

1. BF7612CMXX MCU General Description

1.1. Features

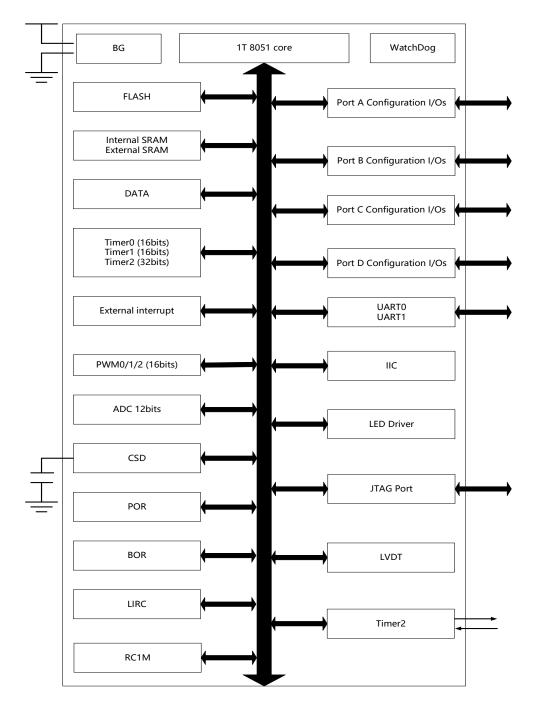
- > Core: 1T 8051
- Operating frequency: 12MHz, 6MHz, 4MHz
- Clock error: ±1%@ 25°C, 5V

±3% @-40°C ~105°C, 5V

- > Memory
- CODE: 15K bytes
- \circ DATA: 1K + 2*512 bytes
- SRAM: 256 bytes(data)+512 bytes(xdata)
- Clock Source, Reset
- Internal low-speed clock LIRC: 32kHz Clock error: ±15%@25°C, 5V
 - ±35% @-40°C ~105°C, 5V
- Internal high-speed RC oscillator: 1MHz
- External crystal oscillator: 32768Hz/4MHz
- \circ 7 resets, power-down reset voltage (Bor): 2.1V
- Low voltage detection: 2.4V/3.0V/3.6V/4.2V
- > IO
- IO ports built-in pull-up resistor 4.7k
- High current sink port (PB0~PB7)
- $\circ \quad \text{Support IO function remapping} \\$
- INT0~2 (rising-edge, falling-edge, double edge)
- Communication Module
- 2*UART communication
- \circ IIC slave mode, support 100/400kHz
- > 16-bit PWM
- PWM0 supports 4 channels, with the same frequency, configurable duty cycle and polarity
- PWM1 supports 1 channel
- PWM2 supports 1 channel

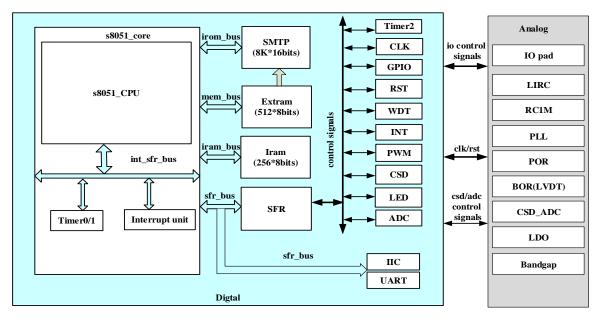
- > Operating Voltage: 2.5 V ~ 5.5 V
- > Operating Temperature: -40 °C ~ 105 °C
- Enhanced industrial grade, in line with JESD industrial grade reliability certification standards
- > 12-bit High-speed ADC
- Up to 26 analog input channels
- Reference voltage: VCC
- > Interrupt
- Two-level interrupt priority capablity
- ADC, CSD, LED, INT0/1/2, LVDT, Timer0~2, WDT, UART0/1, IIC interrupt
- > Timer
- 16-bit Timer0/1, 32-bit Timer2
- Timer2 clock source: internal low-speed clock LIRC 32k or XTAL 32768Hz/4MHz
- Watchdog timer, overflow time 18ms to 2.304s
- LED Driver
- 4x4, 5x5, 6x6, 6x7, 7x7, 7x8, 8x8 dot matrix driver
- Iow Power Management
- \circ ~ Idle mode, power consumption 26 μA @5V typical
- > CTK
- The key sensitivity is set independently
- Capacitive keys can be reused as GPIO
- > JTAG debug emulation interface
- Package
- SOP16/SOP20/SOP28

1.2. Overview

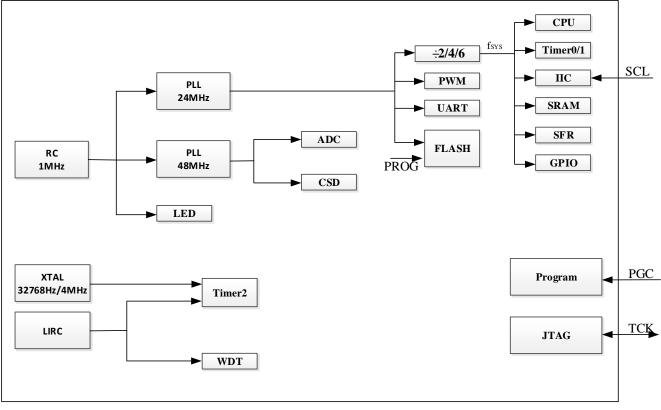

The BF7612CMXX uses the high speed 8051 core with 1T instruction cycle, compared to the standard 8051 (12T) instruction cycle, it has the quicker running speed, compatibility standard 8051 instruction.

The BF7612CMXX includes a watchdog, key detection, LED serial dot matrix driver, IIC, UART, low voltage detection, power down reset, 16bit PWM, Timer0, Timer1, Timer2, 12bit successive approximation ADC, low power management, etc.

BF7612CMXX integrates multiple capacitive detection channels, which can be used for proximity sensing or touch detection. Each channel can be flexibly configured to achieve various applications such as buttons, wheels, sliders, etc., and each channel can adjust the touch sensitivity through the corresponding function register.


1.3. System Architecture

System architecture

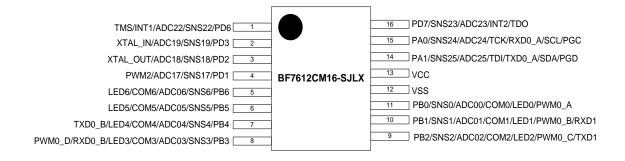


System bus frame diagram

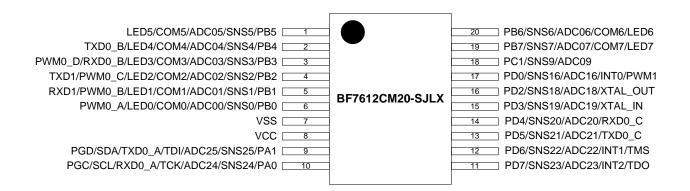
1.4. Clock Diagram

Clock diagram

1.5. Selection List

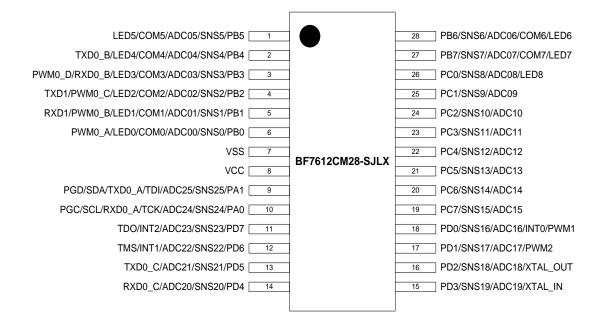

T	уре	BF7612CM16 -SJLX	BF7612CM20- SJLX	BF7612CM28 -SJLX
Operating	Voltage (V)	2.5~5.5	2.5~5.5	2.5~5.5
Operating fr	requency (Hz)	12M	12M	12M
C	ore	1T 8051	1T 8051	1T 8051
	CODE	15K	15K	15K
Memory(Bytes)	DATA	1K + 2*512	1K + 2*512	1K + 2*512
	SRAM	256+512	256+512	256+512
	WDT	1	1	1
T '	Timer0 *16bit	1	1	1
Timer	Timer1 *16bit	1	1	1
	Timer2 *32bit	1	1	1
Communication	IIC	1	1	1
module	UART	2	2	2
G	PIO	14	18	26
K	EY	14	18	26
Ι	NT	2	3	3
C	ОМ	7	8	8
Analog module	ADC*12bit	14	18	26
Display module	LED serial	6*7	7*8	8*8
	PWM0 *16bit	4	4	4
PWM module	PWM1 *16bit	-	1	1
	PWM2 *16bit	1	-	1
Pac	kage	SOP16(9.9*3.9mm)	SOP20(12.8*7.5mm)	SOP28(18*7.5mm)

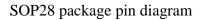
Selection list


1.6. Pin Assignment

1.6.1. BF7612CM16-SJLX

SOP16 package pin diagram


1.6.2. BF7612CM20-SJLX



SOP20 package pin diagram

1.6.3. BF7612CM28-SJLX

Note: The SNS24 and SNS25 touch channels are multiplexed with debug programming pins. Generally, it is not recommended to use them as touch channels.

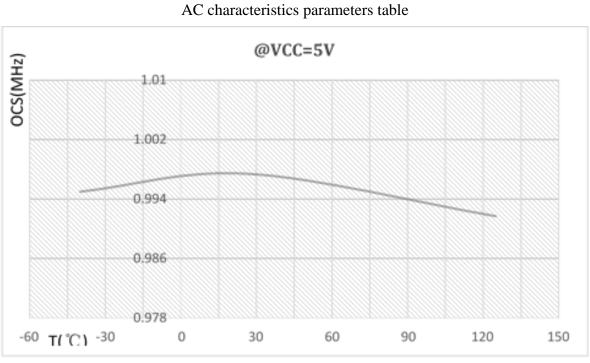
1.7. Pin Description

BF7612CM28-SJLX	BF7612CM20-SJLX	BF7612CM16-SJLX	Function description
1	1	6	Default function: GPIO <pb5> Other function: SNSXX: Touch key channel ADCXX: ADC channel COMX: Large current sink LEDX: LED serial dot matrix</pb5>
2	2	7	Default function: GPIO <pb4> Other function: SNSXX: Touch key channel ADCXX: ADC channel COMX: Large current sink LEDX: LED serial dot matrix TXDXX: serial pot transmission</pb4>
3	3	8	Default function: GPIO <pb3> Other function: SNSXX: Touch key channel ADCXX: ADC channel COMX: Large current sink LEDX: LED serial dot matrix RXDXX: serial pot reception PWMXX: PWM output port</pb3>
4	4	9	Default function: GPIO <pb2> Other function: SNSXX: Touch key channel ADCXX: ADCchannel COMX: Large current sink LEDX: LED serial dot matrix PWMXX: PWM output port TXDXX: serial pot transmission</pb2>
5	5	10	Default function: GPIO <pb1> Other function: SNSXX: Touch key channel ADCXX: ADC channel COMX: Large current sink LEDX: LED serial dot matrix PWMXX: PWM output port RXDXX: serial pot reception</pb1>

			Default function: GPIO <pb0></pb0>
			Other function: SNSXX: Touch key channel
6	6	11	ADCXX: ADC channel
			COMX: Large current sink
			LEDX: LED serial dot matrix
			PWMXX: PWM output port
7	7	12	Default function: GND <vss></vss>
8	8	13	Default function: Power supply <vcc></vcc>
			Default function: GPIO <pa1></pa1>
			Other function: SNSXX: Touch key channel
			ADCXX: ADC channel
9	9	14	TDI: JTAG emulation test data serial input
			TXDXX: serial pot transmission
			SDAXX: IIC serial data line
			PGD: Burning port PGD
			Default function: GPIO <pa0></pa0>
			Other function: SNSXX: Touch key channel
			ADCXX: ADC channel
10	10	15	TCK: JTAG simulation test clock
			RXDXX: serial pot reception
			SCLXX: Serial clock line of IIC
			PGC: Burning port PGC
			Default function: GPIO <pd7></pd7>
			Other function: SNSXX: Touch key channel
11	11	16	ADCXX: ADC channel
			INTXX: External Interrupt
			TDO: JTAG emulation test data serial output
			Default function: GPIO <pd6></pd6>
			Other function: SNSXX: Touch key channel
12	12	1	ADCXX: ADC channel
			INTXX: External Interrupt
			TMS: JTAG simulation test mode selection
			Default function: GPIO <pd5></pd5>
13	13		Other function: SNSXX: Touch key channel
15	15	-	ADCXX: ADC channel
			TXDXX: serial pot transmission
			Default function: GPIO <pd4></pd4>
14	14		Other function: SNSXX: Touch key channel
14	14	-	ADCXX: ADC channel
			RXDXX: serial pot reception
15	15	2	Default function: GPIO <pd3></pd3>

			0.1 5	
				SNSXX: Touch key channel
				ADCXX: ADC channel
				TAL0_IN: External crystal input
			Default function: (
16	16	3		SNSXX: Touch key channel
		-		ADCXX: ADC channel
			Σχ	TAL0_OUT: External crystal output
			Default function: C	
17	_	4		SNSXX: Touch key channel
17		•	A	ADCXX: ADC channel
			P	PWMXX: PWM output port
			Default function: C	
			Other function: S	SNSXX: Touch key channel
18	17	-	A	ADCXX: ADC channel
			Ι	NTXX: External Interrupt
			P	WMXX: PWM output port
			Default function: C	GPIO <pc7></pc7>
19	-	-	Other function: S	SNSXX: Touch key channel
			A	ADCXX: ADC channel
			Default function: O	GPIO <pc6></pc6>
20	-	-	Other function: S	SNSXX: Touch key channel
			A	ADCXX: ADC channel
			Default function: (GPIO <pc5></pc5>
21	-	-	Other function: S	SNSXX: Touch key channel
			A	ADCXX: ADC channel
			Default function: (GPIO <pc4></pc4>
22	-		Other function: S	SNSXX: Touch key channel
			A	ADCXX: ADC channel
			Default function: O	GPIO <pc3></pc3>
23	-		Other function: S	SNSXX: Touch key channel
			A	ADCXX: ADC channel
			Default function: O	GPIO <pc2></pc2>
24	-	-	Other function: S	SNSXX: Touch key channel
				ADCXX: ADC channel
			Default function: C	GPIO <pc1></pc1>
25	18	-	Other function: S	SNSXX: Touch key channel
			A	ADCXX: ADC channel
			Default function: C	GPIO <pc0></pc0>
			Other function: S	SNSXX: Touch key channel
26	-	-		ADCXX: ADC channel
				EDX: LED serial dot matrix
				EDA: LED serial dot mainx

			Default function: GPIO <pb7></pb7>
			Other function: SNSXX: Touch key channel
27	19	-	ADCXX: ADC channel
			COMX: Large current sink
			LEDX: LED serial dot matrix
			Default function: GPIO <pb6></pb6>
			Other function: SNSXX: Touch key channel
28	20	5	ADCXX: ADC channel
			COMX: Large current sink
			LEDX: LED serial dot matrix


Package pin correspondence diagram

2. Electrical Characteristic

2.1. AC Characteristics

D	Course had	Cor	Conditions		Trm	May	TI
Parameter	Symbol	VCC	Temperature	Min	Тур	Max	Unit
C.	Internal high-speed	51/	-20°C~65°C	-1%	1	+1%	MII-
f _{RC1M}	RC oscillator	5V	-40°C ~105°C	-3%	1	+3%	MHz
C	System clock	5V	-20°C~65°C	-1%	12/6/4	+1%	MIT
f _{SYS}			-40°C ~105°C	-3%	12/6/4	+3%	MHz
	Internal low-speed	CN	25°C	-15%	32	+15%	1.11
f _{LIRC}	RC oscillator	5V	-40°C ~105°C	-35%	32	+35%	kHz

RC1M (OSC) temperature characteristic curve

2.2. DC Characteristics

						Та	=25°C
Parameter	Symbol	,	Test Conditions	Min	Тур	Max	Unit
	Symbol	VCC	Conditions		тур	Max	Umt
VCC	Operating Voltage	-	-	2.5	-		V
		3.3V	f _{SYS} =12 MHz, no load,	-	2.0	2.6	
		5V	all peripherals off	-	2.1	2.7	
т	Active mode	3.3V	f _{SYS} =6 MHz, no load, all	-	1.6	2.0	
I _{OP}	current	5V	peripherals off	-	1.7	2.2	mA
		3.3V	f _{SYS} =4 MHz, no load, all	-	1.4	1.8	
		5V	peripherals off	-	1.5	2.0	
т	idle mode	3.3V	PCON = 0x01, all	-	27	36	
I _{STB0}	current	5V	peripherals off	-	26	35	μA
		3.3V	WDT_CTRL=7, WDT interrupt 2s wake up, 2ms working time, IO	-	28	39	
	Average current for intermittent wake-up from idle mode	5V	output is low, close other functions	-	29	38	μA
		3.3V	Timer2 external crystal oscillator wakes up in	-	28	39	
I _{stb1}		5V	2s, 2ms working time, IO output is low, and other functions are closed	-	29	38	μΑ
		3.3V	CSD parallel mode, WDT interrupt 2s wake-	-	28	39	
		5V	up, 2ms working time, IO output low, close other functions	-	29	38	μA
V _{IL}	Input low level	2.5~5.5V	-	-	-	0.3*VCC	V
V _{IH}	Input high level	2.5~5.5V	-	0.7*VCC	-	-	V
V _{INTL}	INT input low level	2.5~5.5V	-	-	-	0.3*VCC	v
V _{INTH}	INT input high level	2.5~5.5V	-	0.7*VCC	-	-	V
V _{OL}	output low voltage	5V	I _{OL} =60mA	-	-	0.1*VCC	V

V _{OH}	output high voltage	5V	I _{OH} =16mA	0.9*VCC	-	-	v
Iol	IO sink current	5V	V _{OL} =0.1VCC	-	60	-	mA
I _{OH}	IO Source current	5V	V _{OH} =0.9VCC	-	17	-	mA
I _{COM}	PB large sink current	5V	V _{OL} =0.1VCC	-	120	-	mA
I _{Leak}	Input leakage current	5V	-	-	1	5	μΑ
R _{PH}	IO internal pull-up	5V	-	-	4.7	-	kΩ

2.3. ADC Characteristics

				-	-		Ta=25°C
Parameter	Symbol		Test Conditions	Min	Тур	N/	Unit
Parameter	Symbol	VCC	Conditions		тур	Max	Umt
V _{ADC}	Supply Voltage	-	-	2.5	-	5.5	V
N _R	Accuracy	-	-	-	9	10	Bit
V _{ADCI}	ADC Input voltage	-	-	VSS		V_{REF}	V
I _{ADCI}	input current	-	-	-	-	1	μΑ
DNL	Differential nonlinear error	5V	-	-	<u>+4</u>	±6	LSB
INL	Integral nonlinear error	5V	-	-	±4	±6	LSB
t1	ADC sampling time	-	-	0.5	-	-	μs
t _{ADC}	ADC conversion time	-	-	2.625	-	-	μs
RESO	Resolution	-	-		12		Bit
N _{ADC}	Input channel	-	-	-	-	26	Channel

ADC characteristic parameter table

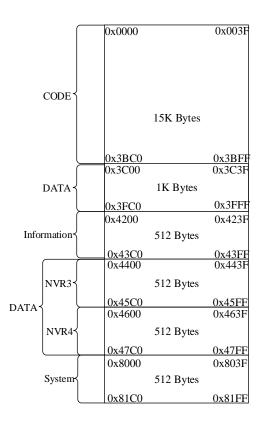
2.4. Limit Parameters

D	Course had	Test	Conditions	Min	Тур	Max	T
Parameter	Symbol	VCC	Conditions	191111	тур	IVIAX	Unit
VCC	Supply voltage when working	-	-	VSS+2.5	-	VSS+5.5	V
T _{STG}	Non-working storage temperature	-	-	-40	-	125	°C
Та	Operating temperature	-	-	-40	-	105	°C
Vin	I/O input voltage	-	-	VSS-0.5	-	VCC+0.5	V
I _{OLA}	IOL total current	-	-		130		mA
I _{OHA}	IOH total current	-	-		-130		mA
ESD(HBM)	Port electrostatic discharge voltage	-	-	-8	-	8	kV

Limit parameters characteristics parameters table

Notes: Exceed the limit parameters may cause damage to the chip, unable to expect the chip work outside the above indicated range. If you work under conditions outside the marked range for a long time, it may affect the reliability of the chip.

3. Memory and SFR


3.1. Flash

FLASH features are as follows:

- CODE area: ICP programming supports block erase, page erase, byte write
- DATA area: page erase, byte write
- Program/erase times: CODE area: at least 20000 times @25°C

DATA area: at least 20000 times @25°C

 Data storage period: 100 Years@25°C 20 Years@85°C

Flash Storage Architecture

Module	Address range	Space size (Bytes)	Page
CODE	0x0000~0x3BFF	15K	30
	0x3C00~0x3FFF	1K	1
DATA	NVR3: 0x4400~0x45FF	512	1
	NVR4: 0x4600~0x47FF	512	1
Information	0x4200~0x43FF	512	1
System	0x8000~0x81FF	512	1

Steps to read the unique identification code (UID) of the chip:

- 1. Turn off the interrupt;
- 2. The read CODE absolute address 0x43A8~0x43AF corresponds to product ID1~ID8.
- 3. Restore interrupt settings.

Note:

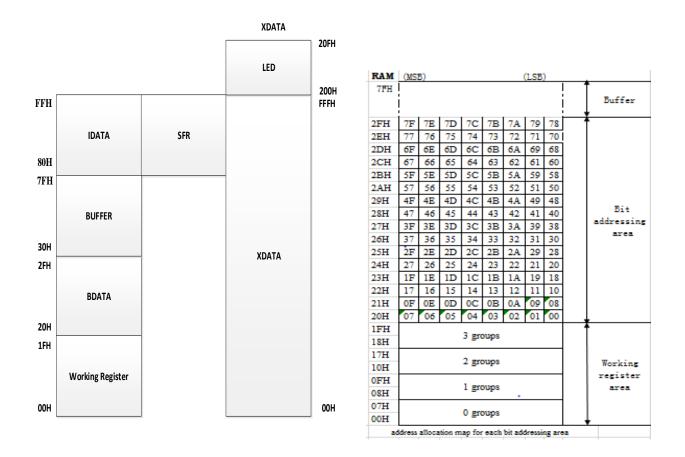
- **1.** It is recommended that BOR must be turned on at the first initialization of the program to reduce the risk of errors.
- 2. It is not recommended to store the DATA area (0x3C00~0x3FFF) as the user CODE.

3.2. RAM

There are 256 Bytes inside, with addresses ranging from 00H to FFH. These include the working register group, bit-addressing area, buffer, and SFR, where the buffer contains the stack area.

Internal low 128 Bytes: a total of 128 Bytes from 00H to 7FH. Data can be read and written in either immediate or indirect addressing mode.

Internal high 128 Bytes: a total of 128 Bytes from 80H to FFH. Data can only be read and written through the working register indirect addressing mode.


Special function register SFR: Address is 80H~FFH, can only read and write data by direct addressing.

Xdata contains 512 Bytes. The address ranges from 0000H to 01FFH. Users can use this area completely. Data is read and written by means of data pointers or working register addressing.

LED storage RAM occupies XRAM bus, Address is 200~20FH. This area is the LED display cache, and the display content can be modified by changing the data in this area.

When writing programs, pay attention to reserving stack space to avoid the program running out of stack overflow. In C programming, the stack header is automatically assigned by the program, but must be stored in data or IDATA. The start address of the stack can be set in startup. A51 in Keil.

RAM address space allocation diagram:

The following table	lists the methods to a	pet value in the thr	e parts of RAM:
The following tuble.	mous the methods to g	Set value in the th	

	MOV	A,direct
	MOV	direct,A
DATA	MOV	direct,#data
DATA	MOV	direct1,direct2
	MOV	Rn,direct
	MOV	direct,Rn
	MOV	A,@Ri
	MOV	@Ri,A
IDATA	MOV	direct,@Ri
	MOV	@Ri,direct
	MOV	@Ri,#data
XDATA	MOVX @I	DPTR,A
ADATA	MOVX A,	@DPTR

RAM value instruction table

In the above table, n ranges from 0 to 7, and i ranges from 0 to 1.

3.3. SFR Table

Address	Name	W/R	Reset	Function description		
0x80	DATAB	RW	0xFF	PB data register		
0x81	SP	RW	0x07	Stack pointer register		
0x82	DPL	RW	0x00	Data pointer register0 low 8-bit		
0x83	DPH	RW	0x00	Data pointer register0 high 8-bit		
0x84	SYS_CLK_CFG	RW	0x01	Clock control register		
0x85	INT_PE_STAT	RW	0x00	WDT/Timer2 interrupt status register		
0x86	INT_POBO_STAT	RW	0x00	LVDT boost/LVDT buck interrupt status register		
0x87	PCON	RW	0x00	Idle mode selection register		
0x88	TCON	RW	0x05	Timer control register		
0x89	TMOD	RW	0x00	Timer mode register		
0x8A	TL0	RW	0x00	Timer 0 counter low 8-bit		
0x8B	TL1	RW	0x00	Timer 1 counter low 8-bit		
0x8C	TH0	RW	0x00	Timer 0 counter high 8-bit		
0x8D	TH1	RW	0x00	Timer 1 counter high 8-bit		
0x8E	SOFT_RST	RW	0x00	Soft reset register		
0x90	DATAC	RW	0xFF	PC port data register		
0x91	WDT_CTRL	RW	0x00	WDT timing overflow control register		
0x92	WDT_EN	RW	0x00	WDT timing enable register		
0x93	TIMER2_CFG	RW	0x00	TIMER2 CFG register		
0x94	TIMED2 SET H	RW	000	TIMER2 count value configuration register, high 8		
0x94	TIMER2_SET_H	ĸw	0x00	bits		
0x95	TIMED2 SET I	RW	0x00	TIMER2 count value configuration register, low 8		
0.000	TIMER2_SET_L	ĸw	0x00	bits		
0x96	REG_ADDR	RW	0x00	Second address bus register		
0x97	REG_DATA	RW	0x00	Second data read and write bus register		
0x98	DATAD	RW	0xFF	PD port data register		
0x99	PWM1_L_L	RW	0x00	PWM1 low level control register(low 8-bit)		
0x9A	PWM1_L_H	RW	0x00	PWM1 low level control register(high 8-bit)		
0x9B	PWM1_H_L	RW	0x00	PWM1 high level control register(low 8-bit)		
0x9C	PWM1_H_H	RW	0x00	PWM1 high level control register(high 8-bit)		
0x9D	PWM2_L_L	RW	0x00	PWM2 low level control register(low 8-bit)		
0x9E	PWM2_L_H	RW	0x00	PWM2 low level control register(high 8-bit)		
0x9F	PWM2_H_L	RW	0x00	PWM2 high level control register(low 8-bit)		
0xA0	P2_XH	RW	0xFF	MOVX @Ri,A operation xdata address high 8 bits		
0xA1	PWM2_H_H	RW	0x00	PWM2 high level control register(high 8-bit)		
0xA2	PWM_EN	RW	0x00	PWM control register		
0xA3	PWM0_CH_CTRL	RW	0x00	PWM0 control register		

BF7612CMXX-1

0xA4	PWM0_CH0_CNT_L	RW	0x00	PWM0 channel 0 count value configuration register low 8 bits			
0xA5	PWM0_CH0_CNT_H	RW	0x00	PWM0 channel 0 count value configuration register high 8 bits			
0xA6	PWM0_CH1_CNT_L	RW	0x00	PWM0 channel 1 count value configuration register low 8 bits			
0xA7	PWM0_CH1_CNT_H	RW	0x00	PWM0 channel 1 count value configuration registe			
0xA8	IEN0	RW	0x00	Interrupt enable register			
0xA9	PWM0_CH2_CNT_L	RW	0x00	PWM0 channel 2 count value configuration registe low 8 bits			
0xAA	PWM0_CH2_CNT_H	RW	0x00	PWM0 channel 2 count value configuration register high 8 bits			
0xAB	PWM0_CH3_CNT_L	RW	0x00	PWM0 channel 3 count value configuration register low 8 bits			
0xAC	PWM0_CH3_CNT_H	RW	0x00	PWM0 channel 3 count value configuration register high 8 bits			
0xAD	PWM0_MOD_L	RW	0x00	PWM0 cycle configuration register low 8 bits			
0xAE	PWM0_MOD_H	RW	0x00	PWM0 cycle configuration register high 8 bits			
0xAF	SCAN_START	RW	0x00	LED scan open register			
0xB0	DP_CON	RW	0x00	LED scan control register			
0xB1	SCAN_WIDTH	RW	0x00	LED scan on time 1 control register			
0xB2	LED2_WIDTH	RW	0x00	LED scan on time 2 control register			
0xB3	LED_DRIVE	RW	0x00	LED drive capability configuration register			
0xB4	ADC_SPT	RW	0x00	ADC sample time configure register			
0xB5	ADC_SCAN_CFG	RW	0x00	ADC scan control register			
0xB6	ADCCKC	RW	0x00	ADC clock control register			
0xB8	IPL0	RW	0x00	Interrupt priority register 0			
0xB9	ADC_RDATAH	R	0x00	ADC scan result register high 4 bits			
0xBA	ADC_RDATAL	R	0x00	ADC scan result register low 8 bits			
0xBB	ADC_CFG1	RW	0x00	ADC sampling timing control register 1			
0xBC	ADC_CFG2	RW	0x02	ADC sampling timing control register 2			
0xBD	UART0_BDL	RW	0x00	UART0 Baudrate control registe			
0xBE	UART0_CON1	RW	0x00	UART0 control register 1			
0xBF	UART0_CON2	RW	0x0C	UART0 control register 2			
0xC0	UART0_STATE	RW	0x00	UART0 status flag register			
0xC1	UART0_BUF	RW	0xFF	UART0 data register			
0xC2	SCI_BDH	RW	0x00	UART1 baudrate control register			
0xC3	SCI_BDL	RW	0x00	UART1 baudrate control register			
0xC4	SCI_C1	RW	0x00	UART1 control register 1			

BF7612CMXX-1

0xC5	SCI_C2	RW	0x00	UART1 control register 2
0xC6	SCI_C3	RO/RW	0x00	UART1 control register 3
0xC7	SCI_S2	RW	0x00	UART1 sync segment control register
0xC8	SCI_S1	RO	0x00	UART1 interrupt status flag register
0xC9	SCI_D	RW	0x66 0xFF	UART1 data register
0xCA	CSD_START	RW	0x00	CSD scan open register
0xCR 0xCB	SNS_SCAN_CFG1	RW	0x00	Touch key scan configuration register 1
0xCC	SNS_SCAN_CFG2	RW	0x00	Touch key scan configuration register 2
0xCD	SNS_SCAN_CFG3	RW	0x40 0x70	Touch key scan configuration register 3
0xCE	CSD_RAWDATAL	R	0x70	CSD counter, low 8-bit
0xCE 0xCF	CSD_RAWDATAL	R	0x00	CSD counter, high 8-bit
	PSW			
0xD0		R/RW	0x00	Program status register
0xD1	PULL_I_SELA_L	RW	0x00	CSD pull-up current source selection register
0xD2	SNS_ANA_CFG	RW	0x2F	CSD scan parameter configuration register
0xD3	SNS_IO_SEL1	RW	0x00	SNS channel selection register 1
0xD4	SNS_IO_SEL2	RW	0x00	SNS channel selection register 2
0xD5	SNS_IO_SEL3	RW	0x00	SNS channel selection register 3
0xD6	SNS_IO_SEL4	RW	0x00	SNS channel selection register 4
0xD7	RST_STAT	RW	rst_state	Reset flag register
0xD8	SCI_INT_CLR	RW	0x00	UART1 interrupt flag clear register
0xD9	ADC_IO_SEL1	RW	0x00	ADC selection enable register 1
0xDA	ADC_IO_SEL2	RW	0x00	ADC selection enable register 2
0xDB	ADC_IO_SEL3	RW	0x00	ADC selection enable register 3
0xDC	ADC_IO_SEL4	RW	0x00	ADC selection enable register 4
0xDD	PU_PA	RW	0x00	PA port pull-up resistor selection register
0xDE	PU_PB	RW	0x00	PB port pull-up resistor selection register
0xDF	PU_PC	RW	0x00	PC port pull-up resistor selection register
0xE0	ACC	RW	0x00	Accumulator
0xE1	IRCON2	RW	0x00	Interrupt flag register 2
0xE2	PU_PD	RW	0x00	PD port pull-up resistor selection register
0xE3	IICADD	RW	0x00	IIC address register
0xE4	IICBUF	RW	0x00	IIC transmit and receive data register
0xE5	IICCON	RW	0x10	IIC configuration register
0xE6	IEN1	RW	0x00	Interrupt enable register 1
0xE7	IEN2	RW	0x00	Interrupt enable register 2
0xE8	IICSTAT	RO/RW	0x44	IIC status register
0xE9	IICBUFFER	RW	0x00	IIC transmit and receive data buffer register
0xEA	TRISA	RW	0x03	PA port direction register
0xEB	TRISB	RW	0xFF	PB port direction register

				
0xEC	TRISC	RW	0xFF	PC port direction register
0xED	TRISD	RW	0xFF	PD port direction register
0xEE	COM_IO_SEL	RW	0x00	COM large sink current selection register
0xEF	ODRAIN_EN	RW	0x00	PA open drain enable register
0xF0	В	RW	0x00	B register
0xF1	IRCON1	RW	0x00	Interrupt flag register 1
0xF2	PERIPH_IO_SEL	RW	0x40	IIC/UART0/INT function control register
0xF4	IPL2	RW	0x00	Interrupt priority register 2
0xF6	IPL1	RW	0x00	Interrupt priority register 1
0xF7	EXT_INT_CON	RW	0x15	External interrupt polarity control register
0xF8	DATAA	RW	0x03	PA data register
0xF9	SPROG_ADDR_H	RW	0x00	Address control register
0xFA	SPROG_ADDR_L	RW	0x00	Address control register
0xFB	SPROG_DATA	RW	0x00	Data register
0xFC	SPROG_CMD	RW	0x00	Command register
0xFD	SPROG_TIM	RW	0x1A	Erase time control register
0xFE	PD_ANA	RW	0x1F	Module switch control register
0xFF	SEL_LVDT_VTH	RW	0x00	LVDT threshold selection register

SFR register summary

Note: 1. Registers whose addresses end with 8 or 0 can be bit-operated, such as register addresses 0x80, 0x88.

