.0
001	01	3.0	3.1	114.8	15.8
001	10	3.0	3.1	115.5	31.4
	11	3.0	3.1	eshold         Hysteresis (mV)         Dela           124.8         7           125.2         1           125.9         2           127.3         5           114.4         8           114.8         1           115.5         3           117.1         6           92.9         8           93.4         1           94.2         3           95.9         6           109.5         9           110         1           110.9         3           112.7         7           123.2         9           123.7         1           124.6         3           125.6         7           135.6         9           136         1           137         3           138         1           124.3         1           124.8         2           125.8         4           127.8         8           82.3         1           83.3         2           84.3         4	62.5
	00	3.3	3.4	92.9	8.6
010	01	3.3	3.4	93.4	17.1
010	10	3.3	3.4	94.2	34.2
	11	3.3	3.4	95.9	68.1
	00	3.6	3.7	109.5	9.2
011	01	3.6	3.7	110	18.2
011	10	3.6	3.7	110.9	36.4
	11	3.6	3.7	112.7	72.6
	00	3.8	3.9	123.2	9.5
100	01	3.8	3.9	123.7	19.0
100	10	3.8	3.9	124.6	37.9
	11	3.8	3.9	126.5	75.6
	00	4.0	4.1	135.6	9.8
101	01	4.0	4.1	136	19.4
101	10	4.0	4.1	137	39.0
	11	4.0	4.1	139	77.9
	00	4.2	4.3	124.3	10.0
110	01	4.2	4.3	124.8	20.0
110	10	4.2	4.3	125.8	40.1
	11	4.2	4.3	127.8	80.0
	00	4.4	4.5	82.3	10.3
111	01	4.4	4.5	83.3	20.5
111	10	4.4	4.5	84.3	41
	11	4.4	4.5	86.4	82

Table Threshold and delay selection



# **17.4. LVDT configuration process**





# 18 LED/LCD driver module

The module can be configured with two drive modes: LED matrix drive mode and LCD drive mode. Select LCD drive or LED drive configuration by register DP_CON[2], and only support one mode of work at the same time.

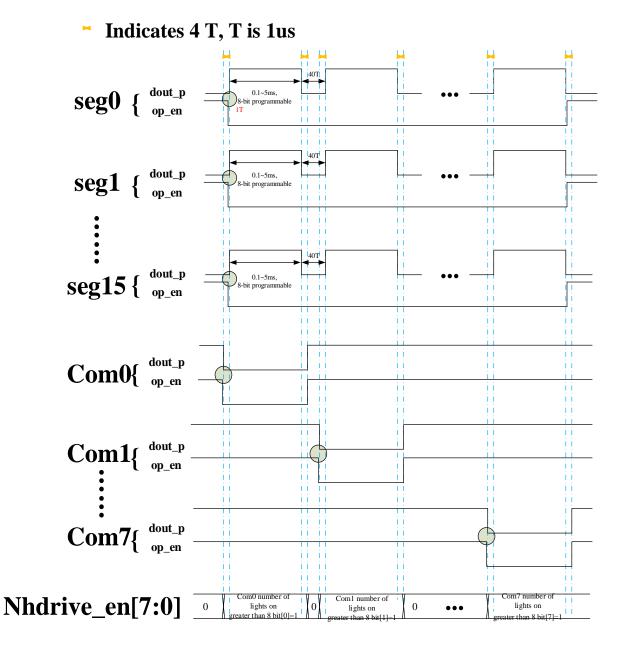
All drive modes, the total IO port switch is configurable, the scanning mode is configurable, the software controls the LED scanning to start, the interrupt mode scans once to interrupt and stop, and the cycle mode automatically starts the next frame scan after scanning for one frame without interruption. If you want to stop, you need the software to turn off the scan enable.

# 18.1. LED matrix

## 18.1.1. Features

- Support up to 8 COM x 16 SEG LED drive matrix
- Single COM conduction time setting file: 8-bit register, configurable range is 16μs-4.096ms, step is 16μs
- Single COM port conduction duty cycle can be configured: 1/8~8/8 can be configured
- The number of COMs supported is 1-8, the registers are configurable
- Each IO port is switched to COM port/SEG port through register configuration, register COM_IO_SEL determines the number of COM ports scanned, and register SEG_IO_SEL determines the number of SEG ports

In the pin definition of BF7807AMXX, COML: COM of LED matrix, SEGL: SEG of LED matrix.


# 18.1.2. LED matrix drive description

The LED matrix circuit consists of a controller, a counter, a duty cycle comparator.

In LED matrix mode, PA port is used as COM port and PC/PD port is used as SEG port. The corresponding SEG port output data of each COM port is configured by the register LED_LCD_BUFx to determine whether to light up (1 means light, 0 means no light), the hardware code only needs to directly output data to the IO port according to the following sequence.



The timing diagram is as follows:



#### Timing diagram of LED matrix mode

Each bit of the signal Nhdrive_en[7:0] corresponds to the drive capability of a COM port. There are two drive options, which are determined by the register NHDRIV_EN_SEL. When the high-current IO port function is selected, the fixedly selected COM port is the high-current port, and the corresponding Nhdrive_en is 1.

Parameter	Number of driving	Nhdrive_en			
Parameter	lights	ts corresponding bit 0			
NUDDIV EN CEL 1	1~8	0			
NHDRIV_EN_SEL=1	Greater than 8	1			
	1~4	0			
NHDRIV_EN_SEL=0	Greater than 4	1			



# 18.1.3. Show configuration address

LED matrix drive mode corresponds to the display configuration: SEGx means to choose whether to light up, 0: No light, 1: Light.

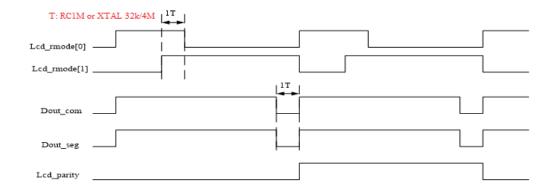
Address	COM7	COM6	COM5	COM4	COM3	COM2	COM1	COM0
Address	0x4C	0x48	0x44	0x40	0x3C	0x38	0x34	0x30
bit[0]	SEG0							
bit[1]	SEG1							
bit[2]	SEG2							
bit[3]	SEG3							
bit[4]	SEG4							
bit[5]	SEG5							
bit[6]	SEG6							
bit[7]	SEG7							
bit[8]	SEG8							
bit[9]	SEG9							
bit[10]	SEG10							
bit[11]	SEG11							
bit[12]	SEG12							
bit[13]	SEG13							
bit[14]	SEG14							
bit[15]	SEG15							