2. Reset value: reset value in different modes; Power-on reset: rst_state is 0x02;

Reset in other modes: The reset flag bit corresponding to rst_state is 1, and other reset flags remain in their original state.

3. RO/R: only read. RW: Read and write.

3.4. Secondary bus register list

The BF7612CMXX series supports expanded secondary bus registers for expanding more register functions. Just write the address of the secondary bus register to be accessed into REG_ADDR, and then access the corresponding secondary bus register through the REG_DATA register. It is recommended that when reading and writing secondary bus registers, EA = 0 first, and then EA = 1 after the operation is completed. Prevent other interrupts or operations from modifying the address or data of the secondary bus register.

	secondary bus register							
Addr	Name	bit	RW	Reset	Description			
0x96	REG_ADDR	<5:0>	RW	0x00	Secondary bus address configuration register			
0x97	REG_DATA	<7:0>	RW	0x00	x00 Secondary bus data read and write register			

Addr	Name	RW	Reset	Description
0x00	CFG0_REG	R	0xFF ^①	Configuration word register0
0x01	CFG1_REG	R	0xFF ^①	Configuration word register1
0x02	CFG2_REG	R	0xFF ^①	Configuration word register2
0x03	CFG3_REG	R	0xFF ^①	Configuration word register3
0x04	CFG4_REG	R	0xFF1	Configuration word register4
0x05	CFG5_REG	R	0xFF ^①	Configuration word register5
0x06	CFG6_REG	R	0xFF ^①	Configuration word register6
0x07	CFG7_REG	R	0xFF ^①	Configuration word register7
0x08	CFG8_REG	R	0xFF1	Configuration word register8
0x09	CFG9_REG	R	0xFF ^①	Configuration word register9
0x0A	CFG10_REG	R	0xFF ^①	Configuration word register10
0x0B	CFG11_REG	R	0xFF1	Configuration word register11
0x0C	CFG12_REG	R	0xFF ^①	Configuration word register12
0x0D	CFG13_REG	R	0xFF ^①	Configuration word register13
0x0E	CFG14_REG	R	0xFF ^①	Configuration word register14
0x0F	CFG15_REG	R	0xFF ^①	Configuration word register15
0x10	CFG16_REG	R	0xFF ^①	Configuration word register16
0x11	CFG17_REG	R	0xFF ^①	Configuration word register17
0x12	CFG18_REG	R	0xFF ^①	Configuration word register18
0x13	CFG19_REG	R	0xFF ^①	Configuration word register19
0x14	CFG20_REG	R	0xFF ^①	Configuration word register20
0x15	CFG21_REG	R	0xFF ^①	Configuration word register21
0x16	CFG22_REG	R	0xFF ^①	Configuration word register22
0x17	CFG23_REG	R	0xFF ^①	Configuration word register23
0x18	CFG24_REG	R	0xFF ^①	Configuration word register24
0x19	CFG25_REG	R	0xFF ^①	Configuration word register25

0x1A	CFG30_REG	R	0xFF1	Configuration word register30
0x1F	DUMMY_REG	RW	0x00	RTC crystal oscillator circuit selection register
0x20	EEP_SELECT	RW	0x00	EEP NVR/main block selection register

Note:

- 1. '①': The reset value is the default value after power-on reset, and the value after the global reset is completed is the factory calibration value;
- 2. 'R': Read only; 'RW': Read and write.

4. Register Summary

4.1. SFR Register details

DATAB(80H)PB port data register

Bit number	7	6	5	4	3	2	1	0
Symbol	PB7	PB6	PB5	PB4	PB3	PB2	PB1	PB0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset value	1	1	1	1	1	1	1	1

Bit number	Bit symbol	Description
		The output level of the PB group can be configured as the
7~0		GPIO port. The read value is the level state of the current IO
		port or the configured output value.

SP(81H) Stack pointer register

DI (OIII) Diack	SI (0111) Stack pointer register								
Bit number	7	6	5	4	3	2	1	0	
Symbol				S	P[7:0]				
R/W]	R/W				
Reset value					7				
DPL(82H) Data pointer register0 low 8-bit									
Bit number	7	6	5	4	3	2	1	0	
Symbol	DPL[7:0]								
R/W	R/W								
Reset value	0								
DPH(83H) Data	DPH(83H) Data pointer register0 high 8-bit								
Bit number	7	7 6 5 4 3 2 1 0							
Symbol		DPH[7:0]							
R/W	R/W								
Reset value	0								
SYS_CLK_CFC	G(84H) Cl	ock contro	l register						
Bit number	7	6	5	4	3	2	1	0	

Symbol	-	-	-	-	-	-	PLL_CLK_SEL[1:0]		
R/W	-	-	-	-	-	-	R/W		
Reset value	-	-	-	-	-	-	0 1		

Bit number	В	it symł	ool	Description							
7~2				Reserved							
1~0	PLL	_CLK	_SEL	PLL clock divided selection register							
			00: 12Mhz; 01: 6Mhz; 10: 4Mhz; 11: Reserved								
INT_PE_STAT	<u>Г(85H)</u>	WDT/	Timer ²	2 interr	upt stat	tus reg	ister				
Bit number	7	6	5	4	3	2	1	0			
Symbol	Ι	-	-	-	-	-	INT_WDT_STAT	INT_TIMER2_STAT			
R/W	-	-	-	-	R/W R/W						
Reset value	-	-	-	-	-	-	0	0			

Bit number	Bit symbol	Description
		WDT interrupt status, set 0, write WDT_CTRL can set 0.
1	INT_WDT_STAT	1: interrupt effective
		0: invalid interrupt
		TIMER2 interrupt status, set 0, write TIMER2_CFG can
0	INT_TIMER2_STAT	set 0.
0		1: interrupt effective
		0: invalid interrupt

INT_POBO_STAT (86H) LVDT boost/LVDT buck interrupt status register

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	I	-	INT_PO_STAT	INT_BO_STAT
R/W	-	-	-	-	-	-	R/W	R/W
Reset value	-	-	-	-	I	-	0	0

Bit number	Bit symbol	Description
		Lvdt boost interrupt status
1	INT_PO_STAT	1: boost interrupt is valid
		0: boost interrupt is invaild
		Lvdt buck interrupt state
0	INT_BO_STAT	1: buck interrupt is valid
		0: buck interrupt is invalid

PCON (87H) Idle mode selection register

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	-	-	-	IM_EN
R/W	-	-	-	-	-	-	-	R/W
Reset value	-	_	_	-	_	_	-	0

Bit number	Bit symbol	Description
0	IM_EN	idle mode control1: idle mode;0: normal mode, automatically cleared after wake-up
TCON(88H) Ti	mer control register	

Bit number	7	6	5	4	3	2	1	0
Symbol	TF1	TR1	TF0	TR0	IE1	-	IE0	-
R/W	R/W	R/W	R/W	R/W	R/W	-	R/W	-
Reset value	0	0	0	0	0	-	0	_

Bit number	Bit symbol	Description
7	TF1	Timer1 overflow flag. Set to 1 when Timer1 overflows, or Timer0's TH0 overflows in mode three.
6	TR1	Timer1 start enable, When set to 1, start Timer1, or start Timer0 mode three TH0 counte.
5	TF0	Timer0 overflow flag, the hardware set 1 when Timer0 overflows.
4	TR0	Timer0 start enable, when set to 1, start Timer0 count.
3	IE1	External interrupt 1. The hardware set 1, the software is cleared.
2		Reserved
1	IE0	External interrupt 0. The hardware set 1, the software is cleared
0		Reserved

TMOD(89H) Timer mode register

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	M1[1:0]		-	-	M0[1:0]	
R/W	-	-	R/W		-	-	R/	W
Reset value	-	_	0	0	-	-	0	0

Bit number	Bit symbol	Description
7~6		Reserved
5~4	M1[1:0]	M1-Timer1: Bit 1, M1-Timer1: Bit 0. 00=mode0 – 13 bit Timer 01=mode1 – 16 bit Timer 10=mode2 – 8-bit timer with automatic reload initial value 11=mode3 – 2*8bit Timer
3~2		Reserved
1~0	M0[1:0]	M0-Timer0: Bit 1, M0-Timer0: Bit 0.

			00=mode	0 – 13 bit 7	Timer					
				1 - 16 bit 1						
		10 = mode2 - 8 bit timer with automatic reload initial value								
				3 - 2*8bit				ii value		
TL0(8AH) Time	er 0 counte	r low 8-bit		5 2 001	Timer					
Bit number	7	6	5	4	3	2	1	0		
Symbol				TL0	[7:0]		•			
R/W				R /	W					
Reset value				0)					
TL1(8BH) Time	er 1 counte	r low 8-bit								
Bit number	7	6	5	4	3	2	1	0		
Symbol				TL1[[7:0]					
R/W				R /	W					
Reset value				0)					
TH0(8CH) Time	er 0 counte	r high 8-bi	t				•			
Bit number	7	6	5	4	3	2	1	0		
Symbol				TH0	[7:0]					
R/W				R/	W					
Reset value				0)					
TH1(8DH) Time	er 1 counte	r high 8-bi	t							
Bit number	7	6	5	4	3	2	1	0		
Symbol				TH1	[7:0]					
R/W				R/	W					
Reset value				0)					
SOFT_RST(8EF		et register								
Bit number	7	6	5	4	3	2	1	0		
Symbol				-						
R/W		R/W								
Reset value				0)					

Bit number	Bit symbol	Description
7~0		Software reset register. Software reset is only generated
		when the register value is 0x55.

DATAC(90H) PC port data register

Bit number	7	6	5	4	3	2	1	0
Symbol	PC7	PC6	PC5	PC4	PC3	PC2	PC1	PC0
R/W		R/W						
Reset value	1	1	1	1	1	1	1	1

Bit number	Bit symbol	Description
		PC data register. The output level of the PC group can be
7~0		configured as the GPIO port. The read value is the level state
		of the current IO port or the configured output value.

WDT_CTRL(91H) WDT timing overflow control register

	/	<u> </u>						
Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	-	WD	T_TIME_	SEL
R/W	-	-	-	-	-		R/W	
Reset value	-	-	-	-	-	0	0	0

Bit number	Bit symbol	Description
	WDT_TIME_SEL	WDT overflow timer register. Timing length is as follows:
2~0		0x00: 18ms; 0x01: 36ms; 0x02: 72ms; 0x03: 144ms;
		0x04: 288ms; 0x05: 576ms; 0x06: 1152ms; 0x07: 2304ms;

WDT_EN(92H) WDT timing enable register

Bit number	7	6	5	4	3	2	1	0
Symbol		WDT_EN						
R/W		R/W						
Reset value	0							

Bit number	Bit symbol	Description
7~0	WDT_EN	WDT timing enable configuration register. WDT is turned off when the configuration value is 0x55.

TIMER2_CFG (93H) TIMER2 configuration register

Bit number	7	6	5	4	3	2	1	0
Symbol	-	I	I	I	TIMER2_CNT_MOD	TIMER2_CLK_SEL	TIMER2_RLD	TIMER2_EN
R/W	-	1	1	I	R/W	R/W	R/W	R/W
Reset value	-	I	I	I	0	0	0	0

Bit number	Bit symbol	Description
		TIMER2 count step mode selection register
3	TIMER2_CNT_MOD	1: count step is 65536 clock.
		0: count step is 1 clock.
		TIMER2 clock selection register
2	TIMER2_CLK_SEL	1: select XTAL
		0: select LIRC
		TIMER2 reload enable control register
1	TIMER2_RLD	1: automatic reload mode
		0: manual reload mode
0	TIMER2_EN	TIMER2 count enable register

	1: turn on timing; 0: stop timing;
	In manual reload mode, the hardware automatically
	clears this register after timing is completed, stop count.
	In manual reload mode, will maintain the enable register
	after the count is completed. Automatically re-counting
	from 0, no matter which mode, configuring this register
	to 1 during counting will start counting from 0.

TIMER2_SET_H(94H) TIMER2 count value configuration register, high 8 bits

					<u> </u>	0			
Bit number	7	6	5	4	3	2	1	0	
Symbol		_							
R/W		R/W							
Reset value		0							

Bit number	Bit symbol	Description			
7~0		TIMER2 count configuration register, high 8 bit, Configuring this register during the scan will recount.			
TIMER2_SET_L(95H) TIMER2 count value configuration register, low 8 bits					

The RZ_SET_E() STITUTERZ Count value configuration register, fow 8 ons											
Bit number	7	7 6 5 4 3 2 1 0									
Symbol		-									
R/W		R/W									
Reset value		0									

Bit number	Bit symbol	Description
7~0		TIMER2 count configuration register, low 8 bit, Configuring this register during the scan will recount.

REG_ADDR (96H) Second address bus register

Bit number	7	6	5	4	3	2	1	0			
Symbol	-	-			REG_ADDR						
R/W	-	-			R/	W					
Reset value	-	-	0	0	0	0	0	0			

Bit number	Bit symbol	Description
5~0	REG_ADDR	Secondary bus address configuration register. When operating the secondary bus, it is recommended to read and write the secondary bus register, $EA = 0$ first, $EA = 1$ after the operation is completed, to prevent other interruptions or operations from modifying the secondary bus register address or data.

REG_DATA (9	(H) Secon	d bus data	read and w	vrite registe	er			
Bit number	7	6	5	4	3	2	1	0

Symbol	REG_DATA
R/W	R/W
Reset value	0

Bit number	Bit symbol	Description
7~0	REG_DATA	Secondary bus read and write registers. It is recommended to read and write the secondary bus register, EA = 0 first, EA = 1 after the operation is completed, to prevent other interruptions or operations from modifying the secondary bus register address or data.

DATAD(98H) PD port data register

Bit number	7	6	5	4	3	2	1	0
Symbol	PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0
R/W		R/W						
Reset value	1	1	1	1	1	1	1	1

Bit number	Bit symbol	Description
		PD data register. The output level of the PD group can be
7~0		configured as the GPIO port. The read value is the level state
		of the current IO port or the configured output value.

PWM1_L_L (99H) PWM1 low level control register(low 8-bit)

Bit number	7	7 6 5 4 3 2 1 0									
Symbol		_									
R/W		R/W									
Reset value		0									

PWM1_L_H (9AH) PWM1 PWM1 low level control register(high 8-bit)

Bit number	7	6	5	4	3	2	1	0		
Symbol		_								
R/W				R/	W					
Reset value		0								

PWM1_H_L (9BH) PWM1 high level control register(low 8-bit)

Bit number	7	6	5	4	3	2	1	0		
Symbol		-								
R/W		R/W								
Reset value				()					

PWM1_H_H (9CH) PWM1 high level control register(high 8-bit)

Bit number	7	6	5	4	3	2	1	0
Symbol				-	-			
R/W				R/	W			
Reset value				()			

PWM2_L_L (91	JH) PWM	2 low leve	l control re	gister(low	8-D1t)				
Bit number	7	6	5	4	3	2	1	0	
Symbol									
R/W				R/	W				
Reset value				()				
PWM2_L_H (9)	EH) PWM) PWM2 low level control register(high 8-bit)							
Bit number	7	6	5	4	3	2	1	0	
Symbol				-	-				
R/W				R/	W				
Reset value		0							
PWM2_H_L (9)	FH) PWM	2 high leve	el control re	egister(low	8-bit)				
Bit number	7	6	5	4	3	2	1	0	
Symbol				-	-				
R/W				R/	W				
Reset value				()				
P2_XH (A0H) N	MOVX @F	Ri,A operat	tion xdata	address hig	h 8 bits				
Bit number	7	6	5	4	3	2	1	0	
Symbol				-	-				
R/W				R/	W				
Reset value	1	1	1	1	1	1	1	1	

PWM2_L_L (9DH) PWM2 low level control register(low 8-bit)

Bit number	Bit symbol	l	Description							
7~0	D2 VII	When	When using the MOVX @Ri, A instruction, when operating the							
/~0	P2_XH	pdata	pdata area, P2_XH need to be clear to 0.							
PWM2_H_H (A1H) PWM2 high level control register(high 8-bit)										
Bit number	7	6	5	4	3	2	1	0		

Bit number	7	6	5	4	3	2	1	0
Symbol				-	-			
R/W				R/	W			
Reset value				()			

PWM_EN (A2H) PWM control register

Bit number	7	6	5	4
Symbol	-	-	PWM0_CH3_CMOD	PWM0_CH2_CMOD
R/W	-	-	R/W	R/W
Reset value	-	-	0	0
Bit number	3	2	1	0
Symbol	PWM0_CH1_CMOD	PWM2_EN	PWM1_EN	PWM0_EN
R/W	R/W	R/W	R/W	R/W
Reset value	0	0	0	0

Bit number	Bit symbol	Description		
		PWM0 channel 3 duty cycle mode selection register		
5	PWM0_CH3_CMOD	1: select channel 0 duty cycle		
		0: select its own channel duty cycle		
		PWM0 channel 2 duty cycle mode selection register		
4	PWM0_CH2_CMOD	1: select channel 0 duty cycle		
		0: select its own channel duty cycle		
		PWM0 channel 1 duty cycle mode selection registe		
3	PWM0_CH1_CMOD	1: select channel 0 duty cycle		
		0: select its own channel duty cycle		
		PWM2 module enable register		
2	PWM2_EN	1: enable		
		0: not enable		
		PWM1 module enable register		
1	PWM1_EN	1: enable		
		0: not enable		
		PWM0 module enable register		
0	PWM0_EN	1: enable		
		0: not enable		

PWM0_CH_CTRL (A3H) PWM0 control register

		8		
Bit number	7	6	5	4
Symbol	PWM0_CH3_POLA_SEL	PWM0_CH2_POLA_SEL	PWM0_CH1_POLA_SEL	PWM0_CH0_POLA_SEL
R/W	R/W	R/W	R/W	R/W
Reset value	0	0	0	0
Bit number	3	2	1	0
Symbol	PWM0_CH3_EN	PWM0_CH2_EN	PWM0_CH1_EN	PWM0_CH0_EN
R/W	R/W	R/W	R/W	R/W
Reset value	0	0	0	0

Bit number	Bit symbol	Description
		Channel 3 polarity selection ch3_pola_sel
7	PWM0_CH3_POLA_SEL	1: count value overflow makes the output low
		0: count value overflow makes the output high
		Channel 2 polarity selection ch2_pola_sel
6	5 PWM0_CH2_POLA_SEL	1: count value overflow makes the output low
		0: count value overflow makes the output high
		Channel 1 polarity selection ch1_pola_sel
5	PWM0_CH1_POLA_SEL	1: count value overflow makes the output low
		0: count value overflow makes the output high
4	PWM0_CH0_POLA_SEL	Channel 0 polarity selection ch0_pola_sel

		1: count value overflow makes the output low
		0: count value overflow makes the output high
		Channel 3 enable ch3_en
3	PWM0_CH3_EN	1: enable
		0: not enable
		Channel 2 enable ch2_en
2	PWM0_CH2_EN	1: enable
		0: not enable
		Channel 1 enable ch1_en
1	PWM0_CH1_EN	1: enable
		0: not enable
		Channel 0 enable ch0_en
0	PWM0_CH0_EN	1: enable
		0: not enable

PWM0_CH0_CNT_L (A4H) PWM0 channel 0 count value configuration register low 8 bits

Bit number	7	6	5	4	3	2	1	0
Symbol]	PWM0_CH	40_CNT_I			
R/W		R/W						
Reset value				()			

Bit number	Bit sy	Bit symbol Description							
7~0	PWM0_CH	0_CNT_L		Channel 0 count configuration register low 8 bits. Configure PWM output duty cycle.					
PWM0_CH0_CNT_H (A5H) PWM0 channel 0 count value configuration register high 8 bits									
Bit number	7	7 6 5 4 3 2 1					0		
Symbol]	PWM0_CH	HO_CNT_H	ł			
R/W		R/W							
Reset value				()				

Bit number	Bit symbol			Description				
7~0	I PWMO CHO CNT H I			Channel 0 count configuration register high 8 bits. Configure PWM output duty cycle.				
PWM0_CH1_CNT_L (A6H) PWM0 channel 1 count value configuration register low 8 bits								
Bit number	7	6	5	4	3	2	1	0
Symbol				PWM0_CH	I1_CNT_I			
R/W		R/W						
Reset value				()			

Bit number	Bit symbol	Description				
7~0	PWM0_CH1_CNT_L	Channel 1 count configuration register low 8 bits.				

	Configure PWM output duty cycle.									
PWM0_CH1_CNT_H (A7H) PWM0 channel 1 count value configuration register high 8 bits										
Bit number	7	7 6 5 4 3 2 1 0								
Symbol	PWM0_CH1_CNT_H									
R/W	R/W									
Reset value	0									

Bit number	Bit symbol	Description
7~0	PWMO CHI CNT H	Channel 1 count configuration register high 8 bits.
		Configure PWM output duty cycle.

IEN0(A8H) Interrupt enable register

Bit number	7	6	5	4	3	2	1	0
Symbol	EA	-			ET1	EX1	ET0	EX0
R/W	R/W	-			R/W	R/W	R/W	R/W
Reset value	0	-			0	0	0	0

Bit number	Bit symbol	Description			
7	EA	EA- Interrupt enable bit. EA=0 block all interrupts (EA takes precedence over the interrupt enable bits of the interrupt source). EA=1, open interrupts. Whether the interrupt request of each interrupt source is allowed or disable, and also needs to be determined by the respective enable bits.			
6~4		Reserved			
3	ET1	ET1-Timer1 overflow interrupt allow bit. ET1=0, disable Timer1 (TF1) to apply for interrupt. ET1=1, allow TF1 to apply for interrupt.			
2	EX1	EX1-INT_EXT1 allow bit. EX1=0, disable INT_EXT1 apply for interrupt. Allow INT_EXT1 to apply for interrupt.			
1	ET0	ET0- Timer0 overflow interrupt allow bit. ET0=0, disable Timer1 (TF0) to apply for interrupt. ET0=1, allow Timer1 (TF0) to apply for interrupt.			
0	EX0	EX0-INT_EXT0 allow bit. EX0=0, disable INT_EXT0 to apply for interrupt. EX0=1, allow INT_EXT0 to apply for interrupt.			
PWM0_CH2_C	CNT_L (A9H) PWM0 c	hannel 2 count value configuration register low 8 bits			

Bit number	7	6	5	4	3	2	1	0
Symbol	PWM0_CH2_CNT_L							
R/W	R/W							

Reset value

Bit number	Bit	symbol		Description						
7~0	PWM0_C	CH2_CNT_	_L Chan	Channel 2 count configuration register low 8 bits.						
			Confi	Configure PWM output duty cycle.						
PWM0_CH2_CNT_H (AAH) PWM0 channel 2 count value configuration register high 8 bits							bits			
Bit number	7	6	5	4	3	2	1	0		
Symbol		PWM0_CH2_CNT_H								
R/W		R/W								
Reset value		0								

Bit number	Bit symbol			Description						
7~0	DWMO CHO CNT H			Channel 2 count configuration register high 8 bits.						
/~0	PWM0_CH2_CNT_H			Configure PWM output duty cycle.						
PWM0_CH3_CNT_L (ABH) PWM0 channel 3 count value configuration register low 8 bits										
Bit number	7	6	5	4	3	2	1	0		
Symbol		PWM0_CH3_CNT_L								
R/W	R/W									
Reset value		0								

Bit number	Bit symbol	Description
7.0	DWM0 CH2 CNT I	Channel 3 count configuration register low 8 bits.
7~0	PWM0_CH3_CNT_L	Configure PWM output duty cycle.

Bit number	7	6	5	4	3	2	1	0
Symbol	PWM0_CH3_CNT_H							
R/W		R/W						
Reset value	0							

Bit symbol			Bit symbol Description					
PWM0_CH3_CNT_H		Channel 3 count configuration register low 8 bits.						
		Configure PWM output duty cycle.						
PWM0_MOD_L (ADH) PWM0 cycle configuration register low 8 bits								
7	6	5		4	3	2	1	0
PWM0_MOD_L								
R/W								
0								
	PWM	PWM0_CH3_CI	PWM0_CH3_CNT_H ADH) PWM0 cycle confi	PWM0_CH3_CNT_H Cd ADH) PWM0 cycle configur	PWM0_CH3_CNT_H Channel 3 co ADH) PWM0 cycle configuration regist 7 6 5 4 PWM0_1	PWM0_CH3_CNT_HChannel 3 count config Configure PWM outputADH) PWM0 cycle configuration register low 8 b7654767670	PWM0_CH3_CNT_H Channel 3 count configuration reg Configure PWM output duty cycl ADH) PWM0 cycle configuration register low 8 bits 7 6 5 4 3 2 PWM0_MOD_L	PWM0_CH3_CNT_H Channel 3 count configuration register low 8 Configure PWM output duty cycle. ADH) PWM0 cycle configuration register low 8 bits 7 6 5 4 3 2 1 PWM0_MOD_L

Bit number Bit symbol Description

7~0	DWMO	MODI	PWM0 count cycle configuration register low 8 bits.							
/~0	PWM0_MOD_L		Configure PWM output duty cycle.							
PWM0_MOD_H (AEH) PWM0 cycle configuration register high 8 bits										
Bit number	7 6 5 4 3 2 1 0					0				
Symbol		PWM0_MOD_H								
R/W	R/W									
Reset value		0								

Bit number	Bit symbol	Description
7~0	PWM0_MOD_H	PWM0 count cycle configuration register high 8 bits.
		Configure PWM output duty cycle.

SCAN_START(AFH) LED scan open register

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	-	-	-	-
R/W	-	-	-	-	-	-	-	R/W
Reset value	-	-	-	-	-	-	-	0

Bit number	Bit symbol	Description
0		LED Scan On Register
		1: Start scanning;
		0: Disable scan

DP_CON (B0H) LED scan control register

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	DUTY_SEL			SCAN_MODE	COM_MOD
R/W	-	-	-		R/W		R/W	R/W
Reset value	-	-	-	0	0	0	0	0

Bit number	Bit symbol	Description
		LED port drive mode matrix selection configuration register.
		0: no matrix
		1: 4x4 matrix (LED0~LED4)
		2: 5x5 matrix (LED0~LED5)
4~2	DUTY_SEL	3: 6x6 matrix (LED0~LED6)
		4: 6x7 matrix (LED0~LED7)
		5: 7x7 matrix (LED0~LED7)
		6: 7x8 matrix (LED0~LED7)
		7: 8x8 matrix (LED0~LED8)
		LED scan mode.
1	SCAN_MODE	1: cycle scan mode
		0: interrupt scan mode

		 Large sink current ports drive enable. 1: COM port function lock, work as a large current IO port. 0: COM port function is not locked and can be configured as other functions.
0	COM_MOD	0: COM port function is not locked and can be configured as other functions.When the COM port locks the large sink current IO port, by configuring GPIO registers output drive timing, it is vaild when all of the following LED scan configurations are invalid.

SCAN_WIDTH (B1H) LED scan on time 1 control register

Bit number	7	6	5	4	3	2	1	0			
Symbol		_									
R/W		R/W									
Reset value					0						

Bit number	Bit symbol	Description
7~0		LED dot matrix drive mode, corresponding to a signal led lighting time configuration register—on time 1 configuration. period=(scan_width+1)*16us, support configuration range 0.016~4.096ms.

LED2_WIDTH (B2H) LED scan on time 2 control register Bit number 7 6 5 4 3 2

Bit number	7	6	5	4	3	2	1	0				
Symbol		-										
R/W		R/W										
Reset value					0							

Bit number	Bit symbol	Description
		LED dot matrix drive mode, corresponding to a signal led
		lighting time configuration register—on time 2
7~0		configuration
		period=(led2_width+1)*16us, support configuration range
		0.016~4.096ms.

LED2_DRIVE (B3H) LED drive capability configuration register

Bit number	7	6	5	4	3 2 1 0					
Symbol	,	0	5	•						
y	-	-	-	-	-					
R/W	-	-	-	-	R/W					
Reset value	-	-	-	-	0 0 0 0					

Bit number	Bit symbol	Description
7~4		Reserved

3~0	 LED port drive capability configuration register 0~15— 3.77mA~69.14mA, please refer to LED drive ammeter for
	details.

ADC SPT (B4H) ADC sample time configure register

(D) (D) (T) / TD C sample time comigue register										
Bit number	7	6	5	4	3	2	1	0		
Symbol		ADC_SPT								
R/W		R/W								
Reset value				()					

Bit number	Bit syn	nbol	Description							
7~0	ADC S	SDT	ADC s	ADC sample time configure register						
/~0	ADC_	SPI	sample	e time: san	nple_Tim	her = (ADC)	C_SPT+1))*4Tadc_clk		
ADC_SCAN_CFG (B5H) ADC scan control register										
Bit number	7	6	5	1	3	2	1	0		

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-		A	ADC_START			
R/W	-	-			R/W			
Reset value	-	-	0					0

Bit number	Bit symbol	Description
		ADC channel address selection register.
5~1	ADC_ADDR	0~25: corresponding to ADC0~ADC25;
		26: ADC26_VREF
		ADC scan open register
		ADC_START= $0 \rightarrow 1(4)$) turn to conversion,
		ADC_START configuration is not allowed during
0		scanning.
0	ADC_START	ADC_START is set from 0 to 1, ADC start to scan, after
		scanning once, ADC_START hardware is automatically
		set to 0, corresponding to the interrupt flag set to 1, ADC
		interrupt flag bit needs to be cleared by software.

ADCCKC (B6H) ADC clock control register

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	ADC	CKV	AD	OCK
R/W	-	-	-	-	R/	W	R/	/W
Reset value	-	-	-	-	0	0	0	0

Bit number	Bit symbol	Description				
3~2	ADCCKV	ADC comparator offset cancellation analog input clock. 0: 12MHz 1: 8MHz 2: 4MHz 3: 2MHz				
1~0	ADCK	ADC_CLK frequency division selection.				

			0: 8MHz	1: 6MI	Hz 2:4M	Hz 3: 3	BMHz	
IPL0 (B8H) Interrupt priority register 0								
Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	PT1	PX2	PT0	PX0
R/W	-	-	-	-	R/W	R/W	R/W	R/W
Reset value	-	-	-	-	0	0	0	0

Bit number	Bit symbol	Description
7~4	_	Reserved
		PT1-TF1(Timer1 interrupt) priority selection bit.
3	PT1	PT1=0: TF1(Timer1 interrupt) is low priority.
		PT1=1: TF1(Timer1 interrupt) is high priority.
		PX2- INT_EXT1 interrupt priority selection bit.
2	PX2	PX2=0: INT_EXT1 is low priority. PX2=1: INT_EXT1 is
		high priority.
		PT0-TF0(Timer0 interrupt) priority selection bit.
1	PT0	PT0=0: TF0(Timer0 interrupt) is low priority.
		PT0=1: TF0(Timer0 interrupt) is high priority.
		PX0- INT_EXT0 interrupt priority selection bit.
0	PX0	PX0=0: INT_EXT0 is low priority.
		PX0=1: INT_EXT0 is high priority.