# 18.2. LCD matrix

## **18.2.1. Features**

- Supports multiple drive duty cycles
  - 1/4 duty cycle, 1/3 bias (4 COM x 24 SEG)
  - 1/8 duty cycle, 1/4 bias (8 COM x 24 SEG)
  - 1/4 duty cycle, 1/3 bias (4 COM x 28 SEG)
  - 1/5 duty cycle, 1/3 bias (5 COM x 27 SEG)
  - 1/6 duty cycle, 1/3 bias (6 COM x 26 SEG)
  - 1/6 duty cycle, 1/4 bias (6 COM x 26 SEG)
- Support 2 drive modes: Traditional resistance mode (fast charging mode, slow charging mode), automatic switching mode between fast and slow charging
- Support 3 kinds of bias resistance: 60k/225k/900k
- Support 3 kinds of work clock: Internal low-speed clock 32768Hz, external crystal oscillator 32768Hz/4MHz, RC1MHz
  - When LCD selects external crystal oscillator and RC1M, the lighting time of a single COM can be configured, and the configuration range is 0.064~4.096ms, and the step is 64us;
  - LCD selects internal low-speed clock 32768Hz, LCD turn-on frequency is fixed at 64Hz (8COM configuration).
- Support LCD contrast control, 0.531VDD~1.000VDD, 16-level contrast adjustment
- The COM port is determined by the duty cycle configuration, and the SEG port is freely configured by the register


# **18.2.2. LCD matrix driver description**

The LCD drive circuit consists of a controller, a counter, and two comparators.

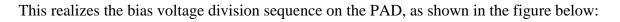
In LCD matrix mode, the number of COM ports scanned is completely controlled by the duty cycle configuration of the drive mode. The output data of the SEG port corresponding to each COM port is configured by the register LED_LCD_BUFx to determine whether to light (1 means light, 0 means no lights up), the hardware code needs to directly output data to the IO port control circuit according to the following sequence.

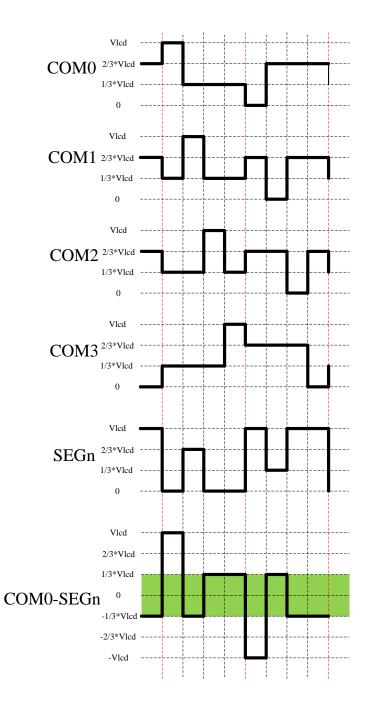


#### The sequence diagram is as follows:



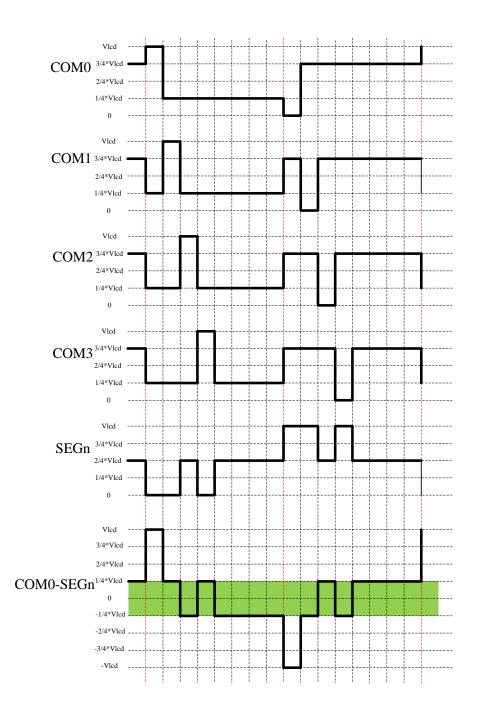
#### LCD timing diagram


Analog IO implements the following truth table:


Bias voltage selectionLCD_BIAS_SEL0: 1/3 bias;1: 1/4 bias;Odd and even frame selectionLCD_PARITY0: Odd frame;1: Even frame;Resistance string selectionLCD_RMODE001: 20k;010: 75k;100: 300k;Data selectionDOUT_PB (for example), compatible with the previous data line, the outputfunction of the corresponding IO port is invalid (OP_EN_N=1).

COM truth table											
LCD_BIAS_SEL	LCD_PARITY	DOUT_PB	Output voltage value								
0	0	0	1/3VLCD								
0	0	1	VLCD								
0	1	0	2/3VLCD								
0	1	1	VSS								
1	0	0	1/4VLCD								
1	0	1	VLCD								
1	1	0	3/4VLCD								
1	1	1	VSS								
	SEG mout	h truth table									
LCD_BIAS_SEL	LCD_PARITY	DOUT_PB	Output voltage value								
0	0	0	2/3VLCD								
0	0	1	VSS								
0	1	0	1/3VLCD								
0	1	1	VLCD								
1	0	0	2/4VLCD								
1	0	1	VSS								
1	1	0	2/4VLCD								
1	1	1	VLCD								

LCD configuration truth table








LCD timing diagram (1/4 duty cycle, 1/3 bias)





LCD timing diagram (1/8 duty cycle, 1/4 bias)



# **18.2.3.** Display configuration

The LCD drive mode corresponds to the display configuration: SEGx means to choose whether to light up, 0: No light, 1: Light.

Address	COM7	COM6	COM5	COM4	COM3	COM2	COM1	COM0
Address	0x4C	0x48	0x44	0x40	0x3C	0x38	0x34	0x30
bit[0]	SEG0							
bit[1]	SEG1							
bit[2]	SEG2							
bit[3]	SEG3							
bit[4]	SEG4							
bit[5]	SEG5							
bit[6]	SEG6							
bit[7]	SEG7							
bit[8]	SEG8							
bit[9]	SEG9							
bit[10]	SEG10							
bit[11]	SEG11							
bit[12]	SEG12							
bit[13]	SEG13							
bit[14]	SEG14							
bit[15]	SEG15							
bit[16]	SEG16							
bit[17]	SEG17							
bit[18]	SEG18							
bit[19]	SEG19							
bit[20]	SEG20							
bit[21]	SEG21							
bit[22]	SEG22							
bit[23]	SEG23							
bit[24]			SEG24	SEG24	SEG24	SEG24	SEG24	SEG24
bit[25]			SEG25	SEG25	SEG25	SEG25	SEG25	SEG25
bit[26]				SEG26	SEG26	SEG26	SEG26	SEG26
bit[27]					SEG27	SEG27	SEG27	SEG27