ADC_RDATAH (B9H) ADC scan result register high 4 bits

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	A	DC_RAW	DATA<11	:8>
R/W	-	-	-	-			R	
Reset value	-	-	-	-			0	

Bit number	Bit symbol	Description
3~0	ADC_RAWDATA<11:8>	ADC scan result register

ADC_RDATAL(BAH) ADC scan result register low 8 bits

Bit number	7	6	5	4	3	2	1	0
Symbol			A	DC_RAW	DATA<7:(<0>		
R/W				F	ξ			
Reset value	0							

Bit numbe	r	Bit symbol				Description			
7~0	I	ADC_RAW	0> AD0	ADC scan result register					
ADC_CFG1 (B	_CFG1 (BBH) ADC sample sequence contro			ntrol regi	ster 1				
Bit number	7	6 5			3	2	1	0	
Symbol		А	DCWNUI	М		SAMBG	SAN	1DEL	

R/W	R/W	R/W	R/W
Reset value	0	0	0

Bit number	Bit symbol	Description
7~3	ADCWNUM	Selection of distance conversion interval time after sampling 00000: (3+0) * t _{ADCK} ; 00001: (3+1) *t _{ADCK} ; 00010: (3+2) * t _{ADCK} ; 00011: (3+3) * t _{ADCK} ; 00100: (3+4) * t _{ADCK} ; 11110: (3+30) * t _{ADCK} ; 11111: (3+31) * t _{ADCK} ;
2	SAMBG	Sample timing and comparison timing interval selection 0: Interval of 0* tADCK; 1: Interval of 1 * tADCK
1~0	SAMDEL	Sample delay time selection 00: 0 * tADCK; 01: 2 * tADCK; 10: 4 * tADCK; 11: 8 * tADCK

ADC_CFG2 (BCH) ADC sampling timing control register 2

Bit number	7	6	5	4	3	2	1	0
Symbol	-	FILTER_R_SEL	VREF_IN_	ADC_SEL	ADC_I_	SEL[1:0]	CTRL_S	SEL[1:0]
R/W	-	R/W	R/	W	R/	W	R/	W
Reset value	-	0	()	()	1	0

Bit number	Bit symbol	Description
6	FILTER_R_SEL	Input signal filtering selection, 0 means no RC filtering,
0	FILTER_K_SEL	1 means RC filtering.
		Input to ADC26 reference voltage selection
		01: 2.253V; other: reserved;
5~4	VREF_IN_ADC_SEL	Need to read the calibration voltagevalue from the chip
3~4	VKEF_IN_ADC_SEL	flash when using.
		VREF_IN_ADC_SEL voltage =
		{ CBYTE[0x43C6], CBYTE[0x43C7]}mV.
		ADC bias current size selection register.
		ADC_I_SEL[0]:
3~2	ADC_I_SEL[1:0]	0 is the comparator bias current is 4uA;
		1 is the comparator bias current is 5uA;
		ADC_I_SEL[1]:

		0 is the op amp bias current is 4uA;
		1 is the op amp bias current is 5uA;
		ADC comparator offset cancellation selection signal,
		the default is 10.
1.0		CTRL_SEL[1:0]:
1~0	CTRL_SEL[1:0]	00/01: sampling first in offset cancellation;
		10: all switches are disconnected together;
		11: the switch is disconnected in turn.

UART0_BDL (BDH) UART0 Baudrate control register

Bit number	7	6	5	4	3	2	1	0
Symbol								
R/W		R/W						
Reset value	0							

Bit number	Bit symbol	Description
		Baud rate control register.
		Baud rate modules divisor register lower 8 bits,
7~0		bandrate={UART0_BDH[1:0], UART0_BDL},
		bandrate=0, does not generate baud rate clock.
		bandrate=1~1023, SCI bandrate = BUSCLK/(16xbandrate)

UART0_CON1 (BEH) UART0 control register 1

	=================================	0		
Bit number	7	6	5	4
Symbol	-	uart0_enable	receive_enable	multi_mode
R/W	-	R/W	R/W	R/W
Reset value	-	0	0	0
Bit number	3	2	1	0
Symbol	stop_mode	data_mode	parity_en	parity_sel
R/W	R/W	R/W	R/W	R/W
Reset value	0	0	0	0

Bit number	Bit symbol	Description
6	uart0_enable	Module enable.
0	uarto_enable	1: module enable; 0: module off.
5	raaaiya anabla	Receiver enable.
3	receive_enable	1: receiver open; 0: receiver off.
4	1 1	Multiprocessor communication mode.
4	multi_mode	1: mode enable; 0: mode disable.
3	ston mode	Stop bit width selection.
5	stop_mode	1: 2 bit; 0: 1 bit.
2	data_mode	Data mode select.

		1: 9bit mode; 0: 8bit mode.
1	pority on	Parity enable.
1	parity_en	1: parity enable; 0: parity disable.
0		Parity select.
0	parity_sel	1: odd parity; 0: even parity.

UART0_CON2 (BFH) UART0 control register 2

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	tx_empty_ie	rx_full_ie	UAR	Г0_BDH
R/W	-	-	-	-	R/`	W	F	R/W
Reset value	-	_	-	-	1	1	0	0

Bit number	Bit symbol	Description	
		Send interrupt enable.	
3	tx_empty_ie	1: interrupt enable;	
		0: interrupt disable (used in polling mode)	
		Received interrupt enable	
2	rx_full_ie	1: interrupt enable;	
		0: interrupt disable (used in polling mode)	
1~0	UART0_BDH	Baud rate modulus divisor register high 2bit.	

UART0_STATE (C0H) UART0 status flag register

Bit number	7	6	5	4
Symbol	-	r8	t8	tx_empty_if
R/W	-	R	R	R/W
Reset value	-	0	0	0
Bit number	3	2	1	0
Symbol	rx_full_if	rx_overflow_if	frame_err_if	parity_err_if
R/W	R/W	R/W	R/W	R/W
Reset value	0	0	0	0

Bit number	Bit symbol	Description
6	r8	Receiver's ninth data, read only.
5	t8	Transmitter's ninth data, read only when parity is enabled.
		Send interrupt flag.
4	ty ometry if	1: send buffer is empty;
4	tx_empty_if	0: send buffer is full, software write 0 clear 0, write 1
		invalid.
		Receive interrupt flag,.
2	err full if	1: receive buffer is full;
3	rx_full_if	0: receive buffer is empty, software write 0 clear 0, write 1
		invalid.

		Receive overflow flag;
2	rx_overflow_if	1: receive overflow (lost new data);
		0: no overflow, software write 0 clear 0, write 1 invalid.
		Framing error flag.
1	с · с	1: framing error flag;
1	frame_err_if	0: no framing error flag, software write 0 clear 0, write 1
		invalid.
		Parity error flag.
0	parity_err_if	1: receiver parity error;
		0: parity is correct, software write 0 clear 0, write 1 invalid.

UART0_BUF (C1H) UART0 data register

Bit number	7	6	5	4	3	2	1	0
Symbol				-	-			
R/W		R/W						
Reset value	1	1	1	1	1	1	1	1

Bit number	Bit symbol	Description
7~0		Data register Read returns read-only receive data buffer contents, write into write-only send data buffer.

SCI_BDH (C2H) UART1 baudrate control register

Bit number	7	6	5	4	3	2	1	0
Symbol	break_check_ie	rx_edge_ie	-			-		
R/W	R/W	R/W	-	R/W	R/W	R/W	R/W	R/W
Reset value	0	0	-	0	0	0	0	0

Bit symbol	Description			
huadr chadr is	Interval detection interrupt enable.			
break_cneck_ie	1: interrupt enable; 0: interrupt disable.			
m odoo io	RxD pin active edge interrupt enable.			
rx_edge_ie	1: interrupt enable; 0: interrupt disable.			
	Reserved			
	Baud rate modules divisor register high 5 bits.			
	Bit symbol break_check_ie rx_edge_ie 			

SCI_BDL (C3H) UART1 baudrate control register

Bit number	7	6	5	4	3	2	1	0
Symbol		_						
R/W		R/W						
Reset value	0							

Bit number	Bit symbol	Description

	Baud rate control register. Baud rate modules divisor register lower 8 bits, Baud_Mod ={UART0_BDH[1:0], UART0_BDL},
7~0	 Baud_Mod ={ OAR 10_BDH[1:0], OAR 10_BDL}, Baud_Mod =0, does not generate baud rate clock. Baud_Mod =1~1023, SCI bandrate = BUSCLK/(16x Baud_Mod)

SCI_C1 (C4H) UART1 control register 1

Bit number	7	6	5	4
Symbol	cycle_mode	stop_mode	single_txd	data_mode
R/W	R/W	R/W	R/W	R/W
Reset value	0	0	0	0
Bit number	3	2	1	0
Symbol	parity_en	parity_sel	-	sci_enable
R/W	R/W	R/W	-	R/W
Reset value	0	0	_	0

Bit number	Bit symbol	Description				
		Cycle mode enable.				
7	cycle_mode	1: cycle mode or signal mode, txd connection rxd;				
		0: normal two-wire mode.				
6	stop_mode	stop bit selection. 1: 2bits; 0: 1bit.				
		Signal line mode enable.				
5	single_txd	1: cycle_mode=1, select line mode, txd pin is valid;				
		0: internal cycle mode, txd pin is invalid.				
		Transmission data mode selection.				
4	data_mode	1: 9 bit mode (the ninth bit is parity bit);				
		0: 8 bit mode.				
3	nomiter on	Parity enable.				
3	parity_en	1: parity enable; 0: parity disable.				
2	monitry col	Parity select.				
Ζ	parity_sel	1: odd parity; 0: even parity				
1		Reserved				
		Clock gating enable when the module is working, and writing 1				
0		indicates that the enable is valid. Open the module working				
0	sci_enable	clock, write 0 will close the module working clock, and reset				
		the function module.				

SCI_C2 (C5H) UART1 control register 2

Bit number	7	6	5	4
Symbol	tx_empty_ie	tx_finish_ie	rx_full_ie	idle_ie
R/W	R/W	R/W	R/W	R/W

Reset value	0	0	0	0
Bit number	3	2	1	0
Symbol	trans_enable	receive_enable	rwu	break_trans_start
R/W	R/W	R/W	R/W	R/W
Reset value	0	0	0	0

Bit number	Bit symbol	Description
		Send buffer empty interrupt enable.
7	tx_empty_ie	1: interrupt enable;
		0: interrupt disable.
		Send complete interrupt enable.
6	tx_finish_ie	1: interrupt enable;
		0: interrupt disable.
		Accept full interrupt enable.
5	rx_full_ie	1: interrupt enable;
		0: interrupt disable.
	4 idle_ie	Idle line interrupt enable.
4		1: interrupt enable;
		0: interrupt disable
		Transmitter enable.
3	trans_enable	1: transmitter open,;
		0: transmitter close
2	manairra amahla	Receiver enable.
Z	receive_enable	1: receiver open; 0: receiver close.
		Receiver wake-up control.
1	rwu	1: receiver is in standby and waiting for the wake condition.
		0: receiver is running normally.
0	hungels turne start	Send interval, write 1 and 0 to this bit, that is, a gap is placed
0	break_trans_start	in the data stream.

SCI_C3(C6H) UART1 control register 3

Bit number	7	6	5	4
Symbol	r8	t8	txd_direct	txd_inv
R/W	R	R/W	R/W	R/W
Reset value	0	0	0	0
Bit number	3	2	1	0
Symbol	rxd_inv	rwu_idlesel	idle_sel	wake_sel
R/W	R/W	R/W	R/W	R/W
Reset value	0	0	0	0

Bit number Bit symbol Description

7	r8	Receiver's ninth data, read only.
6	t8	Transmitter's ninth data.
		txd pin direction selection in signal line mode.
5	txd_direct	1: txd pin is the output in signal line mode;
		0: txd pin is the input in signal line mode.
		txd data inversion.
4	txd_inv	1: send data is reversed;
		0: send data is not reserved.
		rxd data inversion.
3	rxd_inv	1: receive data is reversed;
		0: receive data is not reserved.
		Receive wake idle detection.
		1: during the receive standby state (RWU=1), the idle bit is
2	rwu_idlesel	set when an IDLE character is detected;
		0: during the receive standby state (RWU=1), the idle bit is
		not set when an IDLE character is detected.
		Idle line type selection.
		1: idle character bit count starts after stop bit;
1	idle_sel	0: idle character bit count starts after start bit, and the 10-bit
		time is counted (if data_mode=1 or stop_mode=1, then add
		one time separately).
		Receiver wake-up mode selection.
0	wake_sel	1: address mark wake up;
		0: idle line wake up.

SCI_S2(C7H) UART1 sync segment control register

	<u> </u>	<u> </u>		
Bit number	7	6	5	4
Symbol	break_check_if	rx_edge_if	rx_active_flag	-
R/W	R/W	R/W	R/W	-
Reset value	0	0	0	-
Bit number	3	2	1	0
Symbol	-	-	break_trans_size	break_check_en
R/W	-	-	R/W	R/W
Reset value	-	-	0	0

Bit number	Bit symbol	Description
	break_check_if	Interval detection interrupt flag.
7		1: interval detected;
/		0: no interval detected, this bit writes 1 clear, write 0 is
		invalid.
6	rx_edge_if	RxD pin active edge interrupt flag.

		1: active edge on the receive pin;			
		0: active edge does not appear on the receive pin; this bit			
		writes 1 clear, write 0 is invalid.			
5	my active flag	Receiver activity tag, read only.			
3	rx_active_flag	1: receiver activity; 0: receiver idle.			
4~2		Reserved			
		Interval generation bit length.			
	break_trans_size	1: send by 13-bit time (if data_mode=1 or stop_mode=1,			
1		add 1 bit length respectively);			
		0: send by 10-bit time (if data_mode=1 or stop_mode=1,			
		add 1 bit length respectively).			
		Interval detection enable.			
0	hundr chools on	1: detected over 11 bit lengths (if data_mode=1 or			
0	break_check_en	stop_mode=1, add 1 bit length respectively);			
		0: not detecting.			

SCI_S1(C8H) UART1 interrupt status flag register

Bit number	7	6	5	4
Symbol	tx_empty_if	tx_finish_if	rx_full_if	idle_if
R/W	R	R	R	R
Reset value	0	0	0	0
Bit number	3	2	1	0
Symbol	rx_overflow_if	noise_err_if	frame_err_if	Parity_err_if
R/W	R	R	R	R
Reset value	0	0	0	0

Bit number	Bit symbol	Description
		Send buffer empty interrupt flag.
7	tx_empty_if	1: send buffer is empty;
		0: send buffer is full, read only.
		Send completion interrupt flag.
6	tx_finish_if	1: send completed, transmitter idle;
		0: the transmitter is working, read only.
		Accept full interrupt flag.
5	rx_full_if	1: receiver buffer is full;
		0: receiver buffer is empty, read only.
		Idle line break flag.
4	idle_if	1: idle line detected;
		0: no idle line detected, read only.
2	my overflow if	Receive overflow mark.
3	rx_overflow_if	1: receive overflow (new data loss); \

		0: no overflow, read only.		
		Noise marker.		
2	noise_err_if	1: noise detected;		
		0: no noise detected, read only.		
1	c :c	Frame error flag. 1: framing error detected;		
1	frame_err_if	0: no framing error detected, read only.		
0	parity_err_if	Parity error flag. 1: receiver parity error;		
		0: parity is correct, read only.		

SCI_D(C9H) UART1 data register

<u> </u>								
Bit number	7	6	5	4	3	2	1	0
Symbol	-							
R/W	R/W							
Reset value		0						

Bit number	Bit symbol	Description
		SCI data register.
7~0	-	Read returns the contents of the read-only receive data
		buffer, writes to the write-only send data buffer.

CSD_START(CAH) CSD scan open register

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	-	-		-
R/W	-	-	-	-	-	-		R/W
Reset value	-	-	-	-	-	-		0

Bit number	Bit symbol	Description
		1: Start scanning;
		0: Stop scanning
		Write 1 to CSD_START to start the scan. After one scan, the
		hardware will automatically set it to 0. To start the next scan,
		the software needs to set it to 1 again; if CSD_START=0
0		during the scan process, the scan will stop immediately, and
		the relevant signals inside the module reset
		Note: It must be used according to the process configuration:
		CSD_START=1, interrupt detected, configure
		CSD_START=0. Configuration of CSD_START is not
		allowed during scan

SNS_SCAN_CFG1 (CBH) Touch key scan configuration register 1

Bit number	7	6	5	4	3	2	1	0
Symbol	-	SW_PRE_OFF	PRS_DIV					
R/W	-	R/W	R/W					

Bit number	Bit symbol	Description
6	SW_PRE_OFF	Front-end charge and discharge clock switch control.
0	SW_FKE_OFF	1: close sw_clk; 0: open sw_clk
		Front-end charge and discharge clock frequency selection
		register:
		0~61: fixed frequency: $F=F48m/2/(PRS_DIV+4)$ (6M~369K);
5~0	PRS_DIV	62: highest frequency 3M, lowest frequency 1M, center
		frequency 1.5M, normal distribution;
		63: highest frequency 3M, lowest frequency 1M, center
		frequency 1.5M, evenly distributed.

SNS_SCAN_CFG2 (CCH) Touch key scan configuration register 2

			<u> </u>					
Bit number	7	6	5	4	3	2	1	0
Symbol	I	PULL_I_SELA_H	PARALLEL_EN	CSD_ADDR				
R/W	-	R/W	R/W	R/W				
Reset value	-	1	0	0				

Bit number	Bit symbol	Description
6	PULL_I_SELA_H	CSD pull-up current source configuration highest bit.
		SNS channel shunt enable register.
5	PARALLEL_EN	1: multi-channel parallel;
		0: signal channel.
4.0		Detect channel address, corresponding to the channel
4~0	CSD_ADDR	number 0~25.

SNS_SCAN_CFG3(CDH) Touch key scan configuration register 3

Bit number	7	6	5	4	3	2	1	0	
Symbol	-	RESO			CSD_DS		PRE_CHRG_SEL	INIT_DISCHRG_SEL	
R/W	-	R/W		R/W		R/W	R/W		
Reset value	eset value - 1 1 1		1	0	0	0	0		

Bit number	Bit symbol	Description						
		Counter bit select register.						
6 1	RESO	000: 9 bit; 001: 10 bit; 010: 11 bit;						
6~4	KESU	011: 12bit; 100: 13 bit; 101: 14 bit;						
		110: 15 bit; 111: 16 bit.						
2.0		Count clock frequency selection register.						
3~2	CSD_DS	00: 24M; 01: 12M; 10: 6M; 11: 4M; default 0.						
1	DDE CUDC SEI	Pre-charge time selection						
	PRE_CHRG_SEL	0: 20us; 1: 40us.						

0	INIT_I	DISCHRG	SEL	Pre-discharge time selection 0: 2us; 1: 10us.						
CSD_RAWDATA	CSD_RAWDATAL (CEH) CSD counter, low 8-bit									
Bit number	7	6	5		4	3	2	1	0	
Symbol				F	RAWD	ATA<7:02	>			
R/W						R				
Reset value						0				
CSD_RAWDATAH (CFH) CSD counter, high 8-bit										
Bit number		7	6	5	4	3	2	1	0	
Symbol		RAWDATA<15:8>								
R/W		R								
Reset value						0				
PSW(D0H) Progr	PSW(D0H) Program status register									
Bit number	7	6	5		4	3	2	1	0	
Symbol	CY	AC	F0		RS[1:0]	OV	F1	Р	
R/W	R/W	R/W R/W R/W						R/W	R/W	

Bit number	Bit symbol	Description							
7	СҮ	Carry flag. Set when the addition generates a carry or subtracts a borrow, otherwise clears. Set when the first operand of CJNE is less than the second operand, cleared by MUL or DIV instruction. Also affected by mouse commands (RLC, RRC) and bitwise instructions.							
6	AC	Auxiliary carry flag Set when the addition is borrowed from the third to fourth bits of the accumulator, or when the subtraction is borrowed from the third to fourth bits, otherwise cleared.							
5	F0	0 flag bit. Universal label for users.							
4~3	RS[1:0]	Working register group:Select a valid working register group:RS[1:0] Bank IRAM Area000<							
2	OV	Overflow flag bit When the addition produces a different carry of accumulator bits 6 and 7, or subtraction produces a borrow of accumulator bits 6 and 7, otherwise cleared. The OV flag indicates that the signed 8-bit							

Reset value

		result is out of bounds (greater than 127 or less than -128). The
		overflow flag is also set when the multiplication result is greater
		than 255 or an attempt is made to divide by 0.
1	E1	1 flag bit.
1	F1	Universal label for users.
0	р	Parity flag. Always contains the sum of Form 2 of all the bits in
0	Р	the accumulator.

PULL_I_SELA_L (D1H) CSD pull-up current source selection register

Bit number	7	6	5	4	3	2	1	0
Symbol		PULL_I_SEL<7:0>						
R/W		 R/W						
Reset value				()			

Bit number	Bit symbol	Description
7~0		CSD pull up current source size selection switch.
/~0	PULL_I_SEL<7:0>	The default is 0.

SNS_ANA_CFG (D2H) CSD scan parameter configuration register

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	RB_SEL			VTH_SEL		
R/W	-	-	R/W				R/W	
Reset value	-	-	1	0	1	1	1	1

Bit number	Bit symbol	Description
5~4	RB_SEL	 Rb resistance size selection. 0: 10k; 1: 20k; 2: 30k; 3: 40k; 4: 60k; 5: 80k; 6: 150k; 7: 300k; 60K/80K is recommended. Need to read Rb80K calibration value from chip flash when using: CBYTE[0x43CD]K/80K, proportional calculation normalization sensitivity.
2~1	VTH_SEL	VTH voltage selection signal VTH voltage selection signal, 000 select 1.5V, 001 select 2.1V; 010 select 2.5V; 011 select 2.9V; 100 select 3.2V; 101 select 3.5V; 110 select 3.9V; 111 select 4.2V.

SNS_IO_SEL1(D3H) SNS channel select register 1

Bit number	7	6	5	4	3	2	1	0
Symbol		SNS_IO_SEL1[7:0]						
R/W		R/W						
Reset value		0						

Bit number	Bit symbol	Description
		SENSOR port selection enable bit
		1: Select SENSOR;
		0: Do not select SENSOR
7~0		00000001=SNS0; 00000010=SNS1;
		00000100=SNS2; 00001000=SNS3;
		00010000=SNS4; 00100000=SNS5;
		01000000=SNS6; 10000000=SNS7

SNS_IO_SEL2 (D4H) SNS channel select register 2

	· /							
Bit number	7	6	5	4	3	2	1	0
Symbol		SNS_IO_SEL2 [7:0]						
R/W		R/W						
Reset value		0						

Bit number	Bit symbol	Description
		SENSOR port selection enable bit
7~0	SNS IO SEL2 [7:0]	00000001=SNS8; 00000010=SNS9; 00000100=SNS10; 00001000=SNS11;
, 0	0 SNS_10_SEL2 [7.0]	00010000=SNS12; 00100000=SNS13;
		01000000=SNS14; 10000000=SNS15

SNS_IO_SEL3 (D5H) SNS channel select register 3

	· /							
Bit number	7	6	5	4	3	2	1	0
Symbol		SNS_IO_SEL3[7:0]						
R/W		R/W						
Reset value		0						

Bit number	Bit symbol	Description
		SENSOR port selection enable bit
		1: Select SENSOR;
		0: Do not select SENSOR
7~0	SNS_IO_SEL3[7:0]	00000001=SNS16; 00000010=SNS17;
		00000100=SNS18; 00001000=SNS19;
		00010000=SNS20; 00100000=SNS21;
		01000000=SNS22; 10000000=SNS23

SNS_IO_SEL4 (D6H) SNS channel select register 4

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	-	-	SNS_IO_	SEL4[1:0]
R/W	-	-	-	-	-	-	R/W	
Reset value	_	_	-	-	-	_	0	

Bit number	Bit symbol	Description
		SENSOR port selection enable bit
1~0	SNG IO SEI 4[1.0]	1: Select SENSOR to enable;
1~0	SNS_IO_SEL4[1:0]	0: Do not select SENSOR enable
		01=SNS24; 10=SNS25

RST_STAT (D7H) Reset flag register

Bit number	7	6	5	4	3	2	1	0	
Symbol	-		_						
R/W	_		R/W						
Reset value	—				rst_state				

Bit number	Bit symbol	Description
6~0		Reset flag Register: { DEBUG_F, SOFT_F, PROG_F, ADDROF_F, BO_F, PO_F, WDTRST_F }

SCI_INT_CLR (D8H) UART1 interrupt flag clear register

Bit number	7	6	5	4	
Symbol	clr_tx_empty_if	clr_tx_finish_if	clr_rx_full_if	clr_idle_if	
R/W	R/W	R/W	R/W	R/W	
Reset value	0	0	0	0	
Bit number	3	2	1	0	
Symbol	clr_rx_overflow_if	clr_noise_err_if	clr_frame_err_if	clr_parity_err_if	
R/W	R/W	R/W	R/W	R/W	
Reset value	0	0	0	0	

Bit number	Bit symbol	Description
7	clr_tx_empty_if	Transmit buffer empty interrupt clear bit, this bit writes 1 to
		clear the corresponding interrupt, write 0 is invalid.
6	clr_tx_finish_if	Transmit complete interrupt clear bit, this bit writes 1 to
0	en_tx_mmsn_n	clear the corresponding interrupt, write 0 is invalid.
5	clr_rx_full_if	Receive full interrupt clear bit, this bit writes 1 to clear the
5	cii_ix_iuii_ii	corresponding interrupt, write 0 is invalid.
4	alm idla if	Idle line interrupt clear bit, this bit writes 1 to clear the
4	clr_idle_if	corresponding interrupt, write 0 is invalid.
3	ala an anadian if	Receive overflow flag clear bit, this bit writes 1 to clear the
3	clr_rx_overflow_if	corresponding interrupt, write 0 is invalid.
2	alu naisa am if	Noise flag clear bit, this bit writes 1 to clear the
2	clr_noise_err_if	corresponding interrupt, write 0 is invalid.
1	ala facana ami if	Frame flag clear bit, this bit writes 1 to clear the
1	clr_frame_err_if	corresponding interrupt, write 0 is invalid.

0		clr_parity_err_if Parity error flag clear bit, this bit writes 1 to clear the							ne		
			correspon	corresponding interrupt, write 0 is invalid.							
ADC_IO_SEL1 (D9H) ADC selection enable register 1											
Bit nu	umber	7	7 6 5 4 3 2 1 0								
Syn	nbol		ADC_IO_SEL1[7:0]								
R/	W		R/W								
Reset	value				()					

Bit number	Bit symbol	Description
		Enable the ADC control function that disables analog input
		pins
		1: Select ADC function;
7~0	ADC_IO_SEL1[7:0]	0: Do not select ADC function
/~0		00000001=ADC00; 00000010=ADC01;
		00000100=ADC02; 00001000=ADC03;
		00010000=ADC04; 00100000=ADC05;
		01000000=ADC06; 10000000=ADC07

	ADC_IO_SEL2	(DAH) Al	DC selection	on enable r	egister 2				
Bit number 7 6 5 4 3 2 1								0	
	Symbol		ADC_IO_SEL2[7:0] R/W						
	R/W								
	Reset value				()			

Bit number	Bit symbol	Description
7~0	ADC_IO_SEL2[7:0]	Enable the ADC control function that disables analog input pins 1: Select ADC function; 0: Do not select ADC function 00000001=ADC08; 00000010=ADC09; 00000100=ADC10; 00001000=ADC11; 00010000=ADC12; 00100000=ADC13; 01000000=ADC14; 1000000=ADC15

ADC_IO_SEL3 (DBH) ADC function selection register 3

Bit number	7	6	5	4	3	2	1	0		
Symbol		ADC_IO_SEL3[7:0]								
R/W		R/W								
Reset value				()					

	Bit number	Bit symbol	Description
--	------------	------------	-------------

		Enable the ADC control function that disables analog input
		pins
		1: Select ADC function;
7~0	ADC IO SEL3[7:0]	0: Do not select ADC function
/~0	ADC_IO_SEL5[7.0]	00000001=ADC16; 00000010=ADC17;
		00000100=ADC18; 00001000=ADC19;
		00010000=ADC20; 00100000=ADC21;
		01000000=ADC22; 10000000=ADC23

ADC_IO_SEL4 (DCH) ADC selection enable register 4

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	-	-	ADC_IO_SEL4[1:0]	
R/W	_	-	-	-	-	-	R/W	
Reset value	-	-	-	-	-	-	0	

Bit number	Bit symbol	Description
		Enable the ADC control function that disables analog input
		pins
1~0	ADC_IO_SEL4[1:0]	1: Select ADC function;
		0: Do not select ADC function
		01=ADC24; 10=ADC25

PU_PA (DDH) PA port pull-up resistor selection register

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	-	-		-
R/W	-	-	-	-	-	-	R/W	
Reset value	-	-	-	-	-	-	0	

Bit number	Bit symbol	Description
		PA port pull-up resisor control register.
1~0		Set PU_PA to 1 to enable the corresponding pin pull-up
1~0		resistor, clear the corresponding pin to disable the pull-up
		resistor, the pull-up resistor is 4.7K.

PU_PB(DEH) PB port pull-up resistor selection register

	<u> </u>	-						
Bit number		6	5	4	3	2	1	0
Symbol		_						
R/W		R/W						
Reset value				()			

Bit number	Bit symbol	Description
7~0		PB port pull-up resisor control register.
/~0		Set PU_PB to 1 to enable the corresponding pin pull-up

	resistor, clear the corresponding pin to disable the pull-up
	resistor, the pull-up resistor is 4.7K.

PU_PC(DFH) PC port pull-up resistor selection register

Bit number	7	6	5	4	3	2	1	0
Symbol		-						
R/W		R/W						
Reset value		0						

Bit number	Bit symbol	Description
7~0		PC port pull-up resisor control register. Set PU_PC to 1 to enable the corresponding pin pull-up resistor, clear the corresponding pin to disable the pull-up resistor, the pull-up resistor is 4.7K.

ACC(E0H) Accumulator

Bit number	7	6	5	4	3	2	1	0
Symbol		ACC						
R/W		R/W						
Reset value		0						

Bit number	Bit symbol	Description
7~0	ACC	Accumulator The targe register is suitable for all arithmetic and logic operations.

IRCON2 (E1H) Interrupt flag register 2

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	-	IE10	IE9	IE8
R/W	-	-	-	-	-	R/W	R/W	R/W
Reset value	_	_	-	-	-	0	0	0

Bit number	Bit symbol	Description
7~3		Reserved
2	IE10	UART1 interrupt flag
1	IE9	UART0 interrupt flag
0	IE8	LVDT interrupt flag

PU_PD (E2H) PD port pull-up resistor selection register

Bit number	7	6	5	4	3	2	1	0
Symbol		_						
R/W		R/W						
Reset value		0						

Bit number	Bit symbol	Description
		PD port pull-up resisor control register.
7~0		Set PU_PD to 1 to enable the corresponding pin pull-up resistor, clear the corresponding pin to disable the pull-up
		resistor, the pull-up resistor is 4.7K.

IICADD (E3H) IIC address register

Bit number	7	6	5	4	3	2	1	0
Symbol		IICADD[7:1]						
R/W		R/W						
Reset value		0						

IICBUF (E4H) IIC transmit and receive data register

Bit number	7	6	5	4	3	2	1	0
Symbol		IICBUF						
R/W		R/W						
Reset value				()			

Bit number	Bit symbol	Description
7~0	IICBUF	IIC transmit receive data buffer

IICCON (E5H) IIC configuration register

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	IIC_RST	RD_SCL_EN	WR_SCL_EN	SCLEN	SR	IIC_EN
R/W	-	-	R/W	R/W	R/W	R/W	R/W	R/W
Reset value	-	-	0	1	0	0	0	0

Bit number	Bit symbol	Description
7~6		Reserved
5	IIC_RST	IIC module reset signal 1: IIC module reset operation
		0: IIC module works properly
4	RD_SCL_EN	Host read pull low clock line control bit.1: enable the host to read and pull the low clock line function;0: disable the host to read and pull the low clock line function.
3	WR_SCL_EN	Host write pull low clock line control bit. 1: enable the host to write and pull the low clock line function; 0: disable the host to write and pull the low clock line function.
2	SCLEN	IIC clock enable bit 1= clock work properly 0= pull down the clock line.
1	SR	IIC conversion rate control bit

		1: Conversion rate control is turned off to adapt to the standard
		speed mode (100K);
		0: Conversion rate control is enabled to adapt to fast speed mode
		(400K)
0	UC EN	IIC work enable bit
0	IIC_EN	1= IIC normal work; 0= IIC not work

IEN1 (E6H) Interrupt enable register 1

Bit number	7	6	5	4	3	2	1	0
Symbol	EX7	EX6	EX5	EX4	EX3	EX2	-	-
R/W	R/W	R/W	R/W	R/W	R/W	R/W	-	-
Reset value	0	0	0	0	0	0	_	_

Bit number	Bit symbol	Description			
7	EX7	WDT/Timer2 interrupt enable			
6	EX6	LED interrupt enable			
5	EX5	CSD interrupt enable			
4	EX4	ADC interrupt enable			
3	EX3	IIC interrupt enable			
2	EX2	External interrupt 2 interrupt enable			
1~0	-	Reserved			

IEN2(E7H) Interrupt enable register 2

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	-	EX10	EX9	EX8
R/W	-	-	-	-	-	R/W	R/W	R/W
Reset value	_	-	-	-	-	0	0	0

Bit number	Bit symbol	Description
7~3	-	Reserved
2	EX10	UART1 interrupt enable
1	EX9	UART0 interrupt enable
0	EX8	LVDT interrupt enable

IICSTAT (E8H) IIC status register

Bit number	7	6	5	4
Symbol	IIC_START	IIC_STOP	IIC_RW	IIC_AD
R/W	R	R	R	R
Reset value	0	1	0	0
Bit number	3	2	1	0
Symbol	IIC_BF	IIC_ACK	IIC_ACK	IIC_RECOV
R/W	R	R	R/W	R/W

S	emi	icon	d	uct	or	

		-		
Reset value	0	1	0	0

Bit number	Bit symbol	Description
		Start signal flag
7	IIC_START	1: Indicates that the start bit is detected;
		0: Indicates that the start bit is not detected.
		Stop signal flag
6	IIC_STOP	1: stop status detected;
		0: no stop status detected
		Read and write flag.
~		Record the read/write information obtained from the address
5	IIC_RW	byte after the last address match.
		1: read; 0: write.
		Address data flag bit.
4		1: indicates that the most recently received or sent byte is data;
4	IIC_AD	0: indicates that the most recently received or sent byte is
		address.
		IICBUF full flag.
		Received in IIC bus mode:
		1: received successfully, buffer is full;
		0: received successfully, buffer is empty.
3	IIC_BF	Send in IIC bus mode
		1: data transmission is in progress (does not include the
		acknowledge bit and the stop bit), buffer is full;
		0: data transmission has been completed (does not include the
		acknowledge bit and the stop bit), buffer is empty.
		Answer flag
2	IIC_ACK	1: invalid response signal;
		0: effective response signal.
		Write conflict flag.
		1: when the IIC is transmitting the current data, the new data is
1	IIC_WCOL	attempted to be written to the transmit buffer; new data cannot
		be written to the buffer.
		0: no write conflict
		Receive overflow flag bit
		1: When the previous data received by the IIC has not been
0	IIC_RECOV	taken, new data is received, the new data cannot be received by
		the buffer.
		0: no receive overflow.

IICBUFFER (E9H) IIC transmit and receive data buffer register

Bit number	7	6	5	4	3	2	1	0	
Symbol		IICBUFFER							
R/W		R/W							
Reset value		0							
TRISA (EAH) H	PA port dir	A port direction register							
Bit number	7	6	5	4	3	2	1	0	
Symbol	-								
R/W	_	R/W							
Reset value	-	-	-	-	-	-	1	1	

Bit number	Bit symbol	Description
1~0		PA direction register,
1~0		0: output; 1: input

TRISB(EBH) PB port direction register

Bit number	7	6	5	4	3	2	1	0
Symbol					-			
R/W				R	/W			
Reset value	1	1	1	1	1	1	1	1

Bit number	Bit symbol	Description
7~0		PB direction register,
/~0		0: output; 1: input

TRISC(ECH) PC port direction register

Bit number	7	6	5	4	3	2	1	0
Symbol		_						
R/W				R	/W			
Reset value	1	1	1	1	1	1	1	1

Bit number	Bit sy	ymbol	Description					
7~0	-		PC direction register, 0: output; 1: input					
TRISD(EDH) P	D port dire	ection regi	ister					
Bit number	7	6	5	4	3	2	1	0
0 1 1								

Symbol					-			
R/W				R	/W			
Reset value	1	1	1	1	1	1	1	1

Bit number	Bit symbol	Description
7~0		PD direction register,

			0: output	; 1: input				
COM_IO_SEL (EEH) COM large sink current selection register								
Bit number	7	7 6 5 4 3 2 1 0						0
Symbol					-			
R/W		R/W						
Reset value					0			

Bit number	Bit symbol	Description
		COM port select configure register, corresponding PB port.
7~0		1: select COM port mode;
		0: select IO port mode.

ODRAIN_EN (EFH) PA open drain enable register

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	-	-		-
R/W	-	-	-	-	-	-	R	/W
Reset value	-	-	-	-	-	-	0	0

Bit number	Bit symbol	Description
		PA1 port open drain output enable register
1		1: open drain output
		0: CMOS output
		PA0 port open drain output enable register
0		1: open drain output
		0: CMOS output

B (F0H) B register

Bit number	7	6	5	4	3	2	1	0	
Symbol		В							
R/W				R	/W				
Reset value		0							

Bit number	Bit symbol	Description
		B register.
7~0	В	Source and destination registers formultiplication and
		division.

IRCON1 (F1H) Interrupt flag register 1

Bit number	7	6	5	4	3	2	1	0
Symbol	IE7	IE6	IE5	IE4	IE3	IE2	-	-
R/W	R/W	R/W	R/W	R/W	R/W	R/W	-	-
Reset value	0	0	0	0	0	0	-	-

Bit number	Bit symbol	Description			
7	IE7	WDT/Timer2 interrupt flag			
6	IE6	LED interrupt flag			
5	IE5	CSD interrupt flag			
4	IE4	ADC interrupt flag			
3	IE3	IIC interrupt flag			
2	IE2	External interrupt 2 interrupt flag			
1~0	_	Reserved			

PERIPH_IO_SEL (F2H) IIC/UART0/INT function control register

Bit number	7	6	5	4	3	
Symbol	-	IIC_AFIL_SEL	IIC_DFIL_SEL	UART0_	IO_SEL	
R/W	-	R/W	R/W	R/W	R/W	
Reset value	-	1	0	0	0	
Bit number	2	1	0	/		
Symbol	INT2_IO_SEL	INT1_IO_SEL	INT0_IO_SEL			
R/W	R/W	R/W	R/W	/		
Reset value	0	0	0			

Bit number	Bit s	symbo	ol			De	scription			
				IIC p	oort ar	alog filter selecti	on enable			
6	IIC_A	2_AFIL_SEL 1: select analog filter function;								
				0: do	o not s	elect analog filter	function.			
				IIC p	oort di	gital filter selecti	on enable.			
5	IIC_D	FIL_S	EL	1: se	lect di	gital filter function	on;			
				0: do	o not s	elect digital filter	function.			
				UAF	RT0 se	lect enable.				
4.2			art	00: s	elect	UART0(RXD0_A	/TXD0_A) functi	ion		
4~3	UARIO	UART0_IO_SEL	01: select UART0(RXD0_B/TXD0_B) function							
				1x: select UART0(RXD0_C/TXD0_C) function						
				INT2 select enable, correspond PD7						
2	INT2_	IO_S	EL	1: select INT2 function						
				0: not select INT2 function						
				INT1 select enable, correspond PD6						
1	INT1_	_IO_S	EL	1: select INT1 function						
				0: not select INT1 function						
				INTO select enable, correspond PD0						
0	INT0_	_IO_S	EL	1: select INT0 function						
		0: not select INT0 function								
IPL2 (F4H) Inte	errupt pric	ority re	egiste	r 2						
Bit number	7						0			

Symbol	-	-	-	-	-	IPL2.2	IPL2.1	IPL2.0
R/W	-	-	-	-	-	R/W	R/W	R/W
Reset value	-	-	-	-	-	0	0	0

Bit number	Bit symbol	Description
7~3		Reserved
2		UART1 interrupt priority.
2	IPL2.2	1: high; 0: low.
1		UART0 interrupt priority.
1	IPL2.1	1: high; 0: low.
		LVDT interrupt priority.
0	IPL2.0	1: high; 0: low.

IPL1 (F6H) Interrupt priority register 1

Bit number	7	6	5	4	3	2	1	0
Symbol	IPL1.7	IPL1.6	IPL1.5	IPL1.4	IPL1.3	IPL1.2	-	-
R/W	R/W	R/W	R/W	R/W	R/W	R/W	-	-
Reset value	0	0	0	0	0	0	-	-

Bit number	Bit symbol	Description
7	IPL1.7	WDT/Timer 2 interrupt priority.
/	IFL1.7	1: high; 0: low.
6	IPL1.6	LED interrupt priority.
0	IFL1.0	1: high; 0: low.
5	IPL1.5	CSD interrupt priority.
3	IPL1.5	1: high; 0: low.
4	IPL1.4	ADC interrupt priority.
4	IPL1.4	1: high; 0: low.
3	IPL1.3	IIC interrupt priority.
5	IPL1.5	1: high; 0: low.
2	IPL1.2	External interrupt priority.
Ζ	IFL1.2	1: high; 0: low.
1~0		Reserved

EXT_INT_CON (F7H) External interrupt polarity control register

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	INT2_PO	LARITY	INT1_PC	DLARITY	INT0_PC	DLARITY
R/W	-	-	R/W	R/W	R/W	R/W	R/W	R/W
Reset value	-	_	0	1	0	1	0	1

Bit number	Bit symbol	Description
---------------	------------	-------------

		External interrupt 2 trigger polarity selection:
5~4		01: falling edge (wake-up from low level in idle mode)
3~4	INT2_POLARITY	10: rising edge (Wake-up from high level in idle mode)
		00/11: double edge (wake-up from low level in idle mode).
		External interrupt 1 trigger polarity selection:
3~2		01: falling edge (wake-up from low level in idle mode)
3~2	INT1_POLARITY	10: rising edge (Wake-up from high level in idle mode)
		00/11: double edge (wake-up from low level in idle mode).
		External interrupt 0 trigger polarity selection:
1.0	INTO DOI ADITY	01: falling edge (wake-up from low level in idle mode)
1~0	INT0_POLARITY	10: rising edge (Wake-up from high level in idle mode)
		00/11: double edge (wake-up from low level in idle mode).

DATAA (F8H) PA data register

Bit number	7	6	5	4	3	2	1	0	
Symbol	-	-	-	-	-	-	PA1	PA0	
R/W	-	-	-	-	-	-	R/W		
Reset value	-	_	-	_	-	_	1	1	

Bit number	Bit symbol	Description
1~0		PA data register. The output level of the PA group can be
		configured as the GPIO port. The read value is the level state
		of the current IO port (input) or the configured output
		(output) value.

SPROG_ADDR_H (F9H) Address Control Register

	- ~ /			0				
Bit number	r 7	6	5	4	3	2	1	0
Symbol	-	-	-	-	-	-		
R/W	-	-	-	-	-	R/W		
Reset value	e -	-	-	-	-	0	0	0

Bit number	Bit symbol	Description
		When $EEP_SELECT = 0$,
		Bit[2]: DATA area selection enable,
		0: Select 0x3C00~0x3FFF; 1: Reserved.
		{SPROG_ADDR_H[1:0], SPROG_ADDR_L[7:0]} means
2~0		0x3C00~0x3FFF address
2~0		When $EEP_SELECT = 1$,
		Bit[2] = 0, select NVR3 (512Bytes);
		Bit[2] = 1, select NVR4 (512Bytes)
		{SPROG_ADDR_H[0], SPROG_ADDR_L[7:0]} represents
		the byte address within the page

		Bit[1]: reserved;							
SPROG_ADDR_L(FAH)Address register, lower 8 bits									
Bit number	7	7 6 5 4 3 2 1 0							
Symbol					-				
R/W		R/W							
Reset value		0							

Bit number	Bit symbol Description								
7~0		Lov	Lower 8 bits of address						
SPROG_DATA	(FBH) Data	FBH) Data register							
Bit number	7	7 6 5 4 3 2 1 0							
Symbol					_				
R/W		R/W							
Reset value		0							

Bit number	Bit symbol Description									
7~0		_	Data to be	Data to be written						
SPROG_CMD(PROG_CMD(FCH) Command register									
Bit number	7	7 6 5 4 3 2 1 0								
Symbol					-					
R/W		R/W								
Reset value		0								

Bit number	Bit symbol	Description
7~0		Write 0x96: page erase;
10		Write 0x69: byte burning.

SPROG_TIM(FDH) Erase time control register

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	-	-	-	-
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset value	0	1	0	1	1	0	1	0

Bit number	Bit symbol	Description
7~5		Byte write time is fixed at 23.5us
		When EEP_SELECT=0,
		bit[4:0]: 0~9 corresponds to the erasing time (1~10ms) +
1.0		0.13ms (step 1ms), >9 is 10.13ms.
4~0	SPROG_TIM[4:0]	When EEP_SELECT=1,
		bit[4:0]: 0~9 corresponds to erasing time (0.5~5ms) +
		0.065ms (step 0.5ms), and when >9, it is 5.065ms.

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	PD_LVDT	PD_BOR	PD_XTAL_32K	PD_CSD	PD_ADC
R/W	-	-	-	R/W	R/W	R/W	R/W	R/W
Reset value	-	-	-	1	1	1	1	1

PD_ANA (FEH) Module switch control register

Bit number	Bit symbol	Description				
		LVDT control register.				
4	PD_LVDT	1: close;				
		0: open; default close.				
		BOR control register.				
3	PD_BOR	1: close;				
		0: open; VBOR=2.1V, default close.				
2	PD_XTAL_32K	RTC crystal oscillator circuit (32768Hz/4MHz) control				
Ζ	FD_ATAL_32K	register. 1: close; 0: open; default close.				
		CSD work control register:				
1	PD_CSD	0: Working;				
		1: Not working				
		Analog ADC shutdown control register:				
0	PD_ADC	0: Working;				
		1: Not working				

SEL_LVDT_VTH (FFH) LVDT threshold selection register

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	-	-		-
R/W	-	-	-	-	-	-	R/W	
Reset value	-	-	-	-	-	_	0	0

	Bit number	Bit symbol	Description
	1~0		LVDT threshold selection;
			00=2.4V; 01=3.0V; 10=3.6V; 11=4.2V.

SFR register detail table

Note: The reserved bits of the register, write operation is prohibited, otherwise it may cause chip abnormality.

4.2. Secondary bus register description

Bit number	7	6	5	4	3	2	1	0
Symbol					-			
R/W					R			

Reset value		FF											
CFG1_REG(01)	H) Config	uration wo	ord register	:1		_	1						
Bit number	7	6	5	4	3	2	1	0					
Symbol	-												
R/W		R											
Reset value					FF								
CFG2_REG(02	H) Config	uration wo	ord register	2									
Bit number	7	6	5	4	3	2	1	0					
Symbol					-								
R/W					R								
Reset value					FF								
CFG3_REG(03	H) Config	uration wo	ord register	:3									
Bit number	7	6	5	4	3	2	1	0					
Symbol					-								
R/W					R								
Reset value					FF								
CFG4_REG(04	H) Config	uration wo	ord register	:4									
Bit number	7	6	5	4	3	2	1	0					
Symbol		-											
R/W					R								
Reset value					FF								
CFG5_REG(05)	H) Config	uration wo	ord register	:5									
Bit number	7	6	5	4	3	2	1	0					
Symbol					-								
R/W					R								
Reset value					FF								
CFG6_REG(06	H) Config	uration wo	ord register	:6									
Bit number	7	6	5	4	3	2	1	0					
Symbol					-								
R/W					R								
Reset value					FF								
CFG7_REG(07	H) Config	uration wo	ord register	:7									
Bit number	7	6	5	4	3	2	1	0					
Symbol					-								
R/W					R								
Reset value					FF								
CFG8_REG(08	H) Config	uration wo	ord register	:8									
Bit number	7	6	5	4	3	2	1	0					
Symbol					-								

1	6	5	4	3	2	1	0						
<u> </u>													
R													
AH) Configuration word register10													
7	6	5	4	3	2	1	0						
				-									
				FF									
H) Config	guration w	ord registe	er11										
7	6	5	4	3	2	1	0						
				-									
				R									
]	FF									
H) Confi	guration w	ord registe	er12										
7	6	5	4	3	2	1	0						
				-									
				R									
]	FF									
)H) Confi	guration w	vord regist	er13	•	•								
7	6	5	4	3	2	1	0						
				-									
				R									
]	FF									
H) Config	guration w	ord registe	er14										
7	6	5	4	3	2	1	0						
				-									
				R									
]	FF									
H) Config	guration w	ord registe	er15										
7	6	5	4	3	2	1	0						
				-									
				R									
FF													
PH) Configuration word register16													
H) Config	guration w	ord registe	er16										
	7 H) Confi 7 H) Confi 7 H) Confi 7 H) Confi 7 H) Confi 7 H) Confi 7 H) Confi 7 H) Confi 7	76H) Configuration w 76H) Configuration w 76	765H) Configuration word register765H) Configuration word register76565	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	7 6 5 4 3 - R FF H) Configuration word register10 7 6 5 4 3 7 6 5 4 3 - R FF H) Configuration word register11 - - R 7 6 5 4 3 - - H) Configuration word register12 - - R - - T 6 5 4 3 -	FF FF - R FF H) Configuration word register10 7 6 5 4 3 2 FF H) Configuration word register11 7 6 5 4 3 2 - R FF H) Configuration word register12 - R FF H) Configuration word register13 7 6 5 FF H) Configuration word register13 7 6 5 FF H) Configuration word register14 7 6 5 7 6 5 FF H) Configuration word register15 <t< td=""><td>FF FF I configuration word register 7 6 5 7 6 5 FF H) Configuration word register 7 6 5 4 3 2 1 7 6 5 4 3 2 1 7 6 5 4 3 2 1 7 6 5 4 3 2 1 7 6 5 4 3 2 1 7 6 5 4 3 2 1 7 6 5 4</td></t<>	FF FF I configuration word register 7 6 5 7 6 5 FF H) Configuration word register 7 6 5 4 3 2 1 7 6 5 4 3 2 1 7 6 5 4 3 2 1 7 6 5 4 3 2 1 7 6 5 4 3 2 1 7 6 5 4 3 2 1 7 6 5 4						

Symbol		-												
R/W					R									
Reset value					FF									
CFG17_REG(1	1H) Confi	guration w	ord registe	er17										
Bit number	7	6	5	4	3	2	1	0						
Symbol		-												
R/W		R												
Reset value		FF												
CFG18_REG(1	2H) Confi	H) Configuration word register18												
Bit number	7	6	5	4	3	2	1	0						
Symbol					-									
R/W					R									
Reset value					FF									
CFG19_REG(1	3H) Confi	guration w	ord registe	er19										
Bit number	7	6	5	4	3	2	1	0						
Symbol					-									
R/W		R												
Reset value					FF									
CFG20_REG(14	4H) Confi	guration w	ord registe	er20										
Bit number	7	6	5	4	3	2	1	0						
Symbol					-									
R/W					R									
Reset value					FF									
CFG21_REG(1	5H) Confi	guration w	ord registe	er21										
Bit number	7	6	5	4	3	2	1	0						
Symbol					-									
R/W					R									
Reset value					FF									
CFG22_REG(1	6H) Confi	guration w	ord registe	er22										
Bit number	7	6	5	4	3	2	1	0						
Symbol					-									
R/W					R									
Reset value					FF									
CFG23_REG(1	7H) Confi	guration w	ord registe	er23										
Bit number	7	6	5	4	3	2	1	0						
Symbol					_									
R/W					R									
Reset value					FF									

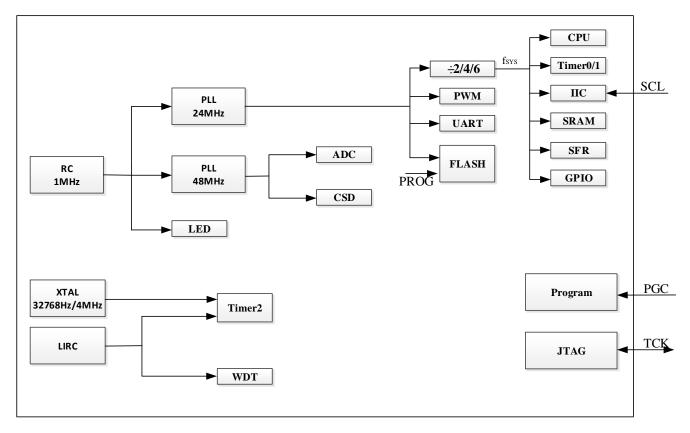
CFG24_REG(18H) Configuration word register24

Bit number	7	6	5	4	4	3	2	1	0	
Symbol	-									
R/W	R									
Reset value	FF									
CFG25_REG(1	9H) Configuration word register25									
Bit number	7	6	5		4	3	2	1	0	
Symbol	-									
R/W	R									
Reset value	FF									
CFG30_REG(1AH) Configuration word register30										
Bit number	7	6	5		4	3	2	1	0	
Symbol	-									
R/W	R									
Reset value	FF									
DUMMY_REG(1FH) RTC crystal oscillator circuit selection register										
Bit number	7	6	5	4	3	2	1		0	
Symbol	-	-	-	-	-	-	-	XTAL_	XTAL_CLK_SEL	
D/W								D/W		

Symbol	-	-	-	-	-	-	-	XTAL_CLK_SEL
R/W	-	-	-	-	-	-	-	R/W
Reset value	-	-	-	-	-	-	-	0

Bit number	Bit symbol		Description							
7~1			Reserved							
0	XTAL_CLK_SEL		RTC crystal oscillator circuit selection register 1: XTAL4MHz; 0: XTAL32768Hz							
EEP_SELECT (20H) EEP NVR/main block selection register										
Bit number	7	6	5	4	3	2	1	0		
Symbol	-	-	-	-	-	-	-	-		
R/W	-	_	_	-	-	-	_	R/W		
Reset value	-	-	-	-	-	-	-	0		

Bit number	Bit symbol	Description			
7~1		Reserved			
0		1: Select NVR3/4 as DATA area			
		NVR3, 1 page, 512 Bytes;			
		NVR4, 1 page, 512 Bytes			
		0: Select DATA area (0x3C00~0x3FFF), 1 page, 1024 Bytes			


5. Clock, Reset, Working Mode and Watchdog

5.1. Clock

5.1.1 Clock definition

Clock source:

- Internal high-speed RC oscillator: RC1M
- Internal low-speed RC oscillator: LIRC32k
- External crystal oscillator: 32768 Hz/4 MHz
- The PLL clock is obtained by multiplying the frequency of RC1M: PLL48M/ PLL24M

Clock block diagram

The BF7612CMXX series clocks are used in the following Modules:

BF7612CMXX clock definition:

PLL24MHz: used as UART, Flash, and PWM clock.

 f_{SYS} : 12 MHz/6 MHz/4 MHz, can be used as core related clock;

XTAL32768Hz/4MHz: can be used as Timer2 clock.

RC1MHz: Built-in RC oscillator, the frequency is 1MHz, as the LED drive clock.

LIRC: Internal low-speed clock 32kHz, used as watchdog clock and Timer2 clock.

PLL48MHz: 48MHz clock generated by phase-locked loop, used for CSD and ADC clock.

SCL: IIC host clock, frequency 100kHz/400kHz, sent by IIC host, as IIC communication clock. **PGC**: Programming clock, frequency 400kHz~5MHz, download clock when programming and burning programs.

TCK: Debug clock.

5.1.2. Clock Registers

SIS_CLK_CF	IS_CLK_CFG(84H) System clock configuration register							
Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	-	-	PLL_CLK	SEL[1:0]
R/W	-	-	-	-	-	-	R	/W
Reset value	-	-	-	-	-	-	0	1

SYS_CLK_CFG(84H) System clock configuration register

Bit number	Bit symbol	Description
7~2		Reserved
1.0		PLL clock divider selection register:
1~0	PLL_CLK_SEL	00: 12MHz; 01: 6MHz; 10: 4MHz; 11: Reserved

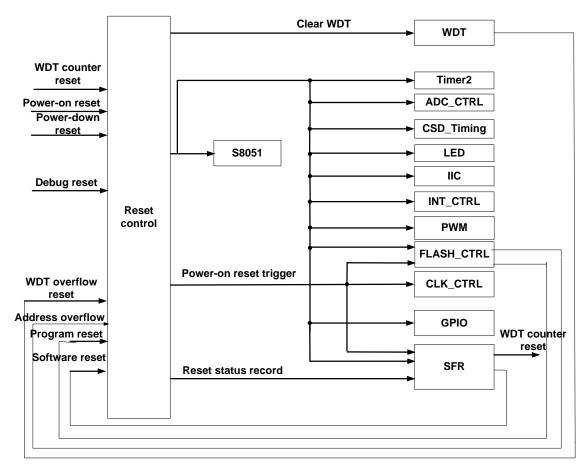
PD_ANA (FEH) Module switch control register

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	PD_LVDT	PD_BOR	PD_XTAL_32K	PD_CSD	PD_ADC
R/W	-	-	-	R/W	R/W	R/W	R/W	R/W
Reset value	-	-	-	1	1	1	1	1

Bit number	Bit symbol	Description
2	PD XTAL 32K	RTC crystal oscillator circuit (32768Hz/4MHz) control
2	PD_ATAL_52K	register. 1: close; 0: open; default close.

Secondary bus register:

DUMMY_REG(1FH) RTC crystal oscillator circuit selection register


			6						
Bit number	7	6	5	4	3	2	1	0	
Symbol	-	-	-	-	-	-	-	XTAL_CLK_SEL	
R/W	-	-	-	-	-	-	-	R/W	
Reset value	_	-	_	_	_	_	_	0	

Bit number	Bit symbol	Description
7~1		Reserved
0	XTAL_CLK_SEL	RTC crystal oscillator circuit selection register 1: XTAL4MHz 0: XTAL32768Hz

5.2. Reset System

There are 7 reset modes in the BF7612CMXX: WDT overflow reset, power on reset (POR), brown-out reset (BOR), programming reset, modified configuration reset, PC pointer overflow reset, software reset. Any one of above reset, global will make chip reset. We can judge the reset flag register which reset happen, the reset must be cleared by software.

Reset block diagram

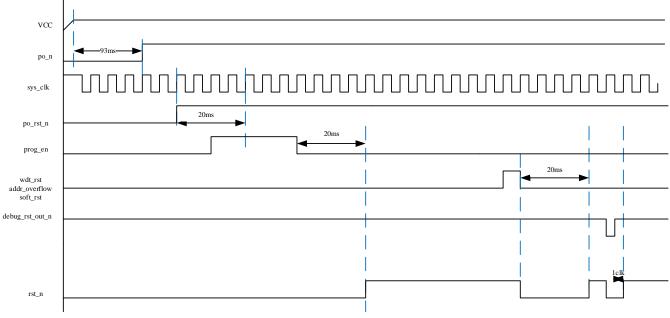
5.2.1. Reset Sequence

po_n: Power-on reset. After the system is powered on, the analog module generates a low-level signal and lasts for 93ms. When the power-on reset is low, the entire chip is in the reset state, and after the global reset signal continues to be effective 20ms after the power-on reset is high, the system exits the reset mode.

bo_n: Brown-out reset, the analog module generates a low-level signal after the system has a power-down reset. When the power-down reset signal is low, the entire chip is in the reset state. After the global reset signal becomes high, the system exits the reset mode after the global reset signal continues to be valid for 20ms.

prog_en: FLASH Programming reset. When prog_en is high, it is the programming mode of

D Semiconductor


FLASH. At this time, the global reset signal is valid. After it goes low, the global reset signal continues to be valid for 20ms.

WDT Overflow Reset, reset the global for 20ms after the WDT overflow. After 20ms, the system exits the reset mode.

addr_overflow: PC pointer overflow reset. If the PC pointer exceeds the valid address range of the flash when the MCU addresses the program memory, the addr_overflow signal becomes high, and the sys_clk clock rising edge detects the high level of addr_overflow (requires 1 clock cycle) and resets the global 20ms, the reset signal will clear the addr_overflow signal to zero. After 20ms, the system exits the reset mode.

software reset, make the soft reset signal vaild by writing the SFR, so that the global reset signal is active 20ms. After 20ms, the system exits the reset mode.

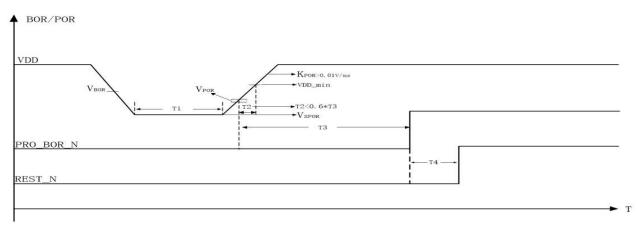
debug Reset, for the core repair module output reset signal, low means reset is valid. Chip global reset, there will be no 20ms initialization process, only one system clock reset low.

Reset timing diagram

Reset sequence description:

1. The chip has a power-on reset, and the analog POR module delays for 93ms, and po_n is pulled high.

2. The programmer sends instructions to make the chip enter the programming mode (prog_en is pulled high), and the system is in a global reset state in the programming mode. After the programming is completed, the programming mode is exited. After a delay of 20ms, rst_n is pulled high and the chip enters normal operation.


3. During normal operation, any one of watchdog reset, address overflow reset, and soft reset occurs, rst_n is pulled low, after a delay of 20ms, rst_n is pulled high, and the chip enters normal operation.

4. In debug mode, configure debug reset, pull down rst_n, pull up 1 system clock in debug_rst_out_n, pull up rst_n, and the chip enters normal operation.

) Semiconductor

Power-up/power-down sequence:

Power-on reset diagram

Chl	Demonstern	Conditions			T	М	TI
Symbol	Parameter	VCC	temperature	Min	Тур	Max	Unit
VSPOR	Power on reset start voltage	-	25°C	-	-	300	mV
Kpor	Power on reset voltage rate	-	25°C	0.01	-	-	V/ms
VPOR	Power on reset voltage	-	25°C	1.1	1.5	2.2	V
V _{BOR}	Brown-out reset voltage (±10%), hysteresis 0.2V	-	25°C	-	VBOR	-	V
VDD_min	Minimum operating voltage	-	25°C	2.5	-	-	V
T1	VDD keep VSPOR time	-	25°C	0.1	-	-	ms
T2	VPOR from VDD_min time	-	25°C	-	-	0.6*T3	ms
T3	Reset POR_BOR_N duration	-	25°C	55	93	131	ms
T4	Global reset effective time	-	25°C	-	20	_	ms

BOR/POR Parameters:

Power on reset parameter characteristic table

When VDD is affected by the load or seriously interfered, if the voltage drops into the voltage dead zone and the chip is not within the working voltage range, it may cause the system to work abnormally, such as data loss in the DATA area. The function of power-down reset (BOR) is to monitor that when VDD drops to the BOR voltage, the MCU can generate a power-down reset in advance to avoid system errors.

Suggestions to prevent entering the voltage dead zone and reduce the probability of system error:

- When the program is first initialized, open BOR without delay
- Increase the voltage drop slope

5.2.2. Reset Registers

	SFR								
Address	Name	RW	Reset value	Description					
0x8E	SOFT_RST	RW	0x00	Soft reset register					
0xD7	RST_STAT	RW	rst_state	Reset flag register					
0xFE	PD_ANA	RW	0x1F	Module switch control register					

Note: rst_state power-on reset is 1; other resets: power-on reset is 0, and then the corresponding reset is 1.

SOFT_RST(8EH) Software reset register

Bit number	7	6	5	4	3	2	1	0	
Symbol		-							
R/W				R/	W				
Reset value		0							

Bit number	Bit symbol	Description
7.0		Software reset register, software reset is only generated
7~0		when the register value is 0x55.

RST_STAT (D7H) Reset flag register

Bit number	7	6	5	4	3	2	1	0
Symbol	-	DEBUG_F	SOFT_F	PROG_F	ADDROF_F	BO_F	PO_F	WDTRST_F
R/W	-	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset value	-	0	0	0	0	0	1	0

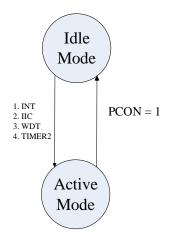
Bit number	Bit symbol	Description
7		Reserved
6	DEBUG_F	0: No effect;
0	DEDUG_F	1: Trimming configuration reset occurred
5	SOET E	0: No effect;
3	SOFT_F	1: Software reset occurred
4		0: No effect;
4	PROG_F	1: Program reset occurred
2		0: No effect;
3	ADDROF_F	1: PC pointer overflow reset occurs
2		0: No effect;
2	BO_F	1: Power-down reset occurred
1		0: No effect;
1	PO_F	1: Power-on reset occurred
0	WIDTDOT F	0: No effect;
0	WDTRST_F	1: Watchdog timer overflow reset occurs

5.3. Work Mode

5.3.1. Introduction

The working mode of BF7612CMXX series: Active mode, idle mode.

BF7612CMXX provides PCON register, configure Bit0 of this register to control MCU to enter idle mode.


• Active Mode

RC1M, PLL, LIRC work, XTAL depends on software configuration. The core runs, the peripherals keep working normally, and the functions of each peripheral are controlled by software configuration.

• Idle Mode

RC1M and PLL are off, LIRC works, XTAL depends on software configuration. The core is stopped and the peripherals work fine using the LIRC clock.

Work mode	Conditions	Effect on clock results		
		RC1M	work	
A stine Made	power-on reset/	PLL	work	
Active Mode	Wake up from idle	LIRC	work	
	mode	XTAL32K/4M	Depends on software configuration	
		RC1M	close	
	DCON 1	PLL	close	
Idle Mode	PCON=1	LIRC	work	
		XTAL32K/4M	Depends on software configuration	

Working mode conversion diagram

In addition, all modules can be individually configured to close the gate, thereby reducing power consumption.