# 18.3. Registers

Base	address:	0x5000	0000

Address offset	Register	Description						
0x04	RCU_EN	Peripheral module clock control register						
000	VTAL HE CEL	Comparator hysteresis voltage selection register in						
0x0C	XTAL_HS_SEL	crystal oscillator						
0x10	ANA_CFG	Analog module switch register						
Base address: 0x5	5008_0000							
Address offset	Register	Description						
0x00	SCAN_START	LCD, LED scan open register						
0x04	DP_CON	LCD, LED control register						
0x08	LCD_DP_MODE	LCD control register						
0x0C	SCAN_WIDTH	LED cycle configuration register						
0x10	DP_CON1	LCD, LED control register 1						
0x14	LED_INT_CFG	LED interrupt configuration register						
0x18	LCD_INT_CFG	LCD interrupt configuration register						
0x20	LCD_IO_SEL	LCD SEG0-23 port selection configuration register						
0x24	COM_IO_SEL	COM port selection configuration register						
0x28	SEG_IO_SEL	LED SEG0-15 port selection configuration register						
0x2C	LCED_BUF0	SEG port data register 0						
0x30	LCED_BUF1	SEG port data register 1						
0x34	LCED_BUF2	SEG port data register 2						
0x38	LCED_BUF3	SEG port data register 3						
0x3C	LCED_BUF4	SEG port data register 4						
0x40	LCED_BUF5	SEG port data register 5						
0x44	LCED_BUF6	SEG port data register 6						
0x48	LCED_BUF7	SEG port data register 7						

# **18.3.1. LED/LCD shared registers**

#### 18.3.1.1. Peripheral module clock control register (RCU_EN)

Address offset: 0x04 Reset value: 0x0000 0001

23	22	21	20	19	18	17	16	
LED_LCD_C	GPIO_CL	CRC_CL	ADC_CL	CDC_CL	WDT_CL	TIMER3_CL	TIMER2_CL	
LKEN	KEN	KEN	KEN	KEN	KEN	KEN	KEN	
RW	RW	RW	RW	RW	RW	RW	RW	



		LCD/LED module operation enable
23	LED_LCD_CLKEN	1: Work
		0: Off, the default is 0

#### 18.3.1.2. LCD, LED scan on register (SCAN_STAR)

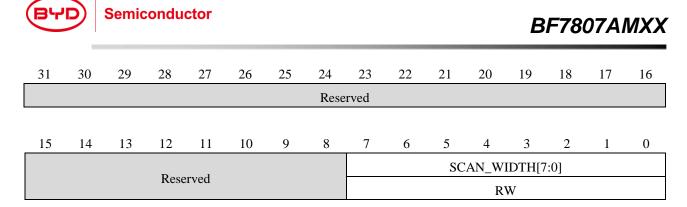
	Address offset: 0x00 Reset value: 0x0000 0000																
	31	30	29	28	2	7	26	25	24	23	22	21	20	19	1	8 17	16
	Reserved																
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	Reserved											SCAN_START					
												RV	V				

31:1	-	Reserved
		LCD, LED scan open register
		1: Scan on
0	SCAN_START	0: Scan off
		SCAN_START is set to 1 from 0, the LCD/LED starts to scan, and is
		automatically cleared by hardware after the scan is over

## 18.3.1.3. LCD, LED control register (DP_CON)

Addres	Address offset: 0x04														
Reset value: 0x0000 0000															
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Reserved															

_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
										IO_ON	DU	TY_S	SEL	DPSEL	SCAN_MODE	COM_MOD
				R	eserv	ed				RW		RW		RW	RW	RW


31:7	-	Reserved
		LCD/LED scanning corresponds to the total control bit of all IO ports
6	IO_ON	0: Close IO
		1: Open IO
		LED row and column drive mode single COM port conduction duty cycle
5.2	DUTY CEI	configuration register
5:3	DUTY_SEL	000: 1/8 duty cycle
		001: 2/8 duty cycle



		010: 3/8 duty cycle
		011: 4/8 duty cycle
		100: 5/8 duty cycle
		101: 6/8 duty cycle
		110: 7/8 duty cycle
		111: 8/8 duty cycle
		LCD drive mode duty cycle configuration register
		000: 1/4 duty cycle, 1/3 bias (4 COM X 24 SEG)
		COM port: COM0-3; SEG port: SEG0-23
		001: 1/8 duty cycle, 1/4 bias (8 COM X 24 SEG)
		COM port: COM0-7; SEG port: SEG0-23
		010: 1/4 duty cycle, 1/3 bias (4 COM X 28 SEG)
		COM port: COM0-3; SEG port: SEG0-23, COM4-7 shared as SEG24-27
		011: 1/5 duty cycle, 1/3 bias (5 COM X 27 SEG)
		COM port: COM0-4; SEG port: SEG0-23, COM5-7 shared as SEG25-27
		100: 1/6 duty cycle, 1/3 bias (6 COM X 26 SEG)
		COM port: COM0-5; SEG port: SEG0-23, COM6-7 shared as SEG26-
		SEG27
		101: 1/6 duty cycle, 1/4 bias (6 COM X 26 SEG)
		COM port: COM0-5; SEG port: SEG0-23, COM6-7 shared as SEG26-
		SEG27
		Others: 1/4 duty cycle, 1/3 bias (4 COM X 24 SEG)
		COM port: COM0-3; SEG port: SEG0-23
		LCD, LED selection control bit
2	DPSEL	0: Select LCD driver, LED driver is invalid
		1: Select LED driver, LCD driver is invalid
		LCD, LED scan mode configuration
1	SCAN_MODE	1: Cycle scan mode
		0: Interrupt scan mode
		High current IO port drive enable
		1: The COM port function is locked and works as a high-current IO port
		0: The COM port function is not locked and can be configured to other
0	COM_MOD	functions
		When the COM port locks the high-current IO port, configure the GPIO register
		to output the drive timing. When it is valid, all the following LED/LCD scan
		configurations are invalid.
	1	

# 18.3.1.4. LED, LCD cycle configuration register (SCAN_WIDTH)

Address offset: 0x0C Reset value: 0x0000 0000



31:8	-	Reserved
		In the LED matrix drive mode, the corresponding single COM port scan time:
		period=(scan_width+1)*16us, support configuration range 0.016~4.096ms
		In LCD drive mode, the corresponding single COM port scan time:
7:0	SCAN_WIDTH[7:0]	period=(scan_width+1)*64us, support configuration range 0.064~4.096ms
		Note: In this mode, this register is only applicable to LCD selection clock
		RC1M/XTAL mode. In clock LIRC mode, the LCD fixed frame frequency is
		64Hz (8*24)