• Ways to exit idle mode

Enable IIC, External Interrupt 0/1/2/3, WDT, Timer2, any of which can wake up the chip and exit the idle mode. After the interrupt response is generated, the CPU executes the interrupt service routine related to the interrupt vector, and in the RETI returns to the instruction following execution of the instruction that put the CPU into idle mode to continue running the program.

Note: PCON = 0x01, BOR can be turned off to obtain lower power consumption, but the chip needs to ensure that it is within the operating voltage range (2.5V~5.5V).

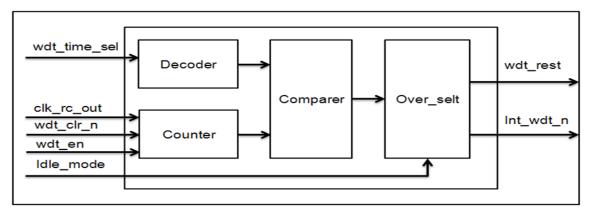
		1 8	onuge runge (210) etc		
NO	Module Name	Clock Source	Active Mode	Idle Mode	
1	s8051	f _{SYS}	\checkmark	×	
2	UART0/1	PLL_48M	According configuration	×	
3	PWM	PLL_48M	According configuration	×	
4	Internal Timer0	f _{SYS}	According configuration	×	
5	Internal Timer1	f _{SYS}	According configuration	×	
6	External Timer2	LIRC/ XTAL32k /4MHz	According configuration	According configuration	
7	LED	RC1M	According configuration	×	
8	WDT	LIRC	According configuration	According configuration	
9	ADC	PLL_48M	According configuration	×	
10	CSD	PLL_48M	According configuration	×	
11	IIC(S)	f _{SYS}	According configuration	According configuration	

Status table of each digital module in different modes

5.3.2. Registers

PCON (87H) Idle mode select register

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	-	-	-	IM_EN
R/W	-	-	-	-	-	-	-	R/W
Reset value	_	_	_	_	_	_	_	0


Bit number	Bit symbol	Description
0	IM_EN	idle mode control1: idle mode;0: normal mode, automatically cleared after wake-up

5.4. WDT

5.4.1. WDT Function Description

The watchdog timer counting circuit uses the internal low-speed clock LIRC for timing, and the configurable timing time is 2^n*18ms (n=0, 1. 2. 3. 4. 5. 6, 7) ----- here n is the configuration value of the timing configuration register.

Due to the particularity of the system application, the watchdog timer overflow signal is classified:

In the normal working mode, if the watchdog timer overflow occurs, the overflow signal is the watchdog overflow reset signal at this time, and the watchdog overflow reset affects the global reset. At this time, the system realizes the global reset action and reloads the configuration information;

In the idle mode, if a watchdog timer overflow occurs, the overflow signal is the watchdog interrupt signal at this time, and the interrupt wakes up the chip to exit the idle mode and execute the watchdog interrupt service function.

The watchdog module is a timing counting module. Its count clock is the internal low-speed clock LIRC. Its timing clear signal is composed of global reset and configuration clear. This signal is synchronously released by the watchdog timing clock in the reset module; The clearing action is generated every time the CPU configures the watchdog timer configuration register (WDT_CTRL), and the watchdog restarts timing; at the same time, the watchdog counter has the watchdog count enable control, when the count enable is valid, After the watchdog generates a timing overflow (reset or interrupt), as long as the watchdog counting enable is not turned off, the watchdog counter will restart counting

Write 0x55 to turn off the watchdog. Write other values to turn on the watchdog. The watchdog timer works after the reset. Watchdog timer zeroing is done by writing the WDT_CTRL register, and whatever value is written into the register will cause the watchdog timer to zeroing.

5.5.2. Registers

	SFR register									
Address		Name	e	RW	Reset value		Description			
0x85	INT	Γ_PE_S	STAT	RW	xxxx_	xx00b	WDT	/Timer2 interrupt st	atus register	
0x91	WD	DT_CT	RL	RW	xxxx_	x000b	WDT timing overflow configuration register			
0x92	WD	DT_EN		RW	0000_	0000b	WDT	WDT timing enable configuration register		
0xE6	IEN	J1		RW	0000_	00xxb	Interrupt enable register 1			
0xF1	IRC	CON1		RW	0000_	00xxb	Interrupt flag register 1			
INT_PE_S	TAT	(85H)	WDT/	Timer2	interru	pt statu	s regist	er		
Bit numb	er	7	6	5	4	3	2	1	0	
Symbol	l	-	-	-			- INT_WDT_STAT		INT_TIMER2_STAT	
R/W		-	-	-			-	R/W	R/W	
Reset val	ue	-	-	-	-	-	-	0	0	

Bit number	Bit symbol	Description
		WDT interrupt status flag, this bit write 0 to clear zero, write
1	INT WIDT STAT	WDT_CTRL operation can also clear 0
1	1 INT_WDT_STAT	1: Interrupt is valid;
		0: Interrupt is invalid;

WDT_CTRL (91H) WDT timing overflow configuration register

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	-	WD	T_TIME_	SEL
R/W	-	-	-	-	-		R/W	
Reset value	_	-	-	-	-	0	0	0

Bit number	Bit symbol	Description					
		WDT timing ov	WDT timing overflow configuration register, the timing				
		length is as follows:					
2~0	WDT_TIME_SEL	0x00: 18ms;	0x01: 36ms;	0x02: 72ms;			
		0x03: 144ms;	0x04: 288ms;	0x05: 576ms;			
		0x06: 1152ms;	0x07: 2304ms;				

WDT_EN (92H) Watchdog timing enable configuration register

Bit number	7	6	5	4	3	2	1	0
Symbol		WDT_EN						
R/W		 R/W						
Reset value				()			

Bit number	Bit symbol	Description
7~0	WDT_EN	Watchdog timing enable configuration register, when the

			configuration value is 0x55. the watchdog is closed					
IEN1 (E6H) Int	EN1 (E6H) Interrupt enable register 1							
Bit number	7	6	5	4	3	2	1	0
Symbol	EX7	EX6	EX5	EX4	EX3	EX2	-	-
R/W	R/W	R/W	R/W	R/W	R/W	R/W	-	-
Reset value	0	0	0	0	0	0	-	-
								•

Bit number	Bit symbol	Description
		WDT/Timer2 interrupt enable
7	EX7	1: Interrupt enable;
		0: Interrupt disable;

IRCON1 (F1H) Interrupt flag register 1

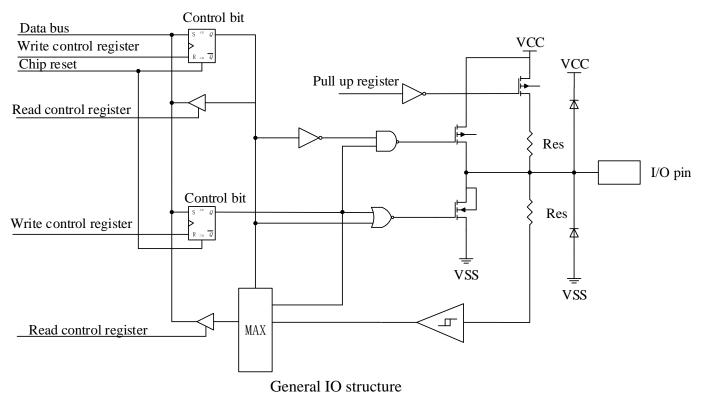
Bit number	7	6	5	4	3	2	1	0
Symbol	IE7	IE6	IE5	IE4	IE3	IE2	-	-
R/W	R/W	R/W	R/W	R/W	R/W	R/W	-	-
Reset value	0	0	0	0	0	0	-	-

Bit number	Bit symbol	Description
7	IE7	WDT/Timer2 interrupt flag
		1: With interrupt flag 0: No interrupt flag

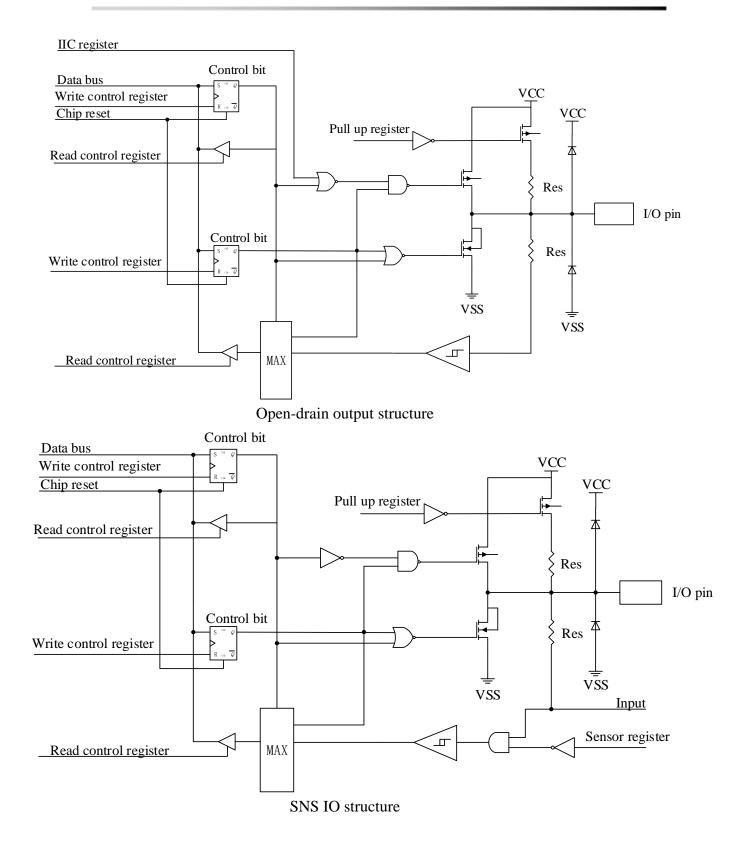
6. GPIO

6.1. GPIO Function Describe

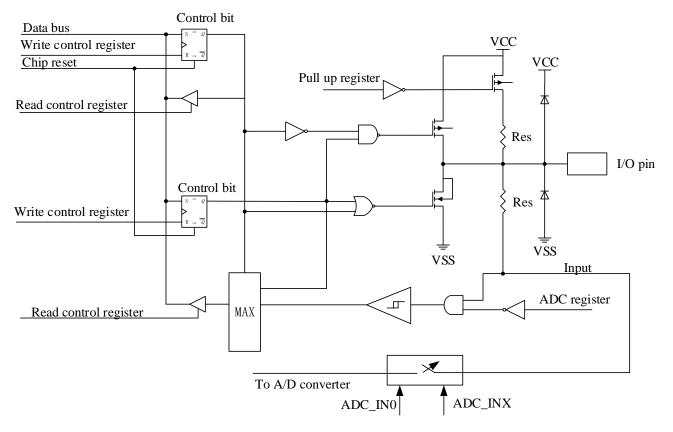
Some pins of the GPIO port are multiplexed with device peripheral functions, and cannot be configured as multiple clock functions at the same time, otherwise it will cause malfunction. IIC communication port, open-drain output, pull-up resister required.


TRISX register (Direction Register): TRISX set to 1 can be configured as input pin, set to 0 can be configured as output pin.

DATAX register (Data Register): DATAX set to 1 the data in DATAX will be configured as high, set to 0 the data in DATAX will be configured as low.


PU_PX register (pull-up resistor enable register): When PU_PX is set to 1, the corresponding pin pull-up resistor is enabled, and the corresponding pin is cleared to disable the pull-up resistor. PB pull-up resistor 28k, other IO port pull-up resistor 4.7k.

PD_PB register (PB pull-down resistor enable register): The pull-down resistor of the pin corresponding to PD_PB is set to 1, and the pull-down resistor is not enabled for the pin corresponding to clearing. The built-in pull-down resistor is 28k.


ODRAIN_EN register: Set ODRAIN_EN to 1 to enable open-drain output on the corresponding pin. Clear it to disable open-drain output. After enabling IIC function, open-drain output is automatically turned on. IIC/UART recommends using external pull-up resistors. Supports high current drive function of 8 GPIO ports.

ADC IO structure

			SFR registe	r
Address	Name	RW	Reset value	Description
0xF8	DATAA	RW	0x03	PA data register
0x80	DATAB	RW	0xFF	PB data register
0x90	DATAC	RW	0xFF	PC data register
0x98	DATAD	RW	0xFF	PD data register
0xDD	PU_PA	RW	0x00	PA port pull-up resistor selection register
0xDE	PU_PB	RW	0x00	PB port pull-up resistor selection register
0xDF	PU_PC	RW	0x00	PC port pull-up resistor selection register
0xE2	PU_PD	RW	0x00	PD port pull-up resistor selection register
0xEA	TRISA	RW	0x03	PA direction register
0xEB	TRISB	RW	0xFF	PB direction register
0xEC	TRISC	RW	0xFF	PC direction register
0xED	TRISD	RW	0xFF	PD direction register
0xEE	COM_IO_SEL	RW	0x00	COM large sink current selection register
0xEF	ODRAIN_EN	RW	0x00	PA open drain enable register

6.2. GPIO Related Register

Port configuration SFR register list

6.2.1. Data registers

DATAA (1611)	-		_	4	2	•		0
Bit number	1	6	5	4	3	2	1	0
Symbol	-	-	-	-	-	-	PA1	PA0
R/W	-	-	-	-	-	-	R/W	R/W
Reset value	_	_	_	_	_	_	1	1

DATAA (F8H) PA data register

Bit number	Bit symbol	Description
		PA data register, you can configure the output level of the
1~0		PA group IO port as GPIO port, the read value is the current
1~0		level state of the IO port (input) or the configured output
		value (output)

DATAB (80H) PB data register

Bit number	7	6	5	4	3	2	1	0
Symbol	PB7	PB6	PB5	PB4	PB3	PB2	PB1	PB0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset value	1	1	1	1	1	1	1	1

Bit number	Bit symbol	Description
		▲ · · · · · · · · · · · · · · · · · · ·

	PB data register, configurable PB group IO port as GPIO
7~0	 port output level, the read value is the current level state of
	IO port (input) or configured output value (output).

DATAC (90H) PC data register

Bit number	7	6	5	4	3	2	1	0
Symbol	PC7	PC6	PC5	PC4	PC3	PC2	PC1	PC0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset value	1	1	1	1	1	1	1	1

Bit number	Bit symbol	Description
7~0		PC data register, you can configure the output level when the IO port of the PC group is used as a GPIO port, and the read value is the current level state of the IO port (input) or the configured output value (output)

DATAD (98H) PD data register

Bit number	7	6	5	4	3	2	1	0
Symbol	PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset value	1	1	1	1	1	1	1	1

Bit number	Bit symbol	Description
		PD data register
		you can configure the output level when the IO port of the
7~0		PD group is used as a GPIO port, and the read value is the
		current level state of the IO port (input) or the configured
		output value (output)

6.2.2. Pull-up Resistor Enable Register

PU_PA (DDH) PA port pull-up resistor enable register

Bit number	7	6	5	4	3	2	1	0
Symbol	_	-	-	-	-	-	PU_PA1	PU_PA0
R/W	-	-	-	-	-	-	R/W	R/W
Reset value	_	-	-	-	-	-	0	0

Bit number	Bit symbol	Description
1~0	PU_PAn n=1~0	PA port pull-up resistor enable register1: Pull-up resistor enabled;0: Pull-up resistor disabled

PU_PB (DEH) PB port pull-up resistor enable register

Bit number	7	6	5	4	3	2	1	0
Symbol	PU_PB7	PU_PB6	PU_PB5	PU_PB4	PU_PB3	PU_PB2	PU_PB1	PU_PB0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset value	0	0	0	0	0	0	0	0

Bit number	Bit symbol	Description
7~0	PU_PBn n=7~0	PB port pull-up resistor enable register1: Pull-up resistor enabled;0: Pull-up resistor disabled

PU_PC (DFH) PC port pull-up resistor enable register

Bit number	7	6	5	4	3	2	1	0
Symbol	PU_PC7	PU_PC6	PU_PC5	PU_PC4	PU_PC3	PU_PC2	PU_PC1	PU_PC0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset value	0	0	0	0	0	0	0	0

Bit number	Bit symbol	Description
	PU PCn	PC port pull-up resistor enable register
7~0	$n=7\sim0$	1: Pull-up resistor enabled;
	n=/~0	0: Pull-up resistor disabled

PU_PD (E2H) PD port pull-up resistor enable register

	1 1	1		0				
Bit number	7	6	5	4	3	2	1	0
Symbol	PU_PD7	PU_PD6	PU_PD5	PU_PD4	PU_PD3	PU_PD2	PU_PD1	PU_PD0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset value	0	0	0	0	0	0	0	0

Bit number	Bit symbol	Description
7~0	PU_PDn n=7~0	PD port pull-up resistor enable register1: Pull-up resistor enabled;0: Pull-up resistor disabled

6.2.3. Direction Register

TRISA (EAH) PA direction register

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	-	-	-	-
R/W	-	-	-	-	-	-	R/W	R/W
Reset value	_	-	-	_	-	_	1	1

Bit number Bit symbol Description

1~0	 Bit[1]~ Bit[1]: PA1~PA0 direction of port pins 0: PAx port is output;
	1: PAx port is input

TRISB (EBH) PB direction register

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	-	_	-	-
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset value	1	1	1	1	1	1	1	1

Bit number	Bit symbol	Description
7~0		 Bit[7]~ Bit[1]: PB7~PB0 direction of port pins 0: PBx port is output; 1: PBx port is input

TRISC (ECH) PC direction register

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	-	-	-	-
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset value	1	1	1	1	1	1	1	1

Bit number	Bit symbol	Description
7~0		 Bit[7]~ Bit[1]: PC7~PC0 direction of port pins 0: PCx port is output; 1: PCx port is input

TRISD (EDH) PD direction register

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	-	-	-	-
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset value	1	1	1	1	1	1	1	1

Bit number	Bit symbol	Description
		Bit[7]~ Bit[1]: PD7~PD0 direction of port pins
7~0		0: PDx port is output;
		1: PDx port is input

6.2.4. Large Current Sink

DP_CON (B0H) LED scan control register

Bit number	7	6	5	4 3 2			1	0
Symbol	-	-	-	DU	DUTY_SEL		SCAN_MODE	COM_MOD
R/W	-	-	-	R/W			R/W	R/W

Reset value	-	-	-	0	0	0	0	0

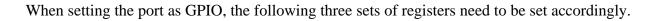
Bit number	Bit symbol	Description
0	COM_MOD	 High current sink IO port drive enable 1: The COM locking function, as large current IO mouth work; 0: The COM port is not locked and can be configured for other functions When used as a high current sink IO port, by configuring the GPIO register to output the drive timing, the LED scan configuration is invalid

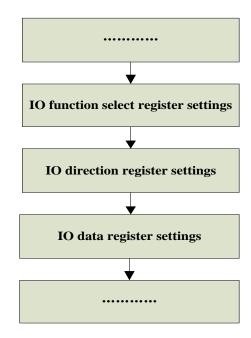
COM_IO_SEL (EEH) COM port selection configuration register

Bit number	7	6	5	4	3	2	1	0
Symbol	COM7	COM6	COM5	COM4	COM3	COM2	COM1	COM0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset value	0	0	0	0	0	0	0	0

Bit number	Bit symbol	Description
		COM port selection configuration register, corresponding to
7.0		PB port
7~0		1: Select COM port mode;
		0: Select IO port mode

6.2.5. Open Drain Enable Registers


Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	-	-		-
R/W	-	-	-	-	-	-	R	/W
Reset value	-	_	_	_	-	-	0	0

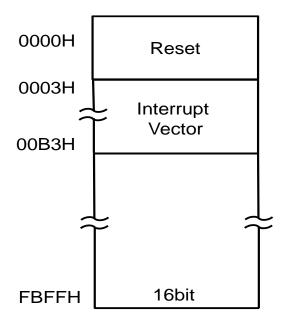

ODRAIN_EN (EFH) PA open drain enable register

Bit number	Bit symbol	Description
		PA1 port open drain output enable register
1		1: open drain output
		0: CMOS output
		PA0 port open drain output enable register
0		1: open drain output
		0: CMOS output

6.3. GPIO Configuration Process

IO configuration flow chart

Notes: The default source current drive capability of the IO port is typically 17mA, the sink current drive capability typically 60mA @5V 0.9VCC. When using IO to drive the LED/digital tube, you need to pay attention to the Ifp current of the LED. It is recommended to add a current limiting resistor to limit the IO drive peak current to the LED/digital tube Ifp current. If you want to save the resistance due to cost factors, it is recommended to use our unique LED serial dot matrix module to drive the LED/ digital tube.


7. Interrupt

7.1. Interrupt Sources and Entry Address

Interrupt source	Condition	Sign	Enable control	Priority control	Interrupt vector	Query priority	Interrupt number	Flag removal method	wake up idle mode
INT0	External Interrupt 0 Conditions is met	IE0	IEN0[0]	IPL0[0]	0x0003	1	0	User must clear	Yes
Timer0	Timer0 overflow	TF0	IEN0[1]	IPL0[1]	0x000B	2	1	User must clear	No
INT1	External Interrupt1 Conditions is met	IE1	IEN0[2]	IPL0[2]	0x0013	3	2	User must clear	Yes
Timer1	Timer1 overflow	TF1	IEN0[3]	IPL0[3]	0x001B	4	3	User must clear	No
INT2	External Interrupt2 Conditions is met	IE2	IEN1[2]	IPL1[2]	0x004B	5	9	User must clear	Yes
IIC	Receive or transmit completed	IE3	IEN1[3]	IPL1[3]	0x0053	6	10	User must clear	Yes
ADC	ADC conversion completed	IE4	IEN1[4]	IPL1[4]	0x005B	7	11	User must clear	No
CSD	Counter overflow	IE5	IEN1[5]	IPL1[5]	0x0063	8	12	User must clear	No
LED	Scan complete	IE6	IEN1[6]	IPL1[6]	0x006B	9	13	User must clear	No
WDT/ Timer2	WDT/Timer2/ PWM0 overflow	IE7	IEN1[7]	IPL1[7]	0x0073	10	14	User must clear	Yes
LVDT	Voltage Conditions meet	IE8	IEN2[0]	IPL2[0]	0x007B	11	15	User must clear	V
UART0	Receive or transmit completed	IE9	IEN2[1]	IPL2[1]	0x0083	12	16	User must clear	No
UART1	Receive or transmit completed	IE10	IEN2[2]	IPL2[2]	0x008B	13	17	User must clear	No
INT3	External Interrupt 3 Conditions is met	IE11	IEN2[3]	IPL2[3]	0x0093	14	18	User must clear	Yes

List of interrupt information

When the chip generates a reset signal, the program starts from the 0x0000 address. When an interrupt signal occurs, the program will jump to the interrupt vector program address to execute the interrupt service routine.

7.2. Interrupt Function

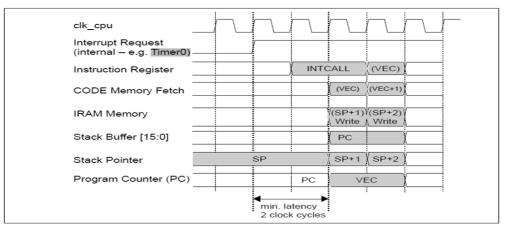
7.2.1. Interrupt Response

When an interrupt request, CPU according to the interrupt vectors determine the type of interrupt service routine (ISR) to run. CPU complete execution ISR, unless a higher priority interrupt source applying for a break. After each ISR has RETI (return from interrupt) instruction. After RETI instruction, CPU continues to execute the program before the interrupt did not happen.

ISR can only be a higher priority interrupt request interrupt. That is, the low-priority ISR can be interrupted by a high-priority interrupt request.

The BF7612CMXX responses interrupt request until the current instruction finished. If the RETI instruction is being executed or read IP, IEN register, after an additional instruction then respond the interrupt request.

7.2.2. Interrupt Priority


The BF7612CMXX has two interrupt priority levels: interrupt level and the default priority. Interrupt level (top, high and low) override the default priority. The priority set to high is the first to respond. When the priority is set to the same level, the response will be queued by default. Power-down interrupt is the only high-level interrupt source if allowed. All interrupt sources can be set to high priority or low priority.

Each interrupt source can be assigned a priority level (high or low), and the default priority. The same level of interrupt sources (such as both high priority) the priority is the default priority decision. Interrupt service routine in progress can only be a high-priority interrupt request interrupt.

7.2.3. Interrupt Sample

Internal modules such as internal timers and serial ports generate interrupt requests through interrupt flag bits in their respective SFR. When the first clock cycle (C1) of each instruction cycle ends, the External Interrupt is sampled on the rising edge of the clock.

In order to ensure that the edge-triggered interrupt is detected, the corresponding port must first maintain the high level of 2 clocks, and then keep the low level of 2 clocks. The following figure shows the timing diagram of interrupt sample:

7.2.4. Interrupt Wait

Interrupt response time is determined by current state. Fastest response time is five instruction cycles: one cycle to detect the interrupt request, the other 4 used to execute long call (LCALL) to ISR.

When the system is executing a RETI instruction and is followed by a MUL or DIV instruction, the interrupt waits for the longest time (13 instruction cycles). This 13 instruction cycles are as follows: one cycle to detect the interrupt request, three to complete the RETI, five used to execute DIV or MUL instruction, 4 used to execute long call (LCALL) to ISR. In this case, the response time is 13 clock cycles.

BYD	Semicond

7.3. Interrupt	Registers
----------------	-----------

			SFR registe	r
Address	Name	RW	Reset value	Description
0x85	INT_PE_STAT	RW	0x00	WDT/Timer2 interrupt status flag
0x86	INT_POBO_STAT	RW	0x00	LVDT interrupt status flag
0xA8	IEN0	RW	0x00	Interrupt enable register
0xB8	IPL0	RW	0x00	Interrupt priority register 0
0xE1	IRCON2	RW	0x00	Interrupt flag register 2
0xE6	IEN1	RW	0x00	Interrupt enable register 1
0xE7	IEN2	RW	0x00	Interrupt enable register 2
0xF1	IRCON1	RW	0x00	Interrupt flag register 1
0xF2	PERIPH_IO_SEL	RW	0x40	IIC/UART0/INT function control register
0xF4	IPL2	RW	0x00	Interrupt priority register 2
0xF6	IPL1	RW	0x00	Interrupt priority register 1
0xF7	EXT_INT_CON	RW	0x15	External interrupt trigger polarity select register

Interrupt SFR list

7.4. Interrupt SFR Detailed Description

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	-	-	INT_WDT_STAT	INT_TIMER2_STAT
R/W	-	-	-	-	-	-	R/W	R/W
Reset value	-	-	-	-	-	-	0	0

INT PE STAT(85H)WDT/Timer2 interrupt status flag

Bit number	Bit symbol	Description
		WDT interrupt status flag. Write 0 to clear this bit, write
1	INT WIDT CTAT	WDT_CTRL can also clear 0.
1	INT_WDT_STAT	1: interrupt effective;
		0: invalid interrupt.
		TIMER2 interrupt status flag. Write 0 to clear this bit,
0		write TIMER2_CFG can also clear 0.
0	INT_TIMER2_STAT	1: interrupt effective;
		0: invalid interrupt.
INT POBO ST	TAT (86H) LVDT boost	/LVDT buck interrupt status register

Bit number 7 5 4 3 2 0 6 1 INT_BO_STAT Symbol INT_PO_STAT _ _ _ _ _ _

R/W	-	-	-	-	-	-	R/W	R/W
Reset value	-	-	-	-	-	-	0	0

Bit number	Bit symbol	Description			
		LVDT boost interrupt status.			
1	INT_PO_STAT	1: boost interrupt is valid;			
		0: boost interrupt is invalid.			
		LVDT buck interrupt status.			
0	INT_BO_STAT	1: buck interrupt is valid;			
		0: buck interrupt is invalid.			

IEN0(A8H) Interrupt enable register

Bit number	7	6	5	4	3	2	1	0
Symbol	EA	-			ET1	EX1	ET0	EX0
R/W	R/W		-		R/W	R/W	R/W	R/W
Reset value	0		-		0	0	0	0

Bit number	Bit symbol	Description				
		EA- Interrupt enable bit. EA=0 block all interrupts (EA				
		takes precedence over the interrupt enable bits of the				
7	EA	interrupt source). EA=1, open interrupts. Whether the				
		interrupt request of each interrupt source is allowed or				
		disable, and also needs to be determined by the respective				
		enable bits.				
6~4		Reserved				
		ET1-Timer1 overflow interrupt allow bit. ET1=0, disable				
3	ET1	Timer1 (TF1) to apply for interrupt. ET1=1, allow TF1 to				
		apply for interrupt.				
		EX1-INT_EXT1 allow bit. EX1=0, disable INT_EXT1 to				
2	EX1	apply for interrupt. Allow INT_EXT1 to apply for				
		interrupt.				
		ET0- Timer0 overflow interrupt allow bit. ET0=0, disable				
1	ET0	Timer1 (TF0) to apply for interrupt. ET0=1, allow Timer1				
		(TF0) to apply for interrupt.				
		EX0-INT_EXT0 allow bit. EX0=0, disable INT_EXT0 to				
0	EX0	apply for interrupt. EX0=1, allow INT_EXT0 to apply for				
		interrupt.				

IPL0 (B8H) Interrupt priority register 0

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	PT1	PX2	PT0	PX0
R/W	-	-	-	-	R/W	R/W	R/W	R/W

		-						
Reset value	-	-	-	-	0	0	0	0

Bit number	Bit symbol	Description
7~4	_	Reserved
		PT1-TF1(Timer1 interrupt) priority selection bit.
3	PT1	PT1=0: TF1(Timer1 interrupt) is low priority.
		PT1=1: TF1(Timer1 interrupt) is high priority.
		PX2- INT_EXT1 interrupt priority selection bit.
2	PX2	PX2=0: INT_EXT1 is low priority.
		PX2=1: INT_EXT1 is high priority.
		PT0-TF0(Timer0 interrupt) priority selection bit.
1	PT0	PT0=0: TF0(Timer0 interrupt) is low priority.
		PT0=1: TF0(Timer0 interrupt) is high priority.
		PX0- INT_EXT0 interrupt priority selection bit.
0	PX0	PX0=0: INT_EXT0 is low priority.
		PX0=1: INT_EXT0 is high priority.

IRCON2 (E1H) Interrupt flag register 2

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	-	IE10	IE9	IE8
R/W	-	-	-	-	-	R/W	R/W	R/W
Reset value	-	_	-	-	-	0	0	0

Bit number	Bit symbol	Description
7~3		Reserved
2	IE10	UART1 interrupt flag
1	IE9	UART0 interrupt flag
0	IE8	LVDT interrupt flag

IEN1 (E6H) Interrupt enable register 1

Bit number	7	6	5	4	3	2	1	0
Symbol	EX7	EX6	EX5	EX4	EX3	EX2	-	-
R/W	R/W	R/W	R/W	R/W	R/W	R/W	-	-
Reset value	0	0	0	0	0	0	-	_

Bit number	Bit symbol	Description
7	EX7	WDT/Timer2 interrupt enable
6	EX6	LED interrupt enable
5	EX5	CSD interrupt enable
4	EX4	ADC interrupt enable
3	EX3	IIC interrupt enable
2	EX2	External interrupt 2 interrupt enable

1~0		-	Reserved	1				
EN2(E7H) Interrupt enable register 2								
Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	-	EX10	EX9	EX8
R/W	-	_	-	_	-	R/W	R/W	R/W
Reset value	-	-	-	-	-	0	0	0

Bit number	Bit symbol	Description
7~3	-	Reserved
2	EX10	UART1 interrupt flag
1	EX9	UART0 interrupt flag
0	EX8	LVDT interrupt flag

IRCON1 (F1H) Interrupt flag register 1

Bit number	7	6	5	4	3	2	1	0
Symbol	IE7	IE6	IE5	IE4	IE3	IE2	-	-
R/W	R/W	R/W	R/W	R/W	R/W	R/W	-	-
Reset value	0	0	0	0	0	0	-	-

Bit number	Bit symbol	Description
7	IE7	WDT/Timer2 interrupt flag
6	IE6	LED interrupt flag
5	IE5	CSD interrupt flag
4	IE4	ADC interrupt flag
3	IE3	IIC interrupt flag
2	IE2	External interrupt 2 interrupt flag
1~0	_	Reserved

PERIPH_IO_SEL (F2H) IIC/UART0/INT function control register

			0		
Bit number	7	6	5	4	3
Symbol	-	IIC_AFIL_SEL	IIC_DFIL_SEL	UART0_	IO_SEL
R/W	-	R/W	R/W	R/W	R/W
Reset value	-	1	0	0	0
Bit number	2	1	0	/	/
Symbol	INT2_IO_SEL	INT1_IO_SEL	INT0_IO_SEL		
R/W	R/W	R/W	R/W	/	1
Reset value	0	0	0		

Bit number	Bit symbol	Description
2	INTO IO SEI	INT2 select enable, correspond PD7
2	2 INT2_IO_SEL	1: select INT2 function

		0: not select INT2 function
		INT1 select enable, correspond PD6
1	INT1_IO_SEL	1: select INT1 function
		0: not select INT1 function
		INTO select enable, correspond PD0
0	INT0_IO_SEL	1: select INTO function
		0: not select INTO function

IPL2 (F4H) Interrupt priority register 2

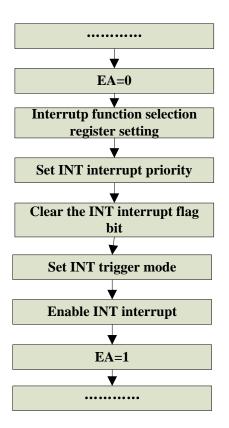
Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	-	IPL2.2	IPL2.1	IPL2.0
R/W	-	-	-	-	-	R/W	R/W	R/W
Reset value	-	-	-	-	-	0	0	0

Bit number	Bit symbol	Description				
7~3		Reserved				
2		UART1 interrupt priority.				
2	IPL2.2	1: high; 0: low.				
1	IDI 2-1	UART0 interrupt priority.				
1	IPL2.1	1: high; 0: low.				
0		LVDT interrupt priority.				
0	IPL2.0	1: high; 0: low.				

IPL1 (F6H) Interrupt priority register 1

Bit number	7	6	5	4	3	2	1	0
Symbol	IPL1.7	IPL1.6	IPL1.5	IPL1.4	IPL1.3	IPL1.2	-	-
R/W	R/W	R/W	R/W	R/W	R/W	R/W	I	-
Reset value	0	0	0	0	0	0	-	-

Bit number	Bit symbol	Description
7	IPL1.7	WDT/Timer 2 interrupt priority.
/	IPL1./	1: high; 0: low.
C		LED interrupt priority.
6	IPL1.6	1: high; 0: low.
5	IDI 1.5	CSD interrupt priority.
5	IPL1.5	1: high; 0: low.
4	IPL1.4	ADC interrupt priority.
4	IPL1.4	1: high; 0: low.
3	IPL1.3	IIC interrupt priority.
3	IPL1.5	1: high; 0: low.
2		External interrupt priority.
Ζ	IPL1.2	1: high; 0: low.



1~0				Reserve	d				
EXT_INT_CON (F7H) External interrupt polarity control register									
Bit numbe	r	7	6	5	4	3	2	1	0
Symbol		-	_	INT2_POLARITY		INT1_POLARITY		INT0_POLARITY	
R/W		-	_	R/W	R/W	R/W	R/W	R/W	R/W
Reset valu	e	-	-	0	1	0	1	0	1

Bit number	Bit symbol	Description
		External interrupt 2 trigger polarity selection:
5~4	ΙΝΤΊ ΠΟΙ ΑΠΙΤΥ	01: falling edge (wake-up from low level in idle mode)
3~4	INT2_POLARITY	10: rising edge (Wake-up from high level in idle mode)
		00/11: double edge (wake-up from low level in idle mode).
		External interrupt 1 trigger polarity selection:
3~2	INT1_POLARITY	01: falling edge (wake-up from low level in idle mode)
5~2		10: rising edge (Wake-up from high level in idle mode)
		00/11: double edge (wake-up from low level in idle mode).
		External interrupt 0 trigger polarity selection:
1~0	INTO DOI ADITY	01: falling edge (wake-up from low level in idle mode)
1~0	INT0_POLARITY	10: rising edge (Wake-up from high level in idle mode)
		00/11: double edge (wake-up from low level in idle mode).

7.5. External Interrupt Configuration Process

INT0/1/2 configuration process chart

8. Timer

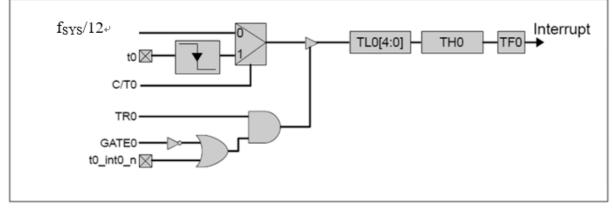
8.1. General Description

The BF7612CMXX series contains 3 timers Timer0, Timer1, Timer2. Each Timer contains a 16-bit register. When accessed, it appears in the form of two bytes: a low byte (TL0 or TL1) and a high byte (TH0 or TH1). The registers of Timer2 are the low byte TIMER2_SET_L and the high byte TIMER2_SET_H.

Function features:

- Timer0 is connected to system clock, and the timing clock is divided by $f_{SYS}/12$;
- Timer1 is connected to system clock, and the timing clock is divided by fsys/12;
- Timer2 can choose LIRC 32kHz or external crystal clock, frequency 32768Hz/4MHz;
- Timer0/1 supports 8bits automatic reload timing, 16bits manual reload timing function;
- Timer2 supports 32bits automatic reload timing and manual reload timing, and supports interrupt wake-up function.

8.2. Timer0 and Timer1

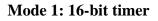

8.2.1. Overview

Timer0 is enabled by setting ET0 bit in the IEN0 register, and Timer1 is enabled by setting ET1 bit in the IEN0 register. By setting tr0/1 bit in the TCON register to enable the counter to work, and tf0/1 bit to determine whether the timer overflow interrupt. Timer 0/1 has four operating modes, controlled by TMOD SFR and TCON.

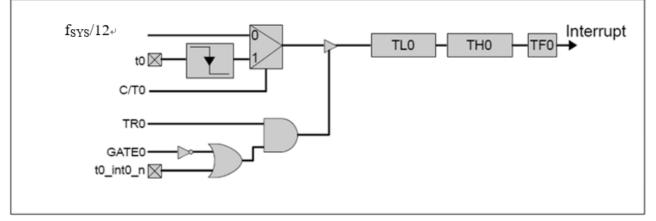
The four modes of Timer 0/1 are as follows:

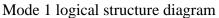
- 13-bit timer (Mode 0)
- 16-bit timer (Mode 1)
- 8-bit timer with automatic reloading of initial value (Mode 2)
- Two 8-bit timers (Mode 3, only for timer 0)

Mode 0: 13-bit timer

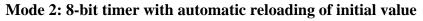


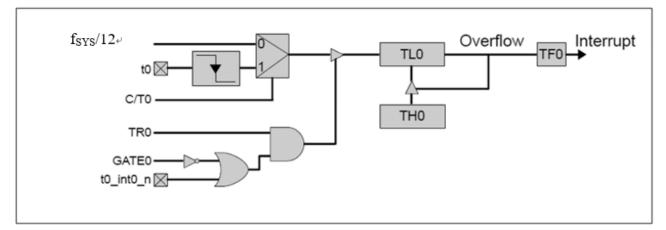
Mode 0 logical structure diagram




As shown in the figure, the working process of timer 0 and timer 1 is the same. In mode 0, Timer 0 is a 13-bit counter, and the 13-bit register consists of 8 bits of TH0 and the lower 5 bits of TL0. Timer 1 is a 13-bit counter, and the 13-bit register consists of 8 bits of TH1 and the lower 5 bits of TL1. The upper three bits of TL0 and TL1 should be ignored. The enable bit (TR0/TR1) in the TCON register controls the on and off of the timer.

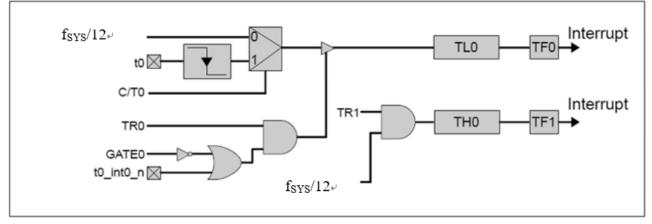
The timer counts the selected System clock source ($f_{SYS}/12$). When the 13-bit counter counts up to all 1, the counter is cleared to 0 (all 0), and TF0 (or TF1) is set. In mode 0, the upper 3 bits of TL0 (or TL1) are indeterminate, and these 3 bits should be masked out or ignored when the R count value. T0/t1, C/T0, C/T1 are all 0, t0_int0_n/ t1_int1_n are all 1. And the count enable is only determined by TR0/1.




Semiconductor

As shown in the figure, Mode 1 of Timer 0 and Timer 1 are the same. In Mode 1. The timer is a 16-bit counter. All 8 bits of the LSB register (TL0 or TL1) are used. When the timer counts up to 0Xffff, the counter is cleared to all 0. Other than that, Mode 1 and Mode 0 are the same. T0/t1. C/T0, C/T1 are all 0, t0_int0_n/t1_int1_n are all 1. And the count enable is only determined by TR0/1.

Mode 2 logical structure diagram


Mode 2 of Timer 0 and Timer 1 are the same. In mode 2. The timer is an 8-bit counter with an

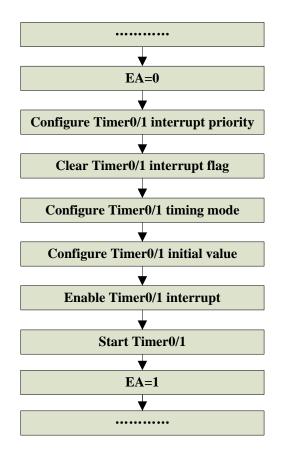
Semiconductor

automatic reload initial value. This counter is the LSB register (TL0 or TL1), and the initial value that needs to be reloaded is stored in the MSB register (TH0 or TH1).

As shown in the figure, the counter control of Mode 2 is the same as Mode 0 and Mode 1. However, in mode 2. When TLn accumulates to FFh, the value stored in THn is reloaded to TLn. T0/T1, C/T0, C/T1 are all 0, t0_int0_n/t1_int1_n are all 1. And counting enable is only determined by TR0/1.

Mode 3 logical structure diagram

In mode 3. Timer 0 is two 8-bit timers, at this time Timer 1 stops counting and saves its value. As shown in Figure 5. TL0 is an 8-bit register controlled by the timer 0 control bit. The counter uses GATE as the enable terminal to control the INT_EXT signal reception.


TH0 is a separate 8-bit timer. TH0 can only be used to calculate the clock period (divide by 12). The control bit and flag bit (TR1 and TF1) of Timer 1 are used as the control bit and flag bit of TH0.

When Timer 0 works in Mode 3. The use of Timer 1 is restricted, because Timer 0 uses the control bit (TR1) and interrupt flag (TF1) of Timer 1. Timer 1 can still be used to generate the baud rate, and the value of Timer 1 in the TL1 and TH1 registers is still valid.

When timer 0 works in mode 3. Timer 1 is controlled by the mode bit of timer 1. To start timer 1. You need to set timer 1 to mode 0, 1 or 2. To turn off timer 1. Set the mode of timer 1 to 3. Timer 1 can be used as a timer (fsys/12), but because TR1 and TF1 are borrowed, overflow interrupts cannot be generated. When timer 0 is working in mode 3. The GATE of timer 1 is valid. T0/T1, C/T0, C/T1 are all 0, t0_int0_n/t1_int1_n are all 1. And counting enable is only determined by TR0/1.

8.2.2. Timer0/1 Configure Process

Timer0/1 configure process

8.2.3. Timer0/1 Registers

	SFR register								
Address	Name	RW	Reset value	Description					
0x88	TCON	RW	0x05	Timer control register					
0x89	TMOD	RW	0x00	Timer mode register					
0x8A	TL0	RW	0x00	Timer 0 timer low 8 bits					
0x8B	TL1	RW	0x00	Timer 1 timer low 8 bits					
0x8C	TH0	RW	0x00	Timer 0 timer high 8 bits					
0x8D	TH1	RW	0x00	Timer 1 timer high 8 bits					
0xA8	IEN0	RW	0x00	Interrupt enable register 0					
0xB8	IPL0	RW	0x00	Interrupt priority register 0					

Timer0/1 SFR register list

8.2.3.1. Timer Control Register

TCON (88H) Timer control register

Bit number	7	6	5	4	3	2	1	0
Symbol	TF1	TR1	TF0	TR0	IE1	-	IE0	-
R/W	R/W	R/W	R/W	R/W	R/W	-	R/W	-
Reset value	0	0	0	0	0	-	0	-

Bit number	Bit symbol	Description
7	TF1	Timer 1 overflow flag bit, set by hardware when Timer1 overflows, or TH0 of Timer0 overflows in mode 3.
6		Timer1 start enable, when set to1, start Timer1. Or start Time0
6	TR1	mode three, TH0 count.
5	TF0	Timer 0 overflow flag, set by hardware when Timer0 overflows.
4	TR0	Timer0 start enable, set to 1 to start Timer0 counting.

8.2.3.2. Timer Mode Register

TMOD (89H) Timer mode register

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	M1[1:0]		-	-	M0[1:0]	
R/W	-	-	R/W		-	-	R/	W
Reset value	-	-	0	0	-	-	0	0

Bit number	Bit symbol	Description
7~6, 3~2		Reserved

		Timer 1 mode select bit
		00: Mode 0 - 13-bit timer
5~4	5~4 M1[1:0]	01: Mode 1 - 16-bit timer
		10: Mode 2 - 8-bit timer with automatic reloading of initial value
		11: Mode 3 - Two 8-bit timers
		Timer 0 mode select bit
		00: Mode 0 - 13-bit timer
1~0	M0[1:0]	01: Mode 1 - 16-bit timer
		10: Mode 2 - 8-bit timer with automatic reloading of initial value
		11: Mode 3 - Two 8-bit timers

8.2.3.3. Timer 0 Timer Registers

TL0 (8AH) Timer 0 timer low 8 bits

Bit number	7	7 6 5 4 3 2 1 0								
Symbol	TL0[7:0]									
R/W		R/W								
Reset value		0								
TH0 (8CH) Tim	TH0 (8CH) Timer 0 timer high 8 bits									
Bit number	7	6	5	4	3	2	1	0		
Symbol				TH0	[7:0]					
R/W		R/W								
Reset value		0								

8.2.3.4. Timer 1 Timer Registers

TL1	(8BH)	Timer	1	timer	low	8	bits
-----	-------	-------	---	-------	-----	---	------

Bit number	7	7 6 5 4 3 2 1 0									
Symbol	TL1[7:0]										
R/W		R/W									
Reset value		0									
TH1 (8DH) Timer 1 timer high 8 bits											
Bit number	7	6	5	4	3	2	1	0			
Symbol		TH1[7:0]									
R/W		R/W									
Reset value				(0						

8.2.3.5. Interrupt Related Registers

IEN0 (A8H) Interrupt enable register 0

Bit number 7 6 5 4 3 2 1 0										
	Bit number	7	6	5	4	3	2	1	0	

Symbol	EA	-	-	-	ET1	EX1	ET0	EX0
R/W	R/W	-	-	-	R/W	R/W	R/W	R/W
Reset value	0	-	-	-	0	0	0	0

Bit number	Bit symbol	Description
7	EA	Interrupt enable bit 0: Mask all interrupts (EA has priority over the respective interrupt enable bits of the interrupt sources); 1: The interrupt is turned on. Whether the interrupt request of each interrupt source is allowed or forbidden is determined by the respective enable bit.
3	ET1	Timer 1 overflow interrupt enable bit:0: Disable timer 1 (TF1) to apply for interrupt;1: Allow TF1 flag bit to request interrupt.
1	ET0	Timer 0 overflow interrupt enable bit:0: Disable timer 0 (TF0) to apply for interrupt;1: Allow TF0 flag bit to request interrupt.

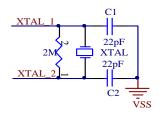
IPL0 (B8H) Interrupt priority register 0

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	PT1	PX2	PT0	PX0
R/W	-	-	-	-	R/W	R/W	R/W	R/W
Reset value	_	-	-	_	0	0	0	0

Bit number	Bit symbol	Description
2	3 PT1	TF1 (Timer1 interrupt) priority selection bit.
3		0: Low priority; 1: High priority
1	DTO	TF0 (Timer0 interrupt) priority selection bit.
	PT0	0: Low priority; 1: High priority

8.3. Timer2

8.3.1. Overview

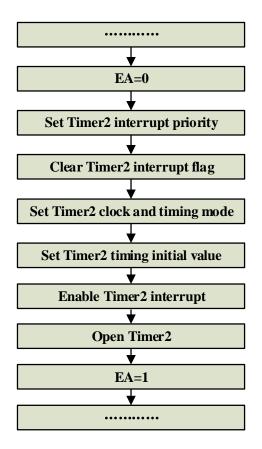

Timer2 module plays a timing role. The internal main structure of the Timer2 module is a 32bit counter. The timer function is achieved by counting the input clock. The counting principle of Timer2 is accumulative counting. An interrupt is generated when the count reaches the set value. Timer2 count clock can choose external XTAL and internal low-speed clock LIRC. TIMER2 has two working modes: single timer mode and auto-reload mode. In either mode, an interrupt will be generated when the timer is completed.

Configure Timer2 function enable through register TIMER2_EN, TIMER2_RLD configure automatic reload mode or manual reload mode, the timing time is determined by registers TIMER2_SET_L and TIMER2_SET_H. The timing clock can be selected from the internal low-speed clock LIRC 32kHz or the external crystal clock with a frequency of 32.768kHz/4MHz, which is determined by the clock selection register.

Timer2 supports interrupt wake-up idle mode function, and software needs to clear the interrupt flag in the interrupt processing function.

Timer2 timing duration formula:

 $T_{TIMER2}=T_{TIMER2_CLK}*({TIMER2_SET_H, TIMER2_SET_L}+1)$ Note: T_{TIMER2_CLK} = 1/32768 (s) or T_{TIMER2_CLK} = 1/4M (s)


External crystal oscillator circuit reference

Note:

- 1. Any configuration of TIMER2_SET_H, TIMER2_SET_L, TIMER2_CFG can clear the counter;
- 2. External crystal oscillator circuit is for reference only, the actual Parameter refers to the crystal oscillator specifications;

8.3.2. Timer2 Configure Process

Timer2 configure process table

During the configuration flow:

- 1. First configure the timing set value registers TIMER2_SET_H/TIMER2_SET_L;
- 2. Then configure the automatic reload enable register TIMER2_RLD as needed, set it to 1 if automatic loop count is required, otherwise configure it to 0;
- 3. Finally, configure the timing enable register TIMER2_EN and turn on the timing configuration TIMER2_EN=0x1;
- 4. Stop timing: TIMER2_EN=0x0.

Note:

- 1. TIMER2_EN=0x1 operation should be placed at the end of all configurations;
- 2. During the timing of TIMER2. It is forbidden to change the related configuration of Timer2. If you want to modify it, you need to stop the timing first.
- 3. For precise timing, in the automatic reload mode, the three registers of TIMER2 are not allowed to be configured during interrupt processing.

8.3.3. Timer2 Registers

			SFR re	gister
Address	Name	RW	Reset value	Description
0x85	INT_PE_STAT	RW	0x00	WDT/Timer2 interrupt status flag
0x93	TIMER2_CFG	RW	0x00	TIMER2 configuration register
0x94	TIMER2_SET_H	RW	0x00	TIMER2 count value configuration register, high 8 bits
0x95	TIMER2_SET_L	RW	0x00	TIMER2 count value configuration register, low 8 bits
0xE6	IEN1	RW	0x00	Interrupt enable register 1
0xF1	IRCON1	RW	0x00	Interrupt flag register 1
0xF6	IPL1	RW	0x00	Interrupt priority register 1
0xFE	PD_ANA	RW	0x1F	Module switch control register
			Timer2 SFR	register list

	Secondary bus register								
Address	Address Name RW Reset value Description								
0x1F									