# 18.3.1.5. LCD, LED control register 1 (DP_CON1)

#### Address offset: 0x10

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Reserved															

31:6	5	4	3	2 1	0
	NHDRIV_EN_SEL	PD_LCD_POWER	VO		
Reserved	RW	RW		RW	

31:6	-	Reserved							
		nhdriver_en maximum seg lighting selection in LED mode							
5	NHDRIV_EN_SEL	0: Set to 1 when the number of seg lights on the com port is greater than 4							
		1: Set to 1 when the number of seg lights on the com port is greater than 8							
		LCD contrast control enable bit							
4	PD_LCD_POWER	0: Close LCD contrast control							
		1: Open LCD contrast control							
		LCD contrast control bit							
		0000: $VLCD = 0.531VDD$							
		0001: VLCD = 0.563VDD							
3:0	VOL	0010: VLCD = 0.594VDD							
		0011: VLCD = 0.625VDD							
		0100: $VLCD = 0.656VDD$							
		0101: VLCD = 0.688VDD							



0110: VLCD = 0.719VDD
0111: VLCD = 0.750VDD
1000: $VLCD = 0.781VDD$
1001: VLCD = 0.813VDD
1010: $VLCD = 0.844VDD$
1011: VLCD = 0.875VDD
1100: $VLCD = 0.906VDD$
1101: VLCD = 0.938VDD
1110: VLCD = 0.969VDD
1111: VLCD = 1.000VDD

#### 18.3.1.6. SEG port data register 0 (LED_LCD_BUF0)

## Address offset: 0x2C

#### Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
	D	1			BUF0[27:16]											
	Rese	ervea			RW											
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	BUF0[15:0]															
	RW															

31:28	-	Reserved					
27.0		Data of SEG port of LCD and LED, corresponding to COM0					
27:0	BUF0[27:0]	Register DP_CON[2] selects whether to drive LCD or LED					

## 18.3.1.7. SEG port data register 1 (LED_LCD_BUF1)

## Address offset: 0x30

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
									BUF1[	27:16]					
	Reserved								R	W					

_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		BUF1[15:0]														
Ī	RW															

31:28	-	Reserved
27:0	BUF1[27:0]	Data of SEG port of LCD and LED, corresponding to COM1





Register DP_CON[2] selects whether to drive LCD or LED

#### 18.3.1.8. SEG port data register 2 (LED_LCD_BUF2)

Address offset: 0x34

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	D	1							BUF2[	[27:16]					
	Rese	erved							R	W					

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							BUF2	[15:0]							
							R								

31:28	-	Reserved
27.0		Data of SEG port of LCD and LED, corresponding to COM2
27:0	LED_LCD_BUF2[27:0]	Register DP_CON[2] selects whether to drive LCD or LED

## 18.3.1.9. SEG port data register 3 (LED_LCD_BUF3)

Address offset: 0x38

Reset value: 0x0000 0000

Reserved         BUF3[27:16]           15         14         13         12         11         10         9         8         7         6         5         4         3         2         1         0           BUF3[15:0]	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
RW       15     14     13     12     11     10     9     8     7     6     5     4     3     2     1     0       BUF3[15:0]		D	1							BUF3[	27:16]					
BUF3[15:0]		Rese	erved							R	W					
BUF3[15:0]																
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
RW								BUF3	[15:0]							
								R	W							

31:28	-	Reserved
27.0		Data of SEG port of LCD and LED, corresponding to COM3
27:0	BUF3[27:0]	Register DP_CON[2] selects whether to drive LCD or LED

## 18.3.1.10. SEG port data register 4 (LED_LCD_BUF4)

Address offset: 0x3C

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
									BUF4[	27:16]					
	Rese	erved							R	W					



15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							BUF4	[15:0]							
							R	W							

31:28	-	Reserved
25.0		Data of SEG port of LCD and LED, corresponding to COM4
27:0	BUF4[27:0]	Register DP_CON[2] selects whether to drive LCD or LED

#### 18.3.1.11. SEG port data register 5 (LED_LCD_BUF5)

Address offset: 0x40

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	2								BUF5[	27:16]					
	Rese	erved							R	W					

1	5	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
								BUF5	[15:0]							
								R	W							

31:28	-	Reserved
27.0		Data of SEG port of LCD and LED, corresponding to COM5
27:0	BUF 5[27:0]	Register DP_CON[2] selects whether to drive LCD or LED

#### 18.3.1.12. SEG port data register 6 (LED_LCD_BUF6)

	Address offset: 0x44 Reset value: 0x0000 0000																		
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16				
	Deer								BUF6[	27:16]									
	Rese	ervea							R	W									
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0				
							BUF6	[15:0]											
							R	W											

31:28	-	Reserved
25.0		Data of SEG port of LCD and LED, corresponding to COM6
27:0	BUF6[27:0]	Register DP_CON[2] selects whether to drive LCD or LED



## 18.3.1.13. SEG port data register 7 (LED_LCD_BUF7)

Addres	Address offset: 0x48														
Reset v	Reset value: 0x0000 0000														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	D	1			BUF7[27:16]										
	Reserved RW														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							BUF7	[15:0]							
							R	W							

31:28	-	Reserved
27.0		Data of SEG port of LCD and LED, corresponding to COM7
27:0	BUF7[27:0]	Register DP_CON[2] selects whether to drive LCD or LED

# **18.3.2. LED registers**

#### 18.3.2.1. LED interrupt configuration register (LED_INT_CFG)

Address offset: 0x14

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							

15:3	2	1	0
	CLR_INT_STAT	INT_STAT	INT_EN
Reserved	W	R	RW

31:3	-	Reserved						
2	CLD INT STAT	LED interrupt status clear register, write 1 to clear interrupt status bit, write 0						
2	CLR_INT_STAT	invalid						
		LED interrupt status register						
1	INT_STAT	0: LED scan is not completed						
		1: LED scan completed						
		LED interrupt enable register						
0	INT_EN	0: Interrupt is not enabled						
		1: Interrupt enable						



Reserved

## 18.3.2.2. COM port selection configuration register (COM_IO_SEL)

Addre	Address offset: 0x24												
Reset	Reset value: 0x0000 0000												
31	30	29	28	27	26	25	24	23 2	2 21	20	19	18 17	16
							Reserv	ved					
		15:	8			7	6	5	4	3	2	1	0
						COM7	COM6	COM5	COM4	COM3	COM2	COM1	COM0

RW

RW

RW

RW

RW

RW

RW

31:8	-	Reserved
		COM port selection configuration register, bit[0]~bit[7] correspond to
		PA0~PA7 ports
-		1: Select COM port mode
7:0	COM[7:0]	0: Select IO port mode
		Note: This register is valid when selecting LED row-column matrix mode, valid
		when selecting high-current IO port driver enable, and invalid in other cases.