8.3.3.1. TIMER2 Configuration Register

TIMER2_CFG (93H) TIMER2 configuration register

	````	/			0 0			
Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	TIMER2_CNT_MOD	TIMER2_CLK_SEL	TIMER2_RLD	TIMER2_EN
R/W	-	-	-	-	R/W	R/W	R/W	R/W
Reset value	-	-	-	-	0	0	0	0

Bit number	Bit symbol	Description
		TIMER2 count step mode select
3	TIMER2_CNT_MOD	register
5	TIMEK2_CN1_WOD	1: count step is 65536 clock.
		0: count step is 1 clock.
		TIMER2 clock select register
2	TIMER2_CLK_SEL	1: select XTAL
		0: select LIRC
		TIMER2 reload enable control register
1	TIMER2_RLD	1: automatic reload mode
		0: manual reload mode



		TIMER2 count enable register
		1: turn on timing; 0: stop timing;
	TIMER2_EN	In manual reload mode, the hardware automatically
0		clears this register after timing is completed, stop count.
0		In manual reload mode, will maintain the enable register
		after the count is completed. Automatically re-counting
		from 0, no matter which mode, configuring this register
		to 1 during counting will start counting from 0.

### 8.3.3.2. TIMER2 Count Value Configuration Registers

TIMER2_SET_H (94H) TIMER2 count value configuration register, high 8 bits

Bit number	7	6	5	4	3	2	1	0	
Symbol	TIMER2_SET_H[7:0]								
R/W		R/W							
Reset value	0								

Bit number	Bits	symbol		Description							
			TIME	TIMER2 count value configuration register, high 8 bits,							
7~0	TIMER2_	SET_H[7:	0] the re	the register will count again when configured during							
			scann	scanning.							
TIMER2_SET_	TIMER2_SET_L (95H) TIMER2 count value configuration register, low 8 bits										
Bit number	7	6	5	4	3	2	1	0			
Symbol		TIMER2_SET_L[7:0]									
R/W		R/W									
Reset value	0										

Bit number	Bit symbol	Description
		TIMER2 count value configuration register, low 8 bits,
7~0		the register will count again when configured during
		scanning.

## 8.3.3.3. Interrupt Related Registers

INT_PE_STAT (85H)	WDT/Timer2 interrupt status register
` ` '	1 0

Bit number	7	6	5	4	3	2	1	0
Symbol	-	I	I	I	I	I	INT_WDT_STAT	INT_TIMER2_STAT
R/W	-	-	-	-	-	-	R/W	R/W
Reset value	-	-	-	-	-	_	0	0



Bit number	Bit symbol	Description
		TIMER2 interrupt status flag, this bit is written 0 to clear,
0	INT TIMER2 STAT	write TIMER2_CFG operation also can clear
0		1: Interrupt is valid;
		0: Interrupt is invalid;

IEN1 (E6H) Interrupt enable register 1

Bit number	7	6	5	4	3	2	1	0
Symbol	EX7	EX6	EX5	EX4	EX3	EX2	-	-
R/W	R/W	R/W	R/W	R/W	R/W	R/W	-	-
Reset value	0	0	0	0	0	0	-	-

Bit number	Bit symbol	Description
		WDT/Timer2 interrupt enable
7	EX7	1: Interrupt enable;
		0: Interrupt disable;

IRCON1 (F1H) Interrupt flag register 1

Bit number	7	6	5	4	3	2	1	0
Symbol	IE7	IE6	IE5	IE4	IE3	IE2	-	-
R/W	R/W	R/W	R/W	R/W	R/W	R/W	-	-
Reset value	0	0	0	0	0	0	-	_

Bit number	Bit symbol	Description				
7	IE7	WDT/Timer2 interrupt flag 1: With interrupt flag 0: No interrupt flag				
IPL1 (F6H) Interrupt priority register 1						

Bit number	7	6	5	4	3	2	1	0
Symbol	IPL1.7	IPL1.6	IPL1.5	IPL1.4	IPL1.3	IPL1.2	-	-
R/W	R/W	R/W	R/W	R/W	R/W	R/W	-	-
Reset value	0	0	0	0	0	0	_	-

Bit number	Bit symbol	Description
7	IPL1.7	WDT/Timer 2 interrupt priority
	IPL1./	0: Low priority; 1: High priority

# 8.3.3.4. Module Switch Control Register

1FH PD_ANA (FEH) Module switch control register

Bit number	7~5	4	3	2	1	0
Symbol	-	PD_LVDT	PD_BOR	PD_XTAL_32K	PD_CSD	PD_ADC
R/W	-	R/W	R/W	R/W	R/W	R/W





Reset value         -         1         0         1         1	1 1
---------------------------------------------------------------	-----

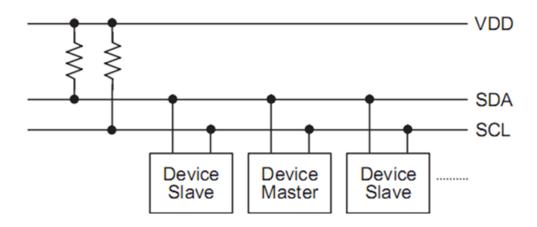
Bit number	Bit symbol	Description
7~5		Reserved
2	PD_XTAL_32K	RTC crystal circuit (32768Hz/4MHz) control register 1: Closed, 0: Open, closed by default

# 8.3.3.5. RTC crystal oscillator circuit selection register

# Secondary bus register

DUMMY_REG(1FH) RTC crystal oscillator circuit selection register

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	-	-	-	XTAL_CLK_SEL
R/W	-	-	-	-	-	-	-	R/W
Reset value	-	-	-	-	-	-	-	0


Bit number	Bit symbol	Description
7~1		Reserved
		RTC crystal oscillator circuit selection register
0	XTAL_CLK_SEL	1: XTAL4MHz
		0: XTAL32768Hz

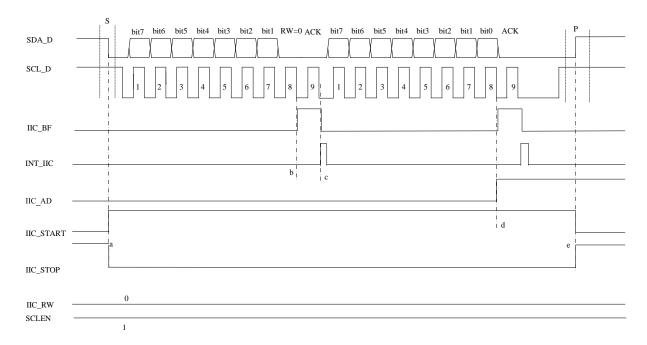


# **9. IIC**

The BF7612CMXX supports standard and fast IIC communication, and has the following characteristics:

- Two serial interfaces: serial data line SDA and serial clock line SCL
- Comply with philips standard communication protocol
- Transmission rate: 100Kbps, 400Kbps
- Support 7-bit address addrring
- With the function of extending the low level of the clock
- The core can be awakened by IIC interrupt in idle mode
- Detect write conflicts and abnormal buffer BUF overflow




IIC master-slave connection diagram

The master and slave are connected by SCL (serial clock) line and SDA (serial data) line. In IIC communication mode, PA0/1 are open-drain, and SCL and SDA must be connected to a pull resistor (4.7K to 10K is recommended). When the TS device has touch-related actions, such as touch, slide, finger away and other gestures, the host can obtain the touch state of the slave through IIC communication.



# 9.1. Communication Timing

The BF7612CMXX uses hardware slave. When host read /write data, after the slave receives the address, if the address matches, an interrupt is generated and a valid response signal is sent. And an interrupt is generated after the host computer writes the 8h clock of the data, and the host will not generate an interrupt signal when sending the stop signal. IIC timing diagram as follows:

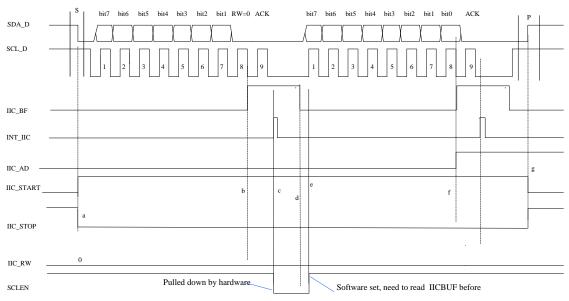


#### IIC host write timing diagram

#### IIC write not pull down clock line diagram

As shown in the above figure, the schematic diagram of the clock line is not pulled down during the host write operation. From this, you can see the changes of the IIC bus and some internal signal changes.

First the host sends a start signal IIC_START, and the slave sets the IIC_START status bit after detecting the IIC_START signal, as shown by the dotted line a in the figure.


Then the host sends the address bytes and RW flag bit, and the slave automatically compares with its own address after receiving the address byte. Set IIC_BF after the falling edge of the 8h clock if the address matches, as shown by the dotted line b in the figure.

An interrupt signal INT_IIC is generated after the falling edge of the ninth clock, as shown by the dotted line c. The MCU executes interrupt subroutine device needs to read IICBU. Even if this data is not useful. Reading the IICBUF operation will indirectly clear the START_BF. The host continues to send messages. The IIC_BF is also set after the falling edge of the 8th clock of the 2nd byte, and the IIC_AD flag is also set. The currently received byte of the flag is data, as shown by the dotted line d. The stop signal has no effect on the IIC_AD flag. That is, the stop signal IIC_STOP is detected, and the IIC_AD flag will not be cleared; The interrupt is generated after the falling edge of the ninth clock, and the interrupt subroutine requires the same operation. If the host wants to send multiple bytes, it can continue to send. The figure above only shows the case where



the host sends a data.

Finally, the host sends a stop signal IIC_STOP after sending all the data, indicating the end of the communication, releasing the IIC bus, and the bus enters the idle state.



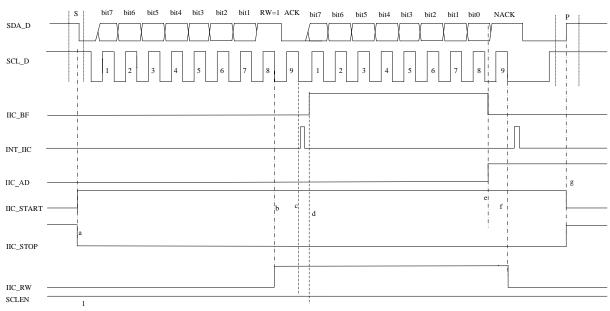
#### IIC host write pull low timing diagram

As shown in the above figure, it is a schematic diagram of pulling down the clock line during the host write operation, from which you can see the changes of the IIC bus and some internal signal changes.

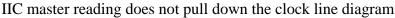
First the host sends a start signal IIC_START, and the slave sets the IIC_START status bit after detecting the IIC_START signal, as shown by the dotted line a.

Then the host sends the address bytes and RW flag bit, and the slave automatically compares with its own address after receiving the address byte. Set IIC_BF after the falling edge of the 8h clock if the address matches, as shown by the dotted line b in the figure. An interrupt signal INT_IIC is generated after the falling edge of the ninth clock, as shown by the dotted line c.

SCLEN will be automatically cleared by hardware after the falling edge of the 9th clock. This process is used to process or read data from the slave. Even if this data is not useful, reading IICBUF will cause IIC_BUF to be cleared indirectly, as shown by the dotted line d. Software sets SCLEN to release the clock line. As shown by the dotted line e.


After the master detects that the slave releases the SCL, it continues to send the synchronous clock. The IIC_BF is also set after the falling edge of the 8th clock of the 2nd byte, and the IIC_AD flag is also set, the currently received byte of the flag is data, as shown by the dotted line f, and the stop signal has no effect on the IIC_AD flag. That is, the stop signal IIC_STOP is detected, and the IIC_AD flag will not be cleared; The interrupt is generated after the falling edge of the ninth clock.

If the host wants to send multiple bytes, it can continue to send, as shown in the figure above, it only indicates that the host sends one piece of data. The situation that needs to be noted is that when the host sends the last data, the function of pulling down the clock line is not enabled.


IIC write low clock line diagram

Semiconductor

Finally, the host sends a stop signal IIC_STOP after sending all the data, indicating the end of the communication, releasing the IIC bus, and the bus enters the idle state.



#### IIC host read timing diagram

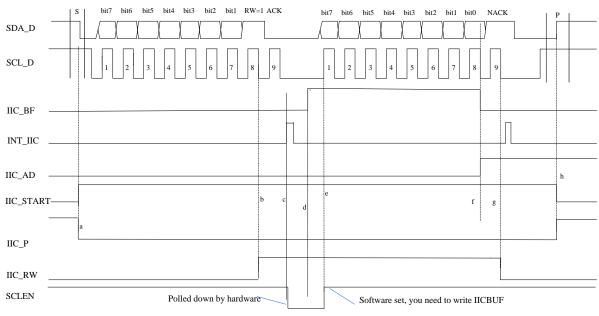


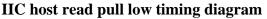
As shown in the above figure, it is a schematic diagram of pulling down the clock line during the host write operation, from which you can see the changes of the IIC bus and some internal signal changes.

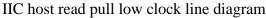
First the host sends a start signal IIC_START, marking the beginning of communication. As shown by the dotted line a. The internal circuit detects the IIC_START signal timing and sets the status flag IIC_START.

Then the host sends the address bytes,  $IIC_RW = 1$ , indicates that the host reads the slave. In the case of address match, after the falling edge of the 8h clock, the status bit IIC_RW is set, as shown by the dotted line b; If Address does not match, IIC_RW will not be set.

An interrupt signal INT_IIC is generated after the falling edge of the ninth clock. As shown by the dotted line c. Ballast the data in IICBUFFER to IICBUF, IIC is set, as shown by the dotted line d, and the highest bit is sent to the bus. After the 8h clock, one byte of data is sent, IIC_BF is set to clear; At the same time, the address data flag will also be set. As shown by the dotted line e.


An interrupt signal INT_IIC is generated after the falling edge of the ninth clock. If the host needs to read the slave, the host replies with a valid acknowledge bit ACK and continues to communicate. If the data require by the host has been read, the host replies with an invalid response NACK, and then sends a stop signal IIC_STOP to stop the communication.


In the diagram, the host only reads one piece of data, and then responds with NACK, and then sends the IIC_STOP signal to terminate the communication. When the NACK is detected, the read/write flag IIC_RW is cleared by hardware. As shown by the dotted line f. If the host sends a NACK, the slave SCLEN will not be automatically pulled low.


Finally, the host sends a stop signal IIC_STOP after reading all the data, indicating the end of



the communication. When the IIC_STOP signal is detected the status bit IIC_STOP is set and IIC_START is cleared. Release IIC bus. As shown by the dotted line g. The bus enters the idle state.







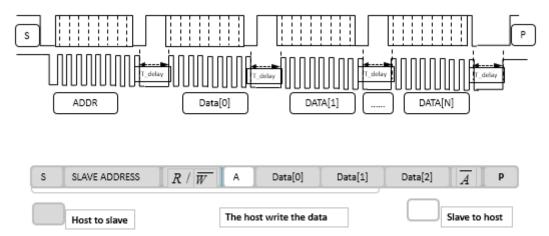
As shown in the figure above, it is the timing diagram of the master reading the slave clock line low. From the figure, we can know the changes of the bus and the changes of the internal signals of some circuits.

First the host sends a start signal IIC_START, marking the beginning of communication. As shown by the dotted line a. The internal circuit detects the IIC_START signal timing and sets the status flag IIC_START.

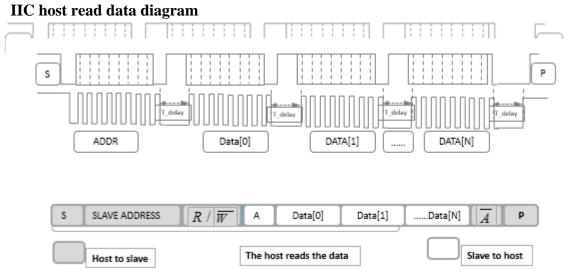
Then the host sends the address byte after the IIC_START signal. IIC_RW = 1, indicates that the host reads the slave. In the case of Address matching, after the falling edge of the 8h clock, status bit IIC_RW set. As shown by the dotted line b. Will not be set if the addresses do not match.

An interrupt signal INT_IIC is generated after the falling edge of the ninth clock. As shown by the dotted line c. SCLEN will also be automatically pulled low by the hardware after the falling edge of the ninth clock. This period is used to process or prepare data from the slave, then write the prepared data to IICBUF, set SCLEN in software, and release the clock line. As shown by the dotted line d. In writing the data to the IICBUF, the IICBUF will be set, indicating that the IIC is full at this time. As shown by the dotted line e. Software sets SCLEN, releases the clock line.

After the master detects that the slave releases the SCL, it continues to send the synchronous clock and read the slave data. After the falling edge of the 8th clock, one byte of data has been sent and IIC_BF cleared; At the same time, the address data flag will also be set, indicating the currently transmitted byte data. As shown by the dotted line f.


An interrupt signal INT_IIC is generated after the falling edge of the ninth clock. If the host needs to continue to read the slave, the host replies with a valid acknowledge bit ACK and continues to communicate; If the data require by the host has been read, the host replies with an




invalid response NACK, and then sends a stop signal IIC_STOP to stop the communication. In the diagram, the host reads only one piece of data, replies to NACK, and then sends the IIC_STOP signal to terminate the communication. When the NACK is detected, the read/write flag IIC RW is cleared by hardware. As shown by the dotted line g.

Finally, the host sends a stop signal IIC_STOP after reading all the data, indicating the end of the communication. When the IIC_STOP signal is detected the status bit IIC_STOP is set and IIC_START is cleared. Release IIC bus. As shown by the dotted line h. The bus enters the idle state.

#### IIC host write data diagram



PS: T_delay: Reserve slave interrupt time, generally 60us^300us, if the slave IIC interrupts the service processing time at100us, suggest T_delay>200us .



#### PS: T_delay: Reserve slave interrupt time, generally 60us^300us, if the slave IIC interrupts the service processing time at100us, suggest T_delay>200us.

At the 8h clock slave send ack, IIC interrupt occurs at the ninth clock fulling edge. It is recommended that the host delay 60us~300us when the ninth clock fulling edge is sent. Reserve the slave IIC interrupt service data preparation time, and then send the clock signal.

**Note:** If IIC communication >=100K, it is recommended that system clock 6MHz.



SFR register							
egister							
uffer							
rol							
,							

# 9.2. IIC Register

IIC SFR register list

# 9.2.1. IIC Address Register

IICADD (E3H) IIC address register

Bit number	7	6	5	4	3	2	1	0
Symbol		IICADD[7:1]						
R/W		R/W						
Reset value		0						

Bit number	Bit symbol	Description
7~1	IICADD[7:1]	IIC address

# 9.2.2. IIC Transmit and Receive Data Register

IIC transmit and receive data register, used to control the working condition of communication.

IICBUF (E4H) IIC transmit and receive data register

Bit number	7	6	5	4	3	2	1	0
Symbol	IICBUF							
R/W		R/W						
Reset value	0							

Bit number	Bit symbol	Description
7~0	IICBUF	IIC transmit and receive data buffer

The specific application process is as follows:

In the send state, after the data is ballasted into the IICBUF, under the synchronous clock of the host. The data is sequentially shifted and sent out, the high position is in front. After 8 clocks, one byte is sent.

In the receive state, after the host's 8 clocks have passed, the data is written to the BUF. After the 9th clock, an interrupt is generated, telling the CPU to read the data in the IICBUF.

Writing data to IICBUF is conditional, when RD_SCL_EN=1, only IIC_RW=1, and SCLEN=0 can write data into IICBUF; Otherwise, the operation of writing IICBUF is prohibited. That is to say, if the condition is not satisfied, the operation of writing IICBUF cannot be successful, and the data cannot be written. IICBUF data will not change, but will also cause write confilicts.

For example: IICBUF already has been 55h. In case the condition of writing IICBUF is not satisfied, we want to write data 00h into IICBUF. The result is that the data in IICBUF is still 55h, and the write conflict flag IIC_WCOL is set to tell the user that the operation is abnormal.

When RD_SCL_EN=0, the data to be the slave is the value of the ballast IICBUFFER register when the interrupt signal is generated.

# 9.2.3. IIC Control Register

IICCON register, used to control the working condition of communication.

Bit number	7	6	5	4
Symbol	-	-	IIC_RST	RD_SCL_EN
R/W	-	-	R/W	R/W
Reset value	-	-	0	1
Bit number	3	2	1	0
Symbol	WR_SCL_EN	SCLEN	SR	IIC_EN
R/W	R/W	R/W	R/W	R/W
Reset value	0	0	0	0

IICCON (E5H) IIC control register

Bit number	Bit symbol	Description
7~6		Reserved
5	IIC_RST	<ul><li>IIC module reset signal</li><li>1: IIC module reset operation,</li><li>0: IIC module works normally</li></ul>
4	RD_SCL_EN	The host reads the low clock line control bit 1: Enable the host to read and pull down the clock line function, 0: Disable the host read and pull down clock line function
3	WR_SCL_EN	The host writes the low clock line control bit, 1: Enable the function of writing and pulling down the clock line,



		0: Disable the function of writing and pulling down the clock line
2	SCI EN	IIC clock enable bit:
2	SCLEN	1: Clock works normally, 0: Low the clock line
		IIC conversion rate control bit
		1: The conversion rate control is turned off to adapt to the standard
1	SR	speed mode (100K);
		0: Conversion rate control is enabled to adapt to fast speed mode
		(400K)
0	HC EN	IIC work enable bit:
	IIC_EN	1: IIC works normally, 0: IIC does not work

**IICEN** is module enable signal, when IICEN=1, the circuit works.

**SR** is the conversion rate control bit, SR=1 conversion ratecontrol off, port adapted to 100Kbps communication.

**SCLEN** is clock enable control bit, although the slave cannot generate the communication clock, the slave can extend the low time of the clock according to the protocol. SCLEN=0, clock line is locked at low level; SCLEN=1, release clock line. The premise of extending the low level of the clock is IICEN=1, otherwise the internal circuit will not have any effect on the IIC bus. SCLEN is often used to extend low time and make the host enter the wait state, so that the slave has enough time to process the data.

**WR_SCL_EN** is write low line control bit. When it is 1 to enable the interrupt to pull down the clock line, when it is 0, it does not enable the interrupt to pull down the clock line.

IIC_RW=0, according to the communication rate of the host and the time of processing the interrupt, it is determined whether to lower the clock line, that is, configure the WR_SCL_EN bit.

When the CPU can process the interrupt and exit the interrupt within 8 IIC clocks. WR_SCL_EN=0 disable pull down the clock clock line function. At this time, the hardware will not automatically pull down the clock line when the interrupt arrives. When the CPU cannot process the interrupt and exit in the 8 IIC clocks, WR_SCL_EN=1 enables the clock line to be pulled down. At this point, the hardware automatically pulls down the clock line when the interrupt arrives, forcing the host to enter the wait state. When the data written to the IIC is read by the CPU, the software sets SCLEN.

**RD_SCL_EN** is read low line control bit. When it is 1 to enable the interrupt to pull down the clock line, when it is 0, it does not enable the interrupt to pull down the clock line.

RD_SCL_EN=1. when the slave receives the address byte or sends one byte and the host sends, SCLEN will be automatically pulled low by hardware, forcing the host to the enter the wait state. The release the IIC clock from the slave, the following two operations arerequired: first write the data to be sent to the IIC, set the software in IICBUF in SCLEN. The purpose of this design is to ensure that the data to be sent has been written in the IICBUF before the SCL is pulled high.

RD_SCL_EN=0, when the slave receives the address byte or sends one byte and the host sends an ACK, the slave immediately polls the data prepared in the IICBUFFER register to the transmit buffer register and then to the data line. Therefore, in order to ensure that data transmitted each time



is correct, IICBUFFER prepares the next data to be sent in the interrupt service routine. The data received by the host is the last interrupted data, and the first time the data is received is ready for initialization.

**Note**: When you need to pull down the clock line, that is, WR_SCL_EN/RD_SCL_EN=1. Software should turn off the clock line until the last Byte data is sent and received. That is, WR_SCL_EN/RD_SCL_EN=0, the software should turn on the write low pull clock line before sending and receiving the last Byte data. This kind of operation can be self-regulated according to whether the host is software or hardware. The interrupt processing time is self-regulated.

**IIC_RST** is IIC module control enable bit, enable the IIC module reset function for 1 and disable the IIC module reset function when 0. Pay attention to configuration 1 reset IIC module all DFF triggers. The reset terminal of IIC_RST is global reset, and the other reset terminal are iic_rst_n. All iic_rst writes 0 first, then operate other register configurations..

### 9.2.4. IIC Status Register

IIC status register, used to reflect the status in the communication process and can be queried by the user.

(							
Bit number	7	6	5	4			
Symbol	IIC_START	IIC_STOP	IIC_RW	IIC_AD			
R/W	R	R	R	R			
Reset value	0	1	0	0			
Bit number	3	2	1	0			
Symbol	IIC_BF	IIC_ACK	IIC_WCOL	IIC_RECOV			
R/W	R	R	R/W	R/W			
Reset value	0	1	0	0			

IICSTAT (E8H) IIC status register

Bit number	Bit symbol	Description
		Start signal flag
7	IIC_START	1: Indicates that the start bit is detected;
		0: Indicates that the start bit is not detected.
		Stop signal flag
6	IIC_STOP	1: Indicates in the stop state;
		0: Indicates that the stop bit is not detected.
		Read and write flag
		Record the read/write information obtained from the address
5	IIC_RW	byte after the last address match,
		1: Indicates read operation;
		0: Indicates write operation.
4	IIC_AD	Address data flag



3       I: Indicates that the most recently received or sent byte is a address.         3       IIC_BF         3       IIC_BF         1       Indicates that the reception is successful and the buffer is full; 0: Indicates that the reception is not completed and the buffer is still empty         When sending in IIC bus mode:       1: Indicates that the reception is not completed and the buffer is still empty         When sending in IIC bus mode:       1: Indicates that the reception is not completed and the buffer is still empty         When sending in IIC bus mode:       1: Indicates that data transmission is in progress (not including the response bit and stop bit), and the buffer is still full;         0: IIC_ACK       Reply flag         1       IIC_MCOL         Reply flag       1: Indicates that when the IIC is sending the current data, new data is trying to be written into the sending buffer; the new data cannot be written into the buffer;         0       IIC_RECOV       Receive overflow flag         1: Indicates that new data is received when the previous data cannot be received by IIC has not been taken away, and the new data cannot be received by the buffer;				
0       Indicates that the most recently received or sent byte is an address.         IIC_BF       IICBUF full flag bit: when receiving in IIC bus mode         1: Indicates that the reception is successful and the buffer is full;       0: Indicates that the reception is not completed and the buffer is still empty         3       IIC_BF       When sending in IIC bus mode:         1: Indicates that the reception is not completed and the buffer is still empty       When sending in IIC bus mode:         0: Indicates that data transmission is in progress (not including the response bit and stop bit), and the buffer is still full;       0: Indicates that the data transmission has been completed (not including the response bit and stop bit), and the buffer is empty.         2       IIC_ACK       Reply flag         1       IIC_ACK       Nitic conflict flag         1       IIC_WCOL       Write conflict flag         1       IIC_WCOL       Write conflict flag         1       IIC_RECOV       Receive overflow flag         0       IIC_RECOV       Receive overflow flag         1: Indicates that new data is received when the previous data received by IIC has not been taken away, and the new data cannot be received by the buffer;			1: Indicates that the most recently received or sent byte is	
address.3IIC_BUF full flag bit: when receiving in IIC bus mode 1: Indicates that the reception is successful and the buffer is full; 0: Indicates that the reception is not completed and the buffer is still empty When sending in IIC bus mode: 1: Indicates that data transmission is in progress (not including the response bit and stop bit), and the buffer is still full; 0: Indicates that the data transmission has been completed (not including the response bit and stop bit), and the buffer is empty.2IIC_ACKReply flag 1: Indicates an invalid response signal; 0: Indicates that when the IIC is sending the current data, new data is trying to be written into the sending buffer; the new data cannot be written into the buffer; 0: No write conflict occurred.0IIC_RECOVReceive overflow flag 1: Indicates that new data is received when the previous data received by IIC has not been taken away, and the new data cannot be received by the buffer;			data;	
3       IICBUF full flag bit: when receiving in IIC bus mode         3       IIC_BF         3       IIC_BF         3       IIC_BF         3       IIC_BF         4       buffer is still empty         When sending in IIC bus mode:       1: Indicates that the reception is not completed and the buffer is still empty         When sending in IIC bus mode:       1: Indicates that data transmission is in progress (not including the response bit and stop bit), and the buffer is still full;         0: Indicates that the data transmission has been completed (not including the response bit and stop bit), and the buffer is empty.         2       IIC_ACK         8       Reply flag         1       IIC_MCOL         1       IIC_WCOL         1       IIC_WCOL         1       IIC_RECOV         0       IIC_RECOV         0       IIC_RECOV         1       IIC_RECOV         1       IIC_RECOV         1       IIC has not been taken away, and the new data cannot be received by the buffer;         0       IIC_RECOV			0: Indicates that the most recently received or sent byte is an	
3IIC_BF1: Indicates that the reception is successful and the buffer is full; 0: Indicates that the reception is not completed and the buffer is still empty When sending in IIC bus mode: 1: Indicates that data transmission is in progress (not including the response bit and stop bit), and the buffer is still full; 0: Indicates that the data transmission has been completed (not including the response bit and stop bit), and the buffer is empty.2IIC_ACKReply flag 1: Indicates an effective response signal; 0: Indicates an effective response signal.1IIC_WCOLWrite conflict flag 1: Indicates that when the IIC is sending the current data, new data is trying to be written into the sending buffer; the new data cannot be written into the sending buffer; the new data cannot be written into the sending buffer; the new data is received when the previous data received by IIC has not been taken away, and the new data cannot be received by the buffer;			address.	
3IIC_BFfull; 0: Indicates that the reception is not completed and the buffer is still empty When sending in IIC bus mode: 1: Indicates that data transmission is in progress (not including the response bit and stop bit), and the buffer is still full; 0: Indicates that the data transmission has been completed (not including the response bit and stop bit), and the buffer is empty.2IIC_ACKReply flag 1: Indicates an invalid response signal; 0: Indicates an effective response signal.1IIC_WCOLWrite conflict flag 1: Indicates that when the IIC is sending the current data, new data is trying to be written into the sending buffer; the new data cannot be written into the buffer; 0: No write conflict occurred.0IIC_RECOVReceive overflow flag 1: Indicates that new data is received when the previous data received by IIC has not been taken away, and the new data cannot be received by the buffer;			IICBUF full flag bit: when receiving in IIC bus mode	
3IIC_BF0: Indicates that the reception is not completed and the buffer is still empty When sending in IIC bus mode: 1: Indicates that data transmission is in progress (not including the response bit and stop bit), and the buffer is still full; 0: Indicates that the data transmission has been completed (not including the response bit and stop bit), and the buffer is empty.2IIC_ACKReply flag 1: Indicates an invalid response signal; 0: Indicates that when the IIC is sending the current data, new data is trying to be written into the sending buffer; the new data cannot be written into the buffer; 0: No write conflict occurred.0IIC_RECOVReceive overflow flag 1: Indicates that new data is received when the previous data received by IIC has not been taken away, and the new data cannot be received by the buffer;			1: Indicates that the reception is successful and the buffer is	
3IIC_BFbuffer is still empty When sending in IIC bus mode: 1: Indicates that data transmission is in progress (not including the response bit and stop bit), and the buffer is still full; 0: Indicates that the data transmission has been completed (not including the response bit and stop bit), and the buffer is empty.2IIC_ACKReply flag 1: Indicates an invalid response signal; 0: Indicates an effective response signal.1IIC_ACKWrite conflict flag 1: Indicates that when the IIC is sending the current data, new data is trying to be written into the sending buffer; the new data cannot be written into the buffer; 0: No write conflict occurred.0IIC_RECOVReceive overflow flag 1: Indicates that new data is received when the previous data received by IIC has not been taken away, and the new data cannot be received by the buffer;			full;	
3       IIC_BF       When sending in IIC bus mode:         1: Indicates that data transmission is in progress (not including the response bit and stop bit), and the buffer is still full;       0: Indicates that the data transmission has been completed (not including the response bit and stop bit), and the buffer is empty.         2       IIC_ACK       Reply flag         1       IIC_ACK       1: Indicates an invalid response signal;         0       IIC_WCOL       Write conflict flag         1: Indicates that when the IIC is sending the current data, new data is trying to be written into the sending buffer; the new data cannot be written into the buffer;         0       IIC_RECOV       Receive overflow flag         1: Indicates that new data is received when the previous data received by the buffer;			0: Indicates that the reception is not completed and the	
3       IIC_BF       1: Indicates that data transmission is in progress (not including the response bit and stop bit), and the buffer is still full;         0       IIC_ACK       Reply flag         1       IIC_ACK       Reply flag         1       IIC_MCCL       Reply flag         1       IIC_WCOL       Write conflict flag         1       IIC_WCOL       No write conflict flag         1       IIC_RECOV       Receive overflow flag			buffer is still empty	
0       IIC_RECOV       IIIC_RECOV       IIIC_RECOV       IIIC Indicates that data transmission is in progress (not including the response bit and stop bit), and the buffer is setill full;         0       IIC_RECOV       IIIC and the data transmission has been completed (not including the response bit and stop bit), and the buffer;         0       IIC_RECOV       Reply flag         1       IIC_RECOV       Receive overflow flag	2		When sending in IIC bus mode:	
0IIC_RECOVfull;0IIC_RECOVfull;0IIC_RECOVfull;0IIC_RECOVfull;0IIC_RECOVReply flag1IIC_RECOVfullic ates an invalid response signal; 0: Indicates an effective response signal.1IIC_RECOVReply flag1IIC_RECOVReply flag1IIC_RECOVReply flag1IIC_RECOVReceive overflow flag 1: Indicates that new data is received when the previous data received by IIC has not been taken away, and the new data cannot be received by the buffer;	3	IIC_BF	1: Indicates that data transmission is in progress (not	
0: Indicates that the data transmission has been completed (not including the response bit and stop bit), and the buffer is empty.2IIC_ACKReply flag 1: Indicates an invalid response signal; 0: Indicates an effective response signal.1IIC_WCOLWrite conflict flag 1: Indicates that when the IIC is sending the current data, new data is trying to be written into the sending buffer; the new data cannot be written into the buffer; 0: No write conflict occurred.0IIC_RECOVReceive overflow flag 1: Indicates that new data is received when the previous data received by IIC has not been taken away, and the new data cannot be received by the buffer;			including the response bit and stop bit), and the buffer is still	
1IIC_ACKReply flag 1: Indicates an invalid response signal; 0: Indicates an effective response signal.1IIC_ACKWrite conflict flag 1: Indicates that when the IIC is sending the current data, new data is trying to be written into the sending buffer; the new data cannot be written into the buffer; 0: No write conflict occurred.0IIC_RECOVReceive overflow flag 1: Indicates that new data is received when the previous data received by IIC has not been taken away, and the new data cannot be received by the buffer;			full;	
empty.         2       IIC_ACK       Reply flag         1: Indicates an invalid response signal;       0: Indicates an effective response signal.         1       IIC_WCOL       Write conflict flag         1: Indicates that when the IIC is sending the current data, new data is trying to be written into the sending buffer; the new data cannot be written into the buffer;         0: No write conflict occurred.         Receive overflow flag         1: Indicates that new data is received when the previous data received by IIC has not been taken away, and the new data cannot be received by the buffer;			0: Indicates that the data transmission has been completed	
2       IIC_ACK       Reply flag         1       IIC_ACK       1: Indicates an invalid response signal;         0: Indicates an effective response signal.       Write conflict flag         1       IIC_WCOL       Write conflict flag         1: Indicates that when the IIC is sending the current data, new data is trying to be written into the sending buffer; the new data cannot be written into the buffer;         0: No write conflict occurred.         Receive overflow flag         1: Indicates that new data is received when the previous data received by IIC has not been taken away, and the new data cannot be received by the buffer;			(not including the response bit and stop bit), and the buffer is	
2       IIC_ACK       1: Indicates an invalid response signal;         0: Indicates an effective response signal.       0: Indicates an effective response signal.         1       IIC_WCOL       Write conflict flag         1: Indicates that when the IIC is sending the current data, new data is trying to be written into the sending buffer; the new data cannot be written into the buffer;       0: No write conflict occurred.         0       IIC_RECOV       Receive overflow flag       1: Indicates that new data is received when the previous data received by IIC has not been taken away, and the new data cannot be received by the buffer;			empty.	
0: Indicates an effective response signal.         0: Indicates an effective response signal.         1       IIC_WCOL         1			Reply flag	
0       IIC_RECOV       Write conflict flag         1       IIC_RECOV       IIC has not been taken away, and the new data cannot be received by the buffer;	2	IIC_ACK	1: Indicates an invalid response signal;	
1IIC_WCOL1: Indicates that when the IIC is sending the current data, new data is trying to be written into the sending buffer; the new data cannot be written into the buffer; 0: No write conflict occurred.0IIC_RECOVReceive overflow flag 1: Indicates that new data is received when the previous data received by IIC has not been taken away, and the new data cannot be received by the buffer;			0: Indicates an effective response signal.	
1       IIC_WCOL       new data is trying to be written into the sending buffer; the new data cannot be written into the buffer;         0:       No write conflict occurred.         0:       Neceive overflow flag         1:       Indicates that new data is received when the previous data received by IIC has not been taken away, and the new data cannot be received by the buffer;			Write conflict flag	
0       IIC_RECOV       Receive overflow flag         1: Indicates that new data is received when the previous data         cannot be received by IIC has not been taken away, and the new data         cannot be received by the buffer;			1: Indicates that when the IIC is sending the current data,	
0: No write conflict occurred.         0: No write conflict occurred.         Receive overflow flag         1: Indicates that new data is received when the previous data         received by IIC has not been taken away, and the new data         cannot be received by the buffer;	1	IIC_WCOL	new data is trying to be written into the sending buffer; the	
0IIC_RECOVReceive overflow flag 1: Indicates that new data is received when the previous data received by IIC has not been taken away, and the new data cannot be received by the buffer;			new data cannot be written into the buffer;	
0IIC_RECOV1: Indicates that new data is received when the previous data received by IIC has not been taken away, and the new data cannot be received by the buffer;			0: No write conflict occurred.	
0 IIC_RECOV received by IIC has not been taken away, and the new data cannot be received by the buffer;			Receive overflow flag	
cannot be received by the buffer;			1: Indicates that new data is received when the previous data	
	0	IIC_RECOV	received by IIC has not been taken away, and the new data	
			cannot be received by the buffer;	
0: Indicates that no receive overflow has occurred.			0: Indicates that no receive overflow has occurred.	