#### 18.3.2.3. LED SEG0-15 port selection configuration register (SEG_IO_SEL)

RW

Address offset: 0x28 Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SEG															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
RW															

31:16	-	Reserved
		LED_SEG0-15 port selection configuration register, bit[0]~bit[15] correspond
15.0		to PC4~PC15, PD0~PD3 ports respectively
15:0	SEG[15:0]	1: Select SEGMENT port mode
		0: Select IO port mode



## 18.3.3. LCD registers

# **18.3.3.1.** The hysteresis voltage selection register of the comparator in the crystal oscillator (XTAL_HS_SEL)

Address offset: 0x0C Reset value: 0x0000 0001

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							

15:2	1	0
	HS_SI	EL[1:0]
Reserved	R	W

31:2	-	Reserved
		The hysteresis voltage selection of the comparator in the crystal oscillator
		00: 300mV
1:0	HS_SEL[1:0]	01: 400mV
		10: 500mV
		11: 600mV

## **18.3.3.2.** Analog module switch register (ANA_CFG)

Addre	ss offs	et: 0x1	10												
Reset	Reset value: 0x0000 0007														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														

15:5	4	3	2	1	0
	XTAL_HFR_SEL	XTAL_SEL	PD_XTAL	PD_CDC	PD_ADC
Reserved	RW	RW	RW	RW	RW

31:5	-	Reserved
		Analog high frequency crystal oscillator circuit selection (corresponding to
4	VTAL LIED CEL	different current threshold configuration words)
4	XTAL_HFR_SEL	0: 4MHz
		1: 8MHz
		Analog crystal oscillator circuit frequency selection
3	XTAL_SEL	0: 32768Hz
		1: 4MHz/8MHz
2	PD_XTAL	Analog crystal oscillator circuit (32768Hz/4MHz/8MHz) control register



	1: Off
	0: On, off by default

#### 18.3.3.4. LCD control register (LCD_DP_MODE)

#### Address offset: 0x08

#### Reset value: 0x0000 0000

31 30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						Rese	erved							

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			T						CK	SEL	RSEL	FC	SEL	RM	IOD
			ŀ	Reserve	d				R	W	RW	R	W	R	W

31:7	-	Reserved
		LCD clock selection register
6.5	CKEEL	10/11: Select RC1M
6:5	CKSEL	01: Select XTAL
		00: Select LIRC
		LCD bias resistance selection control bit
4	RSEL	0: LCD bias resistance is 225k
		1: The total LCD bias resistance is 900k
		Charge time control bit
		00: 1/8 LCD COM cycle
3:2	FCSEL	01: 1/16 LCD COM cycle
		10: 1/32 LCD COM cycle
		11: 1/64 LCD COM cycle
		Drive mode selection bits
		00: Traditional resistive mode (slow charge mode), the sum of bias resistors is
		225k/900k
		When RSEL=0, the sum of LCD bias resistors is 225k
1:0	RMOD	When RSEL=1, the sum of LCD bias resistors is 900k
		01: Traditional resistive mode (fast charge mode), the sum of bias resistors is
		60k
		10/11: Fast and slow charging automatic switching mode, the sum of bias
		resistance automatically switches between 60k and 225k/900k

## **18.3.3.5.** LCD interrupt configuration register (LCD_INT_CFG)

Address offset: 0x18 Reset value: 0x0000 0000



BF7807AMXX

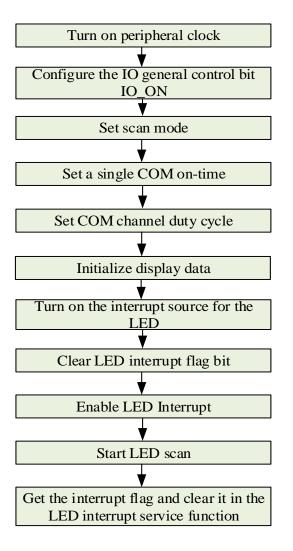
31 3	30 2	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Reser	ved							

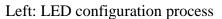
15:3	2	1	0
	CLR_INT_STAT	INT_STAT	INT_EN
Reserved	W	R	RW

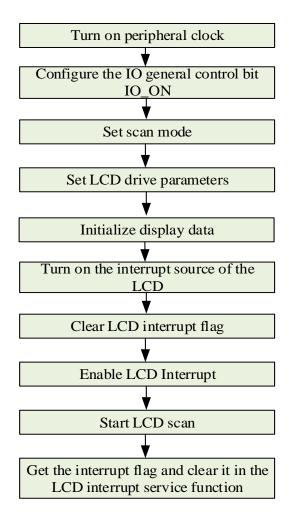
31:3	-	Reserved
2	CID INT STAT	LCD interrupt status clear register
2	CLR_INT_STAT	Writing 1 to clear the interrupt status bit, writing 0 is invalid
		LCD interrupt status register
1	INT_STAT	0: LCD scan is not completed
		1: LCD scan completed
		LCD interrupt enable register
0	INT_EN	0: Interrupt is not enabled
		1: Interrupt enable

# 18.3.3.6. LCD SEG0-23 port selection configuration register (LCD_IO_SEL)

Address offset: 0x20 Reset value: 0x0000 0000


31:28	27	26	25	24	23	22	21	20	19	18	17	16
	SEG	SEG	SEG	SEG	SE	SEG						
Reserved	27	26	25	24	G23	22	21	20	19	18	17	16
	RW											


15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SEG	SE														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	G0
RW	RW														


31:28	-	Reserved
		Bit[0]~bit[23] are LCD_SEG0-23 port selection configuration registers,
		corresponding to PA8~PA15, PB8~PB15, PC3~PC4, PC8~PC13 ports;
27.0		Bit[24]~bit[27] are LCD_SEG25-28 port selection configuration registers,
27:0	IO_SEL[27:0]	corresponding to PA4~7 ports when multiplexing
		1: Select SEGMENT port mode
		0: Select IO port mode



## **18.4.** Configuration process







Right: LCD configuration process



# **19** Cyclic redundancy check module (CRC)

The cyclic redundancy check module uses a polynomial generator to generate a CRC code from an 8-bit/16-bit/32-bit data. BF7807AMXX adopts look-up table method to realize CRC calculation.

The CRC calculation unit has a single 32-bit read/write data register (CRC_DR), which is used to input new data (write access) and save the result of the previous CRC calculation (read access). Each write operation of the data register will perform another CRC calculation on the previous CRC value and the new value. The CRC calculation is done for the entire 32-bit data word or byte by byte, depending on the data writing format (word-by-word, right-aligned halfword, and aligned byte for access).

# **19.1. Features**

- Support 3 kinds of CRC polynomials
  - Use CRC-32 by default: 0x04C11DB7Polynomial:  $x^{32}+x^{26}+x^{23}+x^{22}+x^{16}+x^{12}+x^{11}+x^{10}+x^8+x^7+x^5+x^4+x^2+x+1$
  - $\circ$  CRC-16: 0x1021 Polynomial:  $x^{16}+x^{12}+x^5+1$
  - CRC-8: 0x07 Polynomial:  $x^8+x^2+x+1$
- Handling 8-bit, 16-bit, 32-bit data size
  - 32-bit data size, CRC calculation is completed within 4 HCLK clock cycles
  - 16-bit data size, CRC calculation is completed within 2 HCLK clock cycles
  - 8-bit data size, CRC calculation is completed within 1 HCLK clock cycle
- The initial value and xor value can be configured

# 19.2. CRC data format conversion

Register operations can be performed in byte, halfword and word formats. Only related to CRC_POL_SEL when reading.

	1			
	REV_IN=0	REV_IN=1	REV_IN=2	REV_IN=3
8-bit write	Does not affect bit order	Byte-wise bit-reversal	Byte-wise bit-reversal	Byte-wise bit-reversal
16-bit write	Does not affect bit order	Byte-wise bit-reversal	Perform bit reversal by halfword	Perform bit reversal by halfword
32-bit write	Does not affect bit order	Byte-wise bit-reversal	Perform bit reversal by halfword	Perform bit reversal by word

#### Data format conversion description: Write data



	1						
C	CRC-8	C	RC-16	CRC-32			
REV_OUT=0	REV_OUT=1	REV_OUT=0	REV_OUT=1	REV_OUT=0	REV_OUT=1		
Does not	Byte-wise bit-	Does not	Perform bit reversal	Does not	Perform bit		
affect bit order reversal		affect bit order	by halfword	affect bit order	reversal by word		

#### Data format conversion description: Read data

# **19.3. Registers**

Base address: 0x5000 0000

Address offset	Register	Description
0x04	RCU_EN	Peripheral module clock control register
Base address: 0x:	5009_0000	
Address offset	Register	Description
0x00	CRC_DR	CRC data register
0x04	CRC_CR	CRC control register
0x08	CRC_POL_SEL	CRC polynomial selection
0x0C	CRC_INIT	CRC initial value
0x10	CRC_XOR	CRC xor value

# 19.3.1. Peripheral module clock control register (RCU_EN)

## Address offset: 0x04 Reset value: 0x0000 0001

23	22	21	20	19	18	17	16
LED_LCD_C	GPIO_CL	CRC_CL	ADC_CL	CDC_CL	WDT_CL	TIMER3_CL	TIMER2_CL
LKEN	KEN	KEN	KEN	KEN	KEN	KEN	KEN
RW	RW	RW	RW	RW	RW	RW	RW

		CRC module operation enable
21	CRC_CLKEN	1: Work
		0: Off, the default is 0

# 19.3.2. CRC data register (CRC_DR)

Address offset: 0x00

Reset value: 0xFFFF FFFF

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	DR[31:16]														
	RW														
15	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0														



#### DR[15:0] RW

		This register is used to write new data to the CRC calculation unit
		Read the register to read the previous CRC calculation result
21.0	DD[21.0]	If the data size is less than 32 bits, the lower bit is valid
31:0	DR[31:0]	Can be written and read in byte, half-word, and word format
		CRC data writing and calculation results multiplex this register, the default
		value of read register is the initial value of CRC calculation

# 19.3.3. CRC control register (CRC_CR)

#### Address offset: 0x04

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							

15	14	13	12	11	10	9	8	7	6	5	4	3	2 1	0
				D							CF	REV_OUT	REV_IN	RESET
				R	leserve	d					R	RW	RW	RS

31:5	-	Reserved						
		CRC calculation flag:						
4	CF	When writing the data register, the hardware pulls the flag high, and the						
4	Cr	hardware clears the flag after the calculation is completed. When the flag is						
		high, new data cannot be written.						
		It is used to control the inversion of the bit order of the output data, which is						
2	DEV OUT	performed by the whole word						
3	REV_OUT	0: Does not affect the bit order						
		1: Bit-reversed output format						
		Used to control the reversal of the bit order of input data						
		00: Does not affect the bit order						
2:1	REV_IN	01: Perform bit reversal by byte						
		10: Perform bit reversal by halfword						
		11: Perform bit reversal by word						
	DECET	Set by software, clear by hardware						
0	RESET	Used to reset the CRC module						



# 19.3.4. CRC polynomial selection (CRC_POL_SEL)

Semiconductor

Addre	Address offset: 0x08														
Reset	Reset value: 0x0000 0000														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	15 14 13 12 11 10 9 8 7 6 5 4 3 2											1	0		
											POL	_SEL			
	Reserved												R	W	

31:2	-	Reserved
		For selecting polynomials:
		00: 32-bit polynomial, 0x04C11DB7
1:0	POL_SEL	01: 16-bit polynomial, 0x1021
		10: 8-bit polynomial, 0x07
		11: Reserved

# 19.3.5. CRC initial value (CRC_INIT)

Address offset: 0x0C

Reset value: 0xFFFF FFFF

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							INIT [	31:16]							
							R	W							
15	<u>15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0</u>														0
INIT [15:0]															
	RW														

		CRC initial value
31:0	INIT [31:0]	When 8/16-bit polynomial is selected, the lower bits are valid
		Initial value cannot be configured during CRC calculation

# 19.3.6. CRC xor value (CRC_XOR)

Address offset: 0x10

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	XOR [31:16]														
	RW														



XOR [15:0]	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
NV.		XOR [15:0]														
RW																

		CRC XOR value
31:0	XOR [31:0]	When 8/16-bit polynomial is selected, the lower bits are valid
		XOR value cannot be configured during CRC calculation

## **19.4.** Configuration process

- 1. Configure and turn on the CRC module clock;
- 2. Configure related registers (polynomial selection/initial value/exclusive or value/bit inversion);
- 3. Configure RESET to reset the calculation module;
- 4. After the read flag bit CF is 0, write the data register CRC_DR to calculate the CRC check result;
- 5. When the read flag bit CF is 0, the CRC check result can be read out after a delay of one system clock cycle.

Note:

- 1. The configuration process must be configured in order.
- 2. When dealing with 8-bit/16-bit data size, the data register CRC_DR should be converted to 8-bit/16-bit.
- 3. Configure the RESET bit of the CRC_CR register to 1, reset the CRC module, reset the hardware to zero, and the pulse width is one system clock cycle.
- 4. The polynomial selection register, xor value register, and bit-reversal control register cannot be configured in real time during CRC calculation.



# 20 Programming and debugging

# 20.1. SWD debug interface

The BF7807AMXX family uses two pins as shown in the table below. PB12/PB13 is the SWD download and debugging function port by default. When configuring SW communication, the internal pull-up resistor of PB12/PB13 is turned on by default, and the pull-up is valid.

Note: When the PB12/PB13 is configured as a common IO port, it will affect the use of the SWD function. If the BF7807AM64-LJTA/LJTX wants to restore the SWD function, the chip can be reset through the external reset pin. The BF7807AM44-LJTX does not support external reset. It is recommended that PB12/PB13 not be multiplexed as common IO or other functions.

Pin name	Description	Corresponding pin
SWCLK	Clock signal	PB12
SWDIO	Data input/output	PB13

## 20.2. Register

Base address: 0x500A 0000

Address offset	Register	Description
0x30	SW_IO_EN	SWD port selection enable register

## 20.2.1. SWD port selection enable register (SW_IO_EN)

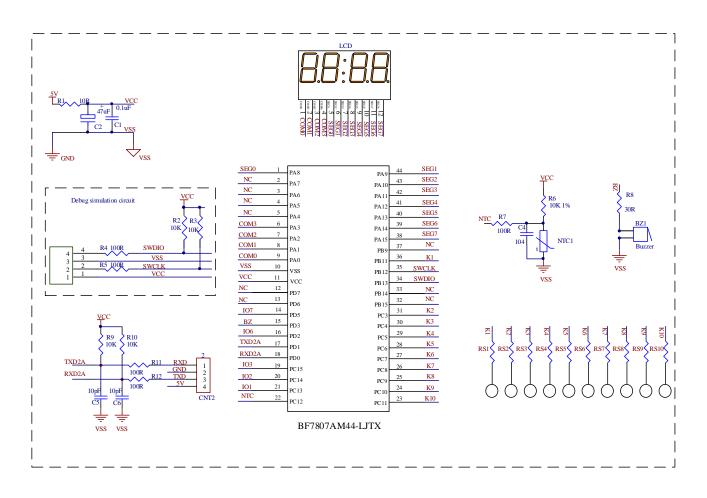
	Address offset: 0x30 Reset value: 0x0000 0001														
		29			26	25	24	22	22	21	20	10	10	17	16
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							

	15:1	0
	Reserved	SW_SEL
		RW

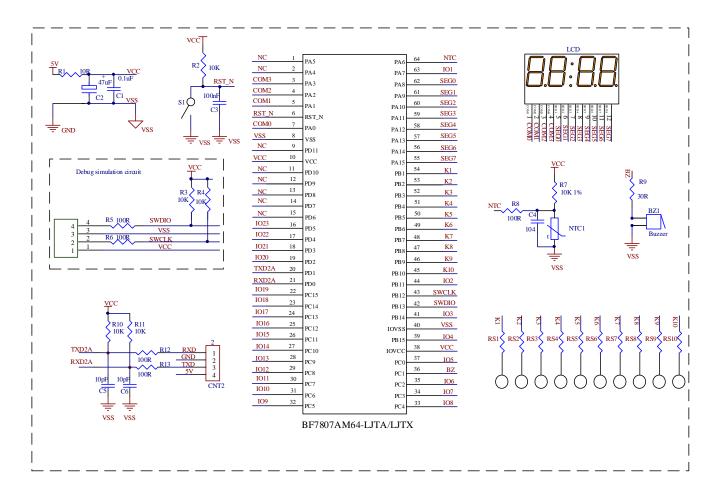
31:1	-	Reserved
	SW_SEL	SWD port selection enable
0		1: PB12/PB13 is SWD function
		0: PB12/PB13 are GPIO functions



# **20.3. PGC, PGD burning**


The BF7807AMXX supports PGC0 (PGC1), PGD0 (PGD1) programming, using our dedicated MP100 programming tool. For details, see "BYD MP100 user manual for mass production and burning tool".






# **21 Reference application circuit**

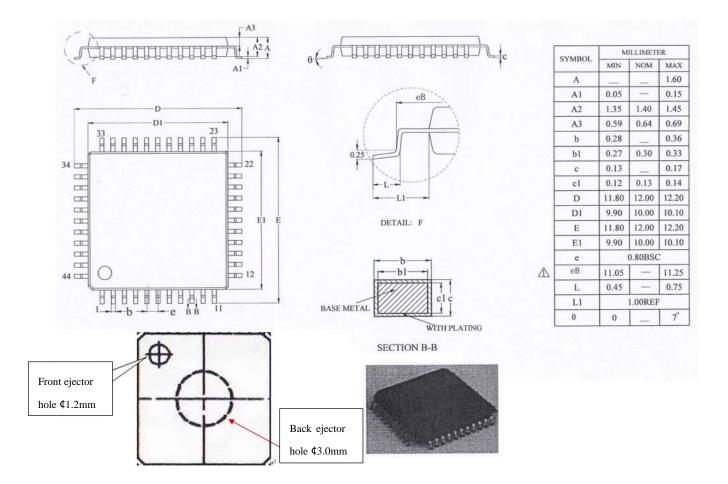
# 21.1. BF7807AM44-LJTX reference circuit







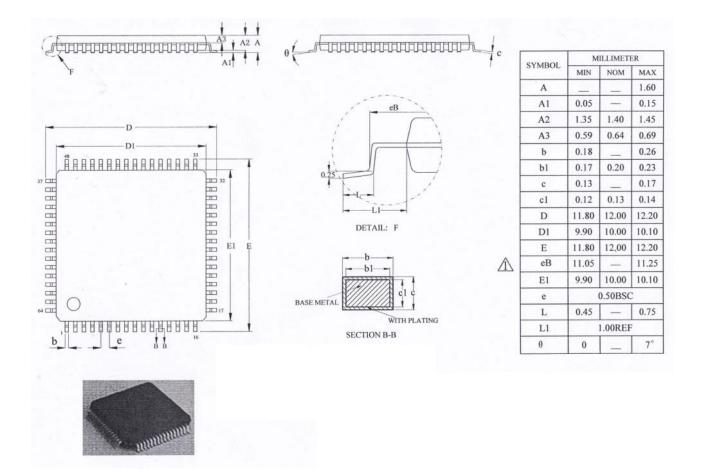
# 21.2. BF7807AM64-LJTA/LJTX reference circuit


Note: The above reference circuit is for reference design only.

- 1. RSX channel resistance is recommended 1k~8.2k, conventional 4.7k.
- 2. Debug the emulation circuit. If there is a pull-up resistor on the emulator or on the adapter board, there is no need to connect the pull-up resistor.
- 3. The resistance on the power supply is recommended to be  $0\sim10 \Omega$ , which can improve the anti-interference ability of the EMS (ESD) test. The resistance on the power supply is replaced with a magnetic bead, and the EMI (RE) test item can increase the test margin. The recommended parameter is  $600\Omega@100$ MHz.



# 22 Package information

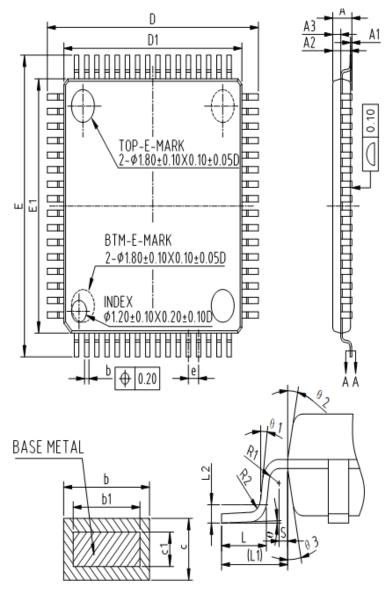

# 22.1. LQFP44-LJTX



BF7807AM44-LJTX package infographic



# 22.2. LQFP64-LJTA




BF7807AM64-LJTA package infographic





# 22.3. LQFP64-LJTX



COMMON DIMENSIONS (UNITS OF MEASURE=MILLIMETER)

SYMBOL	MIN	NOM	MAX
Α	-	-	1.60
A1	0.05	-	0.20
A2	1.30	1.40	1.50
A3	0.59	0.64	0.69
b	0.31	-	0.44
b1	0.30	0.35	0.40
с	0.13	-	0.18
c1	0.12	0.13	0.14
D	16.40	16.60	16.80
D1	13.90	14.00	14.10
E	16.40	16.60	16.80
E1	13.90	14.00	14.10
e	0.80BSC		
L	0.70	0.85	1.00
L1	1.30REF		
L2	0.25BSC		
R1	0.08	-	-
R2	0.08	-	0.20
S	0.15	-	-
Ø	0.	3.5	7
θ1	0,	-	-
θŹ	11'	12'	13
03	11'	12	13'

NOTES:

ALL DIMENSIONS REFER TO JEDEC STANDARD MS-026 AEB DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.

SECTION A-A

#### BF7807AM64-LJTX package infographic



# **23 Device electronic signature**

Electronic signatures are stored in the NVR2 (information block) storage area. The NVR2 needs to be unlocked to read the unique identification code (UID) of the chip. For details, please refer to the "NVR2 read" reference chapter.

- Used as serial number
- Used as a password, when writing flash memory, use this unique identifier in combination with the software encryption and decryption algorithm to improve the security of the code in the flash memory

Under no circumstances can the user modify this identity.

The unique product identifier can be read by byte (8 bits), half word (16 bits) and word (32 bits) according to different usages of users.

Address	UID(96/128 bits)
0x203A0	ID1
	ID2
	ID3
	ID4
	ID5
0x203A4	ID6
0X205A4	ID7
	ID8
	ID9
0x203A8	ID10
	ID11
	ID12
0x203AC	ID13
	ID14
	ID15
	ID16





# Appendix A

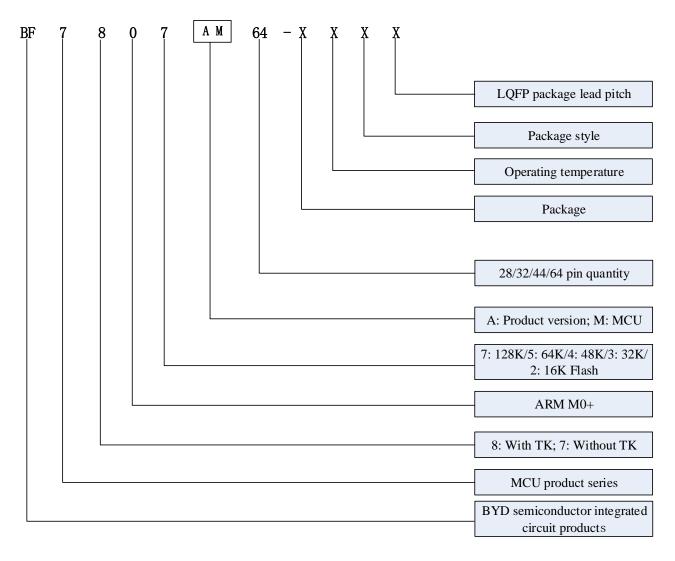
Abbreviation	Detailed description	
Read/Write (RW)	Software can read and write this bit	
Read only (R)	Software can only read this bit	
Write only (W)	Software can only write to this bit, and reading this bit will return the reset value	
Read/Clear write1 (RC_W1)	Software can read this bit or clear it by writing a 1. Writing 0 has no effect on the value of this bit	
Read/Clear write0 (RC_W0)	Software can read this bit or clear it by writing a 0. Writing a 1 has no effect on the value of this bit	
Read/Set (RS)	Software can read this bit or set it. Writing 0 has no effect on the value of this bit	
Reserved (Res.)	Reserved bit, write operation is prohibited, otherwise it may cause chip exception	

#### **Appendix 1: List of register-related abbreviations**

#### Appendix 2: Storage environment and conditions

Constant temperature and humidity: Temperature: 15-25 °C, relative humidity: 30%-60%, 12 months shelf life without vacuum packaging.

MSL3 moisture sensitivity level: Reference standard IPC/JEDEC J-STD-020 production operations.






# **Order information**

Package	Operating temperature		Package style	LQFP package lead pitch	
S: SOP	Car grade	A: -40°C~+150°C	B: Taping	A: e=0.50mm	
A: SSOP		B: -40°C~+125°C	L: Material pipe	B: e=0.65mm	
T: TSSOP		C: -40°C~+105°C	T: Tray	X: e=0.80mm	
M: MSSOP		D: -40°C~+85°C	-	-	
L: LQFP	Industrial grade	K: -40°C~+85°C	-	-	
Q: QFN		J: -40°C~+105°C	-	-	
B: BGA		L: -40°C~+125°C	-	-	
D: DIP	Consumer grade	P: -25°C~+70°C	-	-	
-		Q: 0°C~+70°C	-	-	

#### Example:





# **Revision record**

Revision date	Revised content	Revisionist	Remark
2022-05-18	First edition	ZQ	V1.0



# Disclaimer

- 1. The information in this document can be modified and updated from time to time without notifying the user. See the revision record for details. Please contact FAE or the agent for the latest version.
- 2. The BYD Semiconductor Co., Ltd. will do its utmost to ensure the high quality and high stability of the company's products. Nevertheless, due to the inherent characteristics of general semiconductor devices such as electrical sensitivity and vulnerability to external physical damage, our products may malfunction or fail under these conditions. When using our products, users are responsible for designing a safe and stable system environment in compliance with safety rules. Users can avoid possible accidents, fires and public injuries by removing redundant components, failure prevention and fire prevention measures. When the user uses the product, please follow the operating steps specified in the company's latest manual to use the product.
- 3. The products of BYD Semiconductor Co., Ltd. in this document are designed for general electrical applications (computers, personal tools, company tools, measurement tools, industrial machinery, household appliances, etc.). This company's product cannot and is prohibited from being applied to some special equipment that requires extremely high stability and quality, so as to avoid accidents such as casualties. Products that cannot be used include nuclear energy control equipment, aircraft and aviation devices, transportation equipment, traffic signal equipment, combustion control equipment, medical equipment, and all safety equipment, etc. The company is not responsible for the losses and injuries caused by users in the non-product applications listed above.