**IIC_START:** Start signal status bit, IIC_START is set when the start signal is detected, Indicating that the bus is busy.

**IIC_STOP:** Stop signal status bit, IIC_START is set when the start signal is detected, indicating that the bus is idle. When the start signal is detected, the hardware is cleared, indicating that communication begins.

**IIC_AD:** Address data flag. It indicates whether the byte currently received or sent is an address or data. IIC_AD =0, flag is currently received or sent byte is the address; IIC_AD = 1 flag is currently received or sent byte is the data; Start signal, stop signal, non-response signal have no effect on this status bit. This status bit change occurs on the falling edge of the 8h clock.

**IIC_RW:** Read and write flag. The flag bit is recorded the read and write information bits obtained from the address is matched. IIC_RW = 1 means the host reads the slave. RW = 0 means

the host writes the slave. Start signal, stop signal, non-answer signal (NACK) is cleared IIC_RW. This status bit change occurs on the falling edge of the 8h clock.

**IIC_BF:** BUFFER full flag. It indicates that the transceiver buffer is currently full or empty. IIC_BF=0 indicates that the buffer does not receive data and the buffer is empty; IIC_BF=1 indicates that the buffer receive data and the buffer is full. This status bit can only be set and cleared indirectly, not directly.

Address matching and IIC_RW=0, IIC_BF will be set after the falling edge of the 8h clock, indicating that the IICBUF has received the data. The IICBUF should be read during the execution of the interrupt routine, and the read IICBUF will indirectly clear the BF flag. If the host does not read IICBUF and the host continues to send data, a receive overflow will occur. Although the slave still receives the host to send data and is ballasted to the IICBUF. But NACK signals are still sent, giving an invalid reply.

Address matching and IIC_RW=1. after the slave receives the Address byte, the IIC_BF flag will not be set; IIC_RW=1 indicates the operation of the master to read the slave, the slave operation needs to write data to the IICBUF, and the slave writes IICBUF operation to set the IICBUF. The software then sets SCLEN to release the clock line; The host sends the synchronous clock. After the 8th clock is passed, the IICBUF is cleared by hardware after the data in the IICBUF is sent out.

**IIC_ACK:** Answer flag. Regardless of whether the host is a read or write operation, the slave samples the data line from the rising edge of the ninth clock and records the response information. The acknowledge bits are divided into a valid acknowledgment ACK and a non-valid acknowledgement bit NACK. That is to say, the rising edge of the ninth clock samples the data to 0, indicating that the ACK is valid, and the IIC_ACK is cleared. If data 1 is sampled, NACK is set, indicating non-response. After the non-acknowledgment signal, the host will send a stop signal to announce the end of the communication. The start signal will clear this status bit.

**IIC_WCOL:** Write conflict flag. IICBUF only when IIC_RW=1. RD_SCL_EN=1 and SCLEN=0 can be written by the CPU. Any other attempt to write to IICBUF is forbidden. If the above conditions are not met, the write IICBUF operation occurs. Then the data will not be written to IICBUF, and the conflict flag IIC_WCOL will be set. This flag needs to be cleared by software.

**IIC_RECOV:** Receive overflow flag.In the case of IICBUF full, that is, in the case of data in the IICBUF. If IIC received new data, it will receive overflow and IIC RECOV will set.At the same time, the data in the IICBUF will not be updated, and the newly received data will be lost. This status bit also requires software to clear, otherwise it will affect the subsequent communication. This kind of situation will only appear in IICRW=0. BF=1. And the CPU will appear when it does not read IICBUF.

### 9.2.5. IIC Transmit and Receive Data Buffer Register

IICBUFFER (E9H) IIC transmit and receive data buffer register

Bit number	7	6	5	4	3	2	1	0
Symbol				IICBU	IFFER			



R/W	R/W
Reset value	0

Bit number	Bit symbol	Description
7~0	IICBUFFER	IIC transmit and receive data buffer register; when RD_SCL_EN is 0, when the master reads data, the data in IICBUFFER will be sent to the slave send buffer register 2 clocks after the interrupt, as the data sent by the slave. So prepare IICBUFFER interrupt data before interrupt generation.

# 9.2.6. IIC Function Control Register

			U		
Bit number	7	6	5	4	3
Symbol	-	IIC_AFIL_SEL	IIC_DFIL_SEL	UART0_	IO_SEL
R/W	-	R/W	R/W	R/W	R/W
Reset value	-	1	0	0	0
Bit number	2	1	0	/	/
Symbol	INT2_IO_SEL	INT1_IO_SEL	INT0_IO_SEL		
R/W	R/W	R/W	R/W	/	/
Reset value	0	0	0		

Bit number	Bit symbol	Description
		IIC port analog filter selection enable
6	IIC_AFIL_SEL	1: select analog filter function;
		0: do not select analog filter function.
		IIC port digital filter selection enable.
5	IIC_DFIL_SEL	1: select digital filter function;
		0: do not select digital filter function.

# 9.2.7. IIC Interrupt Related Registers

Bit number	7	6	5	4	3	2	1	0
Symbol	EX7	EX6	EX5	EX4	EX3	EX2	_	-
R/W	R/W	R/W	R/W	R/W	R/W	R/W	-	-
Reset value	0	0	0	0	0	0	-	-

IEN1 (E6H) Interrupt enable register 1

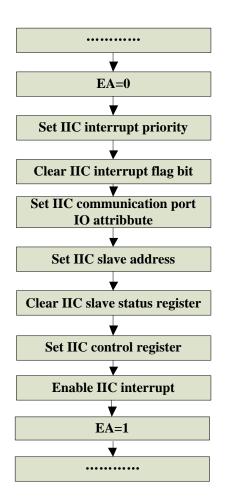
Bit number Bit symbol Description
-----------------------------------



3	EX3	IIC interrupt enable 1: Interrupt enabled;		
		0: Interrupt disabled;		
IRCON1 (F1H) Interrupt flag register 1				

Bit number	7	6	5	4	3	2	1	0
Symbol	IE7	IE6	IE5	IE4	IE3	IE2	-	-
R/W	R/W	R/W	R/W	R/W	R/W	R/W	-	-
Reset value	0	0	0	0	0	0	-	-

Bit number	Bit symbol	Description	
3	IE3	IIC interrupt flag	
		1: With interrupt flag 0: No interrupt flag	


# IPL1 (F6H) Interrupt priority register 1

Bit number	7	6	5	4	3	2	1	0
Symbol	IPL1.7	IPL1.6	IPL1.5	IPL1.4	IPL1.3	IPL1.2	-	-
R/W	R/W	R/W	R/W	R/W	R/W	R/W	-	-
Reset value	0	0	0	0	0	0	-	-

Bit number	Bit symbol Description	
3	IPL1.3	IIC interrupt priority 0: Low priority; 1: High priority



# **9.3. IIC Configuration Process**



IIC configuration flow chart

**Note:** The IIC bus pull-up resistor is  $4.7k \sim 10k$ , and the filter capacitor to the ground is recommended to be  $10pF \sim 100pF$  close to the pin chip.





# **10. UART**

There are 2 UART modules in the BF7612CMXX series, UART interface features:

- Support full-duplex, half-duplex serial
- Independent dual buffer receiver and single buffer transmitter
- Programmed baud rate (10bit analog-to digital divider)
- Interrupt-driven or polling operation:
  - send completed
  - receiving full
  - receive overflow, parity error, frame error
- Supports hardware parity production and check
- Programmable 8bit or 9bit character length
- STOP bit 1 or 2 can be selected
- Supports multiprocessor mode
- UART0 supports 3 IO port mapping, PERIPH_IO_SEL[4:3].



# **10.1. UARTO Function Description**

## **10.1.1. Baud Rate Generation**

Baud rate generation modules: Baud_Mod= {UART0_BDH[1:0], UART0_BDL}.

Baud rate calculation formula: Baud_Mod=0, does not generate baud rate clock. When Baud_Mod=1~1023, UART0 baud rate = BUSCLK/ (16x Baud_Mod). BUSCLK uses the divided clock of the system clock source, fixed to 24M. Each time the baud rate register is configured, the internal counter is cleared and the baud rate signal is regenerated. Communication requires the transmitter and receiver to use the same baud rate. Baud rate deviation range allowed by communication: 8/(11*16)=4.5%.

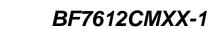
## **10.1.2. Transmitter function**

Send data flow: Trammitted by writing UART0_BUF data, sending stop bit after sending stop bit. Software clear interrupt flag and waits for the next write. The transmitter output pin (TXD) idle state defaults to a logic high state. The entire transmission process must be performed when the module is enabled.

By writing data to the data register (UART0_BUF), save the data directly to the send data buffer and start the send process. The data buffer is locked during the subsequent complete transmission. The configuration write data register UART0_BUF and T8 is invalid. After the stop bit is sent, writing to UART0_BUF again will restart the new transmission.

The serial component of the serial transmitter has a length of 10/11/12 (depending on the setting in the data_mode control bit) transmit shift register. If data_mode=0, select normal 8bit data mode. In the 8bit data mode, there is 1 start bit in the shift register, 8 data bits and 1/2 stop bits. Send and receive are small endian mode (LSB first).

## **10.1.3. Receiver Function**


The receiver is enabled by setting the receive enable bit in UART0_CON1. The entire receiving process must be performed when the module is enabled.

Receiving data flow: receive data at any time with the reception enable enabled. After receiving the stop bit, set the middle segment and the software clears the interrupt flag.

Currently acceptly data will detect wit, detect receive overflow, frame error, parity error three errors. Software clearance mark required. It is recommended to read the status flag and read the data buf after receiving the receive interrupt. Finally, the received data status flags are cleared (UART_STATE[3:0]).

Data character is started by logic 0, 8 or 9 data bit (LSB send first) and stop bits (1bit) of logic 1. After receiving the stop bit to the shifter, if the receive data shift register is not full (rx_full_if=0), data characters are transferred to the receive data register, setting the receive data register full

(rx_full_if=1) status flag. If the rx_full_if of the receive data register is already set at this time,



set the overflow (rx_overflow_if) status flag, the new data will be lost. Because the receiver is double buffered, after setting rx_full_if, program has a full character time for reading before reading the data of the receive data buffer to avoid receiver overflow.

When the program detects that the receive data register is full (rx_full_if=1), it acquires data from the receive data register by reading UART0_BUF.

### 10.1.4. Receiver sampling method

The receiver uses with a 16x baud rate clock for sampling. The receiver searches for falling edge on the RXD serial data input pin by extracting the logic level samples at 16x baud rate. The falling edge is defined as the logic 0 level after 3 consecutive logic 1 samples. The 16x baud rate clock is used to divide the bit time into 16 segements, labeled RT1 and RT16 respectively.

The receiver then samples at each bit time of RT8, RT9 and RT10, including the start and stop bits to determine the logic level of the bit. The logic level is the logic level of most samples advanced during the bit time period. When the falling edge is located, the logic level is 0 to ensure that this is the true starting bit, not the noise. If at least two of the three samples are 0, the receiver assumes that it is synchronized with the receiver character. Start shifting to receive the following data, if the above conditions are not met, exit the state machine and return to the waiting for falling edge state.

The falling edge detection logic constantly looks for the falling edge. If an edge is detected, the sample clock resynchronizes the bit time. This improves the reliability of the receiver when noise or mismatch in baud rate occurs.

#### **10.1.5. Multiprocessor Mode**

Multiprocessor mode, only works in 9-bit mode, when the received R8 bit=1, the receive interrupt is set, otherwise it is not set. The role of this mechanism is to eliminate the software overhead of handing unimportant information for different receivers.

In this application system, all receivers estimate the address character (ninth bit=1) of each message. Once it is determined that the information is intended for different receivers, subsequent data characters (ninth bit=0) are not received.

Configuration process: configuring receive enable, configuring multiprocessor mode, received address data (ninth bit=1), receive and generate an interrupt. The application confirms that the addresses match, and the match configures to turn off the multiprocessor mode. All subsequent data (ninth bit=0) can be received and interrupted until the next time the address data is received, the address does not match, then the multiprocessor mode is turned on. Then all subsequent data is not received until the next address data, and then cyclically applied.



# 10.2. UART0 Related Register

			SFR registe	r
Address	Name	RW	<b>Reset value</b>	Function description
0xBD	UART0_BDL	RW	0x00	UART0 baudrate control register
0xBE	UART0_CON1	RW	0x00	UART0 mode control register 1
0xBF	UART0_CON2	RW	0x0C	UART0 mode control register 2
0xC0	UART0_STATE	RW	0x00	UART0 status flag register
0xC1	UART0_BUF	RW	0xFF	UART0 data register
0xF2	PERIPH_IO_SE L	RW	0x40	UART0 baudrate control register

UART0 SFR register list

# **10.3. UARTO Register Details**

## UART0_BDL (BDH) UART0 Baudrate control register

Bit number	7	6	5	4	3	2	1	0
Symbol		_						
R/W		R/W						
Reset value		0						

Bit number	Bit symbol	Description
		Baud rate control register.
		Baud rate modules divisor register lower 8 bits,
7~0		Baud_Mod ={UART0_BDH[1:0], UART0_BDL},
		Baud_Mod =0, does not generate baud rate clock.
		Baud_Mod =1~1023, bandrate = BUSCLK/(16x Baud_Mod).

### UART0_CON1 (BEH) UART0 control register 1

Bit number	7	6	5	4
Symbol	-	uart0_enable	receive_enable	multi_mode
R/W	-	R/W	R/W	R/W
Reset value	-	0	0	0
Bit number	3	2	1	0
Symbol	stop_mode	data_mode	parity_en	parity_sel
R/W	R/W	R/W	R/W	R/W
Reset value	0	0	0	0

Bit number	Bit symbol	Description		
E	6 uart0_enable	Module enable.		
0		1: module enable; 0: module off.		



5	receive_enable	Receiver enable. 1: receiver open; 0: receiver off.
4	multi_mode	Multiprocessor communication mode. 1: mode enable; 0: mode disable.
3	stop_mode	stop bit width selection. 1: 2 bit; 0: 1 bit.
2	data_mode	Data mode select. 1: 9bit mode; 0: 8bit mode.
1	parity_en	Parity enable. 1: parity enable; 0: parity disable.
0	parity_sel	Parity select. 1: odd parity; 0: even parity.

#### UART0_CON2 (BFH) UART0 control register 2

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	tx_empty_ie rx_full_ie		UART0_BDH	
R/W	I	-	-	-	R/W			R/W
Reset value	-	_	-	-	1	1	0	0

Bit number	Bit symbol	Description
		Send interrupt enable.
3	tx_empty_ie	1: interrupt enable;
		0: interrupt disable (used in polling mode)
		Received interrupt enable
2	rx_full_ie	1: interrupt enable;
		0: interrupt disable (used in polling mode)
1~0	UART0_BDH	Baud rate modulus divisor register high 2bit.

### UART0_STATE (C0H) UART0 status flag register

Bit number	7	6	5	4
Symbol	-	r8	t8	tx_empty_if
R/W	-	R	R	R/W
Reset value	-	0	0	0
Bit number	3	2	1	0
Symbol	rx_full_if	rx_overflow_if	frame_err_if	parity_err_if
R/W	R/W	R/W	R/W	R/W
Reset value	0	0	0	0

Bit number	Bit symbol	Description
6	r8	Receiver's ninth data, read only.
5	t8	Transmitter's ninth data, read only when parity is enabled.

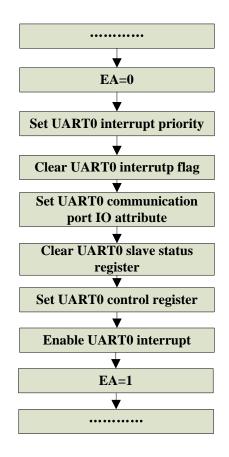


		Send interrupt flag.
4	tre amontre if	1: send buffer is empty;
+	tx_empty_if	0: send buffer is full, software write 0 clear 0, write 1
		invalid.
		Receive interrupt flag,.
3	err full if	1: receive buffer is full;
5	rx_full_if	0: receive buffer is empty, software write 0 clear 0, write 1
		invalid.
		Receive overflow flag;
2	rx_overflow_if	1: receive overflow (lost new data);
		0: no overflow, software write 0 clear 0, write 1 invalid.
		Framing error flag.
1	fuerra em if	1: framing error flag;
1	frame_err_if	0: no framing error flag, software write 0 clear 0, write 1
		invalid.
		Parity error flag.
0	parity_err_if	1: receiver parity error;
		0: parity is correct, software write 0 clear 0, write 1 invalid.

### UART0_BUF (C1H) UART0 data register

Bit number	7	6	5	4	3	2	1	0	
Symbol		-							
R/W		R/W							
Reset value	1	1	1	1	1	1	1	1	

Bit number	Bit symbol	Description
7~0		Data register Read returns read-only receive data buffer contents, write into write- only send data buffer.


# PERIPH_IO_SEL (F2H) IIC/UART0/INT function control register

	( )		0		
Bit number	7	6	5	4	3
Symbol	-	IIC_AFIL_SEL	IIC_DFIL_SEL	UART0_	IO_SEL
R/W	-	R/W	R/W	R/W	R/W
Reset value	-	1	0	0	0
Bit number	2	1	0	/	/
Symbol	INT2_IO_SEL	INT1_IO_SEL	INT0_IO_SEL		
R/W	R/W	R/W	R/W	/	
Reset value	0	0	0		



Bit number	Bit symbol	Description
		UART0 select enable.
4~3		00: select UART0(RXD0_A/TXD0_A) function
4~3	UART0_IO_SEL	01: select UART0(RXD0_B/TXD0_B) function
		1x: select UART0(RXD0_C/TXD0_C) function

# **10.4. UARTO Configuration Process**



UART0 initial configuration process

Suggested application process:

1. Configuration module enable, receive enable, mode select: UART0_CON1;

2. Configure baudrate, open interrupt enable: UART0_BDL, UART0_CON2;

3. Write UART0_BF starts to send data, after detecting the transmission interrupt, clear the interrupt flag tx_empty_if;

4. Receive interrupt detected, first read status UART0_STATE. Then read R8 and UART0_BUF, finally clear the receive status flag (UART0_STAT[3:0] = B0000). One receiving process is completed, waiting for the next receiving interrupt;

5. If the configuration interrupt is not enabled, the program executes the UARTO function. Also



read the status flag first, then read R8 and UART0_BUF, and finally clear the status flag. 6. Interrupt flag clear operation. In full-duplex operation, clear flag bit operation requires a vaild interrupt bit to be written 0, and other interrupt bits to be written as 1 (write 1 as invalid operation), otherwise it is easy to operate incorrectly. For example: when the send interrupt is vaild, you need tp write UART0_STATE = 0x0F; (configuration UART0_STATE[0:3] = 0x0F, R8 write is invalid, t8 needs to configure vaild transmit data when it is in 9 bit mode and does not have parity).

7. 8 bit mode: Parity enable is valid.

9 bit mode: When the parity bit is enabled, when the parity bit calculated by the ninth bit is not enable, the ninth bit is the T8 written in. Only send interrupts and receive interrupts. The error flag only marks the error detection of the current data, and only the corresponding bit writes 0 clear, do not jump out of error interrupt. The transmit interrupt is set after the stop bit is sent, and the software clears it. The receive interrupt is set after the stop bit is sent, and the software clears it.

Multiprocessor mode: Only works in 9 bit mode, received R8 = 1, receive interrupt is set, otherwise it is not set. When using multiprocessor mode, configuring receive enable and multiprocessor mode. Receive address data (the ninth bit=1) and generate an interrupt, confirm that the address matches. Matching configures the multiprocessor mode to be turned off, and all subsequent data (the ninth bit = 0) can be interrupted by the received interrupt, until the next time data is received. If the address do not match, the multiprocessor mode is turned on, and all subsequent data is not received until the next address data.

Hardware response: Send data is opened by the value written to UART0_BUF. The interrupt flag is sent after the stop bit is sent. The software clears the interrupt flag and waits for the next write. The receive data receives data at any time when the receiving enable is effective. Set receive interrupt after receiving stop bit, software clear interrupt flag. The currently received data has a detection mechanism that can detect three errors of receive overflow, frame error, and parity error. Both require a software clear flag. It is recommended to read the status flag after the receive interrupt and clear the receive status flag UART0_STATE[0:3].

Note: The mapping synchronization output function is not supported.



# **10.5. UART1 Function Description**

## 10.5.1. Baud Rate Generation

Baud rate generation modules: Baud_Mod = {SCI_BDH [4:0], SCI_BDL}.

Baud rate calculation formula: Baud_Mod =0, does not generate baud rate clock. When Baud_Mod =1~8191, SCI baud rate = BUSCLK/ (16x Baud_Mod) . BUSCLK is the sci work clock, fixed 24MHz clock used in this project. Each time the baud rate register is configured, the internal counter is cleared and the baud rate signal is regenerated. Communication requires the transmitter and receiver to use the same baud rate. Baud rate deviation range allowed by communication: 8/(11*16)=4.5%.

Support automatic baud rate matching. In the LIN protocol, the sync segment character is 0x55. When the baud rate is detected, the measurement starts from the falling edge of the received START bit until the falling edge of the 8th data bit stops. A total of 8 bits will automatically update the Baud_Mod after the communication is completed, and can be read out through the register SCI_BDH/SCI_BDL. Note here that the receiving sync segment automatically matches the baud rate, and the receiving function is performed at the same time. After receiving the character, the receiving interrupt will occur. The maximum deviation before the baud rate match is not allowed to exceed 40%, otherwise the calibration fails.

### **10.5.2.** Transmitter Function

The emitter output pin TXD idle state defaults to a logic high state  $(txd_inv = 0 \text{ after reset})$ . If  $txd_inv = 1$ , the transmitter output is reversed.

The transmitter can send three characters: lead idle character, abort character, data character. Three characters are queued for sending, SCI_TRANS_CTRL[4]: trans_enable bit writes 0 and then writes 1 to queue leading idle characters. SCI_BREAK_CTRL[0]: break_trans_start bit writes 1 and then writes 0 to queue a stop characters, write data register SCI_BUFFER will queue a data character.

The transmitter is enabled by setting the trans_enable bit in the SCI_TRANS_CTRL. This will queue the leading idle characters, the leading idle character is a complete character frame in the idle state, and sends 12-bit or 11-bit or 10-bit idle characters (logic high) according to the data_mode and stop_mode controls. In the normal application process, idle characters need to be sent, the program will wait for tx_empty to be valid and set, the last character of the displayed information has been moved to the transmit shifted, and then 0 and 1 are sequentially written to the tran bit.

Notes: when trans_enable=0, as long as the characters (including three characters) in the shifter are not complete, the SCI transmitter will not stop sending.

By writing data to the SCI data register (SCI_BUFFER), the program saves the data to the transmit data buffer, which queues a data character. The transmit component of the SCI transmitter has a center component length of 10 or 11 or 12 bits (depending on the setting in the data_mode and stop_mode control bit). If data_mode=0, select normal 8-bit data mode. In 8-bit data mode, the shift

register has 1 start bit, 8 data bits and 1/2 stop bit. When the transmit shift register can be used for a new SCI character, the value waiting in the transmit data register empty (tx_empty) status flag is set, indicating that another character can be written to the transmit data buffer of the SCI_BUFFER.

By register SCI_BREAK_CTRL[0]: break_trans_start bit writes 1 and then writes 0 to queue a stop character. The abort character is a full-character time of logic 0 (10-bit time), including start and stop bits. The longer pause of 13-bit time can be enabled by setting break_trans_size=1. At the same time, data_mode and stop_mode can each choose to add one time. In general, the program waits for tx_empty to be valid and then sets it to display that the last character of the message has been moved to the transmit shifter, and then writes 0 and 1 to the break bit in turn. Then, once the shifter is available, the operation immediately queues the abort characters that will be sent. If the break is still 1 when the abort that has entered the queue enters shifter, the extra abort character will enter the queue.

If no new characters (including three characters) are waiting in the transmit data buffer after stopping the TXD pin, the transmitter sets the transmission completion flag and enters the idle mode. TXD is in a high state, waiting for more characters to be sent.

**Notes:** send data empty interrupt generation conditions include: configure the transmitter to enable 0 to 1 enable an empty interrupt, and send a fifo to the shift register to enable a empty interrupt. Turning off the transmitter enable during transmission stops sending after the current character has been sent, clearing the previous queued characters.

Send completion interrupt generation condition: the queued characters are sent once and the completion interrupt is started.

## 10.5.3. Receiver Function

By setting rxd_inv=1, receiver input is inverted, received input is inverted. By setting SCI_TRANS_CTRL in receive_enable bit, receiver is enabled.

There are three types of received characters: data character, abort character and idle character.

The data character consists of the start bit of logic 0, 8 (or 9) data bits (LSB first) and the stop bit of logic 1. After receiving the stop bit to the receive shifter, if the receive data register is not full (rx_full_if=0), the data character is transferred to the receive data register, setting the receive data register full (rx_full_if=1) status flag. If the rx_full_if of the receive data register is already set at this time, the overflow heart state flag is set and the new data is lost. Because the SCI is double-buffered, the program has a full data in the receive data buffer after setting rx_full_if to avoid receiver overflow.

When the program detects that the receive data register is full (rx_full_if=1), it acquires data from the receive data register by reading the SCI_BUFFER.

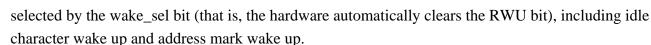
The abort character counts from the 0 character of start until the stop bit detects 0 character. The break_check_en bit selects whether the 11-bit abort character detection is enabled. When a rising edge on the pin is detected, the count is cleared. Detected enough 0 characters (11/12/13bit), set abort character detection tag (break_check_if). The idle character starts from the stop/start bit after the idle character bit count according to the idle bit selection, and starts to the idle bit selection, and starts to detect after the receiver has been active for a period of time (rx_full is effectively set once). Once the 0 character is detected, the count is cleared, and 1 character (10/11/12 bit) is detected, and the idle character detection flag (idle_if) is set.

**Notes:** enables only the abort character after the abort character detection, regardless of data reception, for lin protocol flow control; close the stop character detection enable, only receive data, ignore the abort character detection.

## 10.5.4. Receiver sampling method

SCI receiver samples with 16x baud rate. The receiver searches for falling edge on the RxD serial data input pin by extracting logic level samples at 16x baud rate. The falling edge to the definition is a logical 0 sample after 3 consecutive logic 1 samples. The 16x baud rate clock is used to divide the bit time into 16 segments, labeled RT1 and RT16 respectively. When the falling edge is located, three samples are taken from RT3, RT5 and RT7 to ensure that this is the true starting point, not juist the noise. If at least two samples of the three samples that it is synchronized with the receiver character, starts shifting to receive the following data, and if it does not satisfy the above, exits the state machine and returns to the state of waiting for the falling edge state.

The receiver samples each bit time of RT8, RT9 and RT10, including the start bit and the stop bit to determine the logic level of the bit. The logic level is the logic level of most samples extracted during bit time. In the start bit, if at least 2 samples in the sample on RT3, RT5 and RT7 are 0, then the bit is assumed to be 0, even if one or samples extracted on RT8, RT9 and RT10 are 1. If any sample in any bit time of a character frame (8 samples of the start bit RT3~RT10, 3 samples of the other bit 3 RT8~RT10) cannot match the logic level of the bit, a noise error flag is set when the received character is transmitted to the receive data buffer.


The falling edge detection logic constantly looks for the falling edge. If an edge is detected, the bit name so that when the noise or mismatch baud rate occurs, the receiver reliability can be improved.

# 10.5.5. Receiver Sleep Wake Up

Receiver sleep wake up is a hardware mechanism that uses hardware detection to eliminate software overhead for handling unimportant information characters. Allow SCI receiver to ignore characters in information used for different SCI receivers.

In this application system, the receiver estimates the first character of each message. Once it is determined that the message is intended for different receivers, they immediately write a logic 1 to the receiver wake-up (RWU) control bit in the SCI_TRANS_CTRL. When setting the RWU bit, it is forbidden to set the status flag related to the receiver (when setting rwu_idlesel bit, IDLE bit is set and interrupt is generated).

In the receiver sleep state (software sets the RWU bit to sleep), the wake up mode can be



Idel character detection are described above. Once the receiver detects a complete idle character, RWU is automatically cleared. After wake-up, the receiver will set the corresponding status flag when the next character is received.

The address mark wake-up is when the receiver detected a logic 1 in the highest bit of the received character (8th bit in data_mode=0; 9th bit r8 in data_mode=1), RWU is automatically cleared. After the wake-up, the receiver related status flag and interrupt and the current character can be set.

## 10.5.6. Pin Connection Mode

When cycle_mode=1, single_txd bit select cycle mode  $(single_txd=0)$  or signle line mode  $(single_txd=1)$ .

#### Cycle mode:

Cycle mode is independent of external system connections and is sometimes used to check software to help isolate system problems. In this mode, the transmitter output internally supports connection to the receiver input, and SCI does not use the RxD pin.

#### Signle line mode:

In signle line mode, the txd_direct bit controls the serial data direction on the TXD pin. When txd_direct= 0, the TXD pin is the input of the SCI receiver, connected to the receiver input; when txd_direct=1, the TXD pin is an emitter driven output.

	SFR register									
Address	Name	RW	Reset value	Description						
0xC2	SCI_BDH	RW	0x00	UART1 baudrate control register						
0xC3	SCI_BDL	RW	0x00 UART1 baudrate control register							
0xC4	SCI_C1	RW	0x0C	UART1 control register 1						
0xC5	SCI_C2	RW	0x00	UART1 control register 2						
0xC6	SCI_C3	RO/RW	0x00	UART1 control register 3						
0xC7	SCI S2	RW	0x00	UART1 synchronization interval						
UXC /	SCI_52	ĸw	0x00	control register						
0xC8	SCI_S1	RO	0x00	UART1 interrupt ststus flag register						
0xC9	SCI_D	RW	0xFF	UART1 data register						
0xD8	SCI_INT_CLR	W	0x00	UART1 module interrupt clear register						

# 10.6. UART1 Related Register

UART SFR register list



# 10.7. UART1 Register Details

Bit number	7	6	5	4	3	2	1	0
Symbol	break_check_ie	rx_edge_ie	-			-		
R/W	R/W	R/W	-	R/W	R/W	R/W	R/W	R/W
Reset value	0	0	-	0	0	0	0	0

SCI_BDH (C2H) UART1 baudrate control register

Bit number	Bit symbol	Description
7	brack charts in	Interval detection interrupt enable.
/	break_check_ie	1: interrupt enable; 0: interrupt disable.
C	m odoo io	RxD pin active edge interrupt enable.
6	rx_edge_ie	1: interrupt enable; 0: interrupt disable.
5		Reserved
4~0		Baud rate modules divisor register high 5 bits.

SCI_BDL (C3H) UART1 baudrate control register

Bit number	7	6	5	4	3	2	1	0
Symbol				-	-			
R/W				R/	W			
Reset value				(	)			

Bit number	Bit symbol	Description
		Baud rate control register.
		Baud rate modules divisor register lower 8 bits,
7.0		Baud_Mod ={UART0_BDH[1:0], UART0_BDL},
7~0		Baud_Mod =0, does not generate baud rate clock.
		Baud_Mod =1~1023, SCI bandrate = BUSCLK/(16x
		Baud_Mod)

SCI_C1 (C4H) UART1 control register 1

Bit number	7	6	5	4
Symbol	cycle_mode	stop_mode	single_txd	data_mode
R/W	R/W	R/W	R/W	R/W
Reset value	0	0	0	0
Bit number	3	2	1	0
Symbol	parity_en	parity_sel	-	sci_enable
R/W	R/W	R/W	_	R/W
Reset value	0	0	-	0

Bit number Bit symbol Description
-----------------------------------



		Cycle mode enable.	
7	cycle_mode	1: cycle mode or signal mode, txd connection rxd;	
		0: normal two-wire mode.	
6	stop_mode	stop bit selection. 1: 2bits; 0: 1bit.	
		Signal line mode enable.	
5	single_txd	1: cycle_mode=1, select line mode, txd pin is valid;	
		0: internal cycle mode, txd pin is invalid.	
		Transmission data mode selection.	
4	data_mode	1: 9 bit mode (the ninth bit is parity bit);	
		0: 8 bit mode.	
2		Parity enable.	
3	parity_en	1: parity enable; 0: parity disable.	
2		Parity select.	
2	parity_sel	1: odd parity; 0: even parity	
1		Reserved	
		Clock gating enable when the module is working, and writing 1	
0	sci_enable	indicates that the enable is valid. Open the module working	
0		clock, write 0 will close the module working clock, and reset	
		the function module.	

#### SCI_C2 (C5H) UART1 control register 2

/	ernerr condierregiste			
Bit number	7	6	5	4
Symbol	tx_empty_ie	tx_finish_ie	rx_full_ie	idle_ie
R/W	R/W	R/W	R/W	R/W
Reset value	0	0	0	0
Bit number	3	2	1	0
Symbol	trans_enable	receive_enable	rwu	break_trans_start
R/W	R/W	R/W	R/W	R/W
Reset value	0	0	0	0

Bit number	Bit symbol	Description
		Send buffer empty interrupt enable.
7	tx_empty_ie	1: interrupt enable;
		0: interrupt disable.
		Send complete interrupt enable.
6	tx_finish_ie	1: interrupt enable;
		0: interrupt disable.
		Accept full interrupt enable.
5	rx_full_ie	1: interrupt enable;
		0: interrupt disable.
4	idle_ie	Idle line interrupt enable.



		1: interrupt enable;
		0: interrupt disable
		Transmitter enable.
3	trans_enable	1: transmitter open,;
		0: transmitter close
2	receive_enable	Receiver enable.
2		1: receiver open; 0: receiver close.
		Receiver wake-up control.
1	rwu	1: receiver is in standby and waiting for the wake condition.
		0: receiver is running normally.
0	break_trans_start	Send interval, write 1 and 0 to this bit, that is, a gap is placed
0		in the data stream.

### SCI_C3(C6H) UART1 control register 3

Bit number	7	6	5	4
Symbol	r8	t8	txd_direct	txd_inv
R/W	R	R/W	R/W	R/W
Reset value	0	0	0	0
Bit number	3	2	1	0
Symbol	rxd_inv	rwu_idlesel	idle_sel	wake_sel
R/W	R/W	R/W	R/W	R/W
Reset value	0	0	0	0

Bit number	Bit symbol	Description
7	r8	Receiver's ninth data, read only.
6	t8	Transmitter's ninth data.
		txd pin direction selection in signal line mode.
5	txd_direct	1: txd pin is the output in signal line mode;
		0: txd pin is the input in signal line mode.
		txd data inversion.
4	txd_inv	1: send data is reversed;
		0: send data is not reserved.
		rxd data inversion.
3	rxd_inv	1: receive data is reversed;
		0: receive data is not reserved.
		Receive wake idle detection.
		1: during the receive standby state (RWU=1), the idle bit is
2	rwu_idlesel	set when an IDLE character is detected;
		0: during the receive standby state (RWU=1), the idle bit is
		not set when an IDLE character is detected.
1	idle_sel	Idle line type selection.



		1: idle character bit count starts after stop bit;
		0: idle character bit count starts after start bit, and the 10-bit
		time is counted (if data_mode=1 or stop_mode=1, then add
		one time separately).
		Receiver wake-up mode selection.
0	wake_sel	1: address mark wake up;
		0: idle line wake up.

SCI_S2(C7H) UART1 sync segment control register

		-		
Bit number	7	6	5	4
Symbol	break_check_if	rx_edge_if	rx_active_flag	-
R/W	R/W	R/W	R/W	-
Reset value	0	0	0	-
Bit number	3	2	1	0
Symbol	-	-	break_trans_size	break_check_en
R/W	_	_	R/W	R/W
Reset value	_	_	0	0

Bit number	Bit symbol	Description	
		Interval detection interrupt flag.	
7	heads shads if	1: interval detected;	
1	break_check_if	0: no interval detected, this bit writes 1 clear, write 0 is	
		invalid.	
		RxD pin active edge interrupt flag.	
6	my adap if	1: active edge on the receive pin;	
6	rx_edge_if	0: active edge does not appear on the receive pin; this bit	
		writes 1 clear, write 0 is invalid.	
5	my active flag	Receiver activity tag, read only.	
5	rx_active_flag	1: receiver activity; 0: receiver idle.	
4~2		Reserved	
		Interval generation bit length.	
		1: send by 13-bit time (if data_mode=1 or stop_mode=1,	
1	break_trans_size	add 1 bit length respectively);	
		0: send by 10-bit time (if data_mode=1 or stop_mode=1,	
		add 1 bit length respectively ).	
		Interval detection enable.	
0	handr cheelr	1: detected over 11 bit lengths (if data_mode=1 or	
0	break_check_en	stop_mode=1, add 1 bit length respectively );	
		0: not detecting.	
SCI S1(C8H) U	CI_S1(C8H) UART1 interrupt status flag register		

SCI_SI(Con) UARTI interrupt status nag legister				
Bit number	7	6	5	4



Symbol	tx_empty_if	tx_finish_if	rx_full_if	idle_if
R/W	R	R	R	R
Reset value	0	0	0	0
Bit number	3	2	1	0
Symbol	rx_overflow_if	noise_err_if	frame_err_if	Parity_err_if
R/W	R	R	R	R
Reset value	0	0	0	0

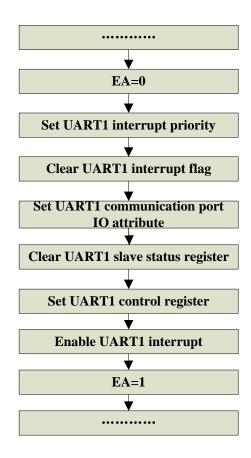
Bit number	Bit symbol	Description
		Send buffer empty interrupt flag.
7	tx_empty_if	1: send buffer is empty;
		0: send buffer is full, read only.
		Send completion interrupt flag.
6	tx_finish_if	1: send completed, transmitter idle;
		0: the transmitter is working, read only.
		Accept full interrupt flag.
5	rx_full_if	1: receiver buffer is full;
		0: receiver buffer is empty, read only.
		Idle line break flag.
4	idle_if	1: idle line detected;
		0: no idle line detected, read only.
		Receive overflow mark.
3	rx_overflow_if	1: receive overflow (new data loss); \
		0: no overflow, read only.
		Noise marker.
2	noise_err_if	1: noise detected;
		0: no noise detected, read only.
1	fromo orr if	Frame error flag. 1: framing error detected;
1	frame_err_if	0: no framing error detected, read only.
0	novity over if	Parity error flag. 1: receiver parity error;
0	parity_err_if	0: parity is correct, read only.

#### SCI_D(C9H) UART1 data register

Bit number	7	6	5	4	3	2	1	0			
Symbol		-									
R/W		R/W									
Reset value					0						

Bit number	Bit symbol	Description
7~0		SCI data register.
/~0	-	Read returns the contents of the read-only receive data




Semiconductor

	buffer, writes to the write-only send data buffer.								
SCI_INT_CLR (D8H) UART1 interrupt flag clear register									
Bit number	7 6 5 4								
Symbol	clr_tx_empty_if	clr_tx_finish_if	clr_rx_full_if	clr_idle_if					
R/W	R/W	R/W	R/W	R/W					
Reset value	0	0	0	0					
Bit number	3	2	1	0					
Symbol	clr_rx_overflow_if	clr_noise_err_if	clr_frame_err_if	clr_parity_err_if					
R/W	R/W	R/W	R/W	R/W					
Reset value	0	0	0	0					

Bit number	Bit symbol	Description
7	clr_tx_empty_if	Transmit buffer empty interrupt clear bit, this bit writes 1 to clear the corresponding interrupt, write 0 is invalid.
6	clr_tx_finish_if	Transmit complete interrupt clear bit, this bit writes 1 to clear the corresponding interrupt, write 0 is invalid.
5	clr_rx_full_if	Receive full interrupt clear bit, this bit writes 1 to clear the corresponding interrupt, write 0 is invalid.
4	clr_idle_if	Idle line interrupt clear bit, this bit writes 1 to clear the corresponding interrupt, write 0 is invalid.
3	clr_rx_overflow_if	Receive overflow flag clear bit, this bit writes 1 to clear the corresponding interrupt, write 0 is invalid.
2	clr_noise_err_if	Noise flag clear bit, this bit writes 1 to clear the corresponding interrupt, write 0 is invalid.
1	clr_frame_err_if	Frame flag clear bit, this bit writes 1 to clear the corresponding interrupt, write 0 is invalid.
0	clr_parity_err_if	Parity error flag clear bit, this bit writes 1 to clear the corresponding interrupt, write 0 is invalid.



## **10.8. UART1 Configuration Process**



UART1 initial configuration process



## 11. PWM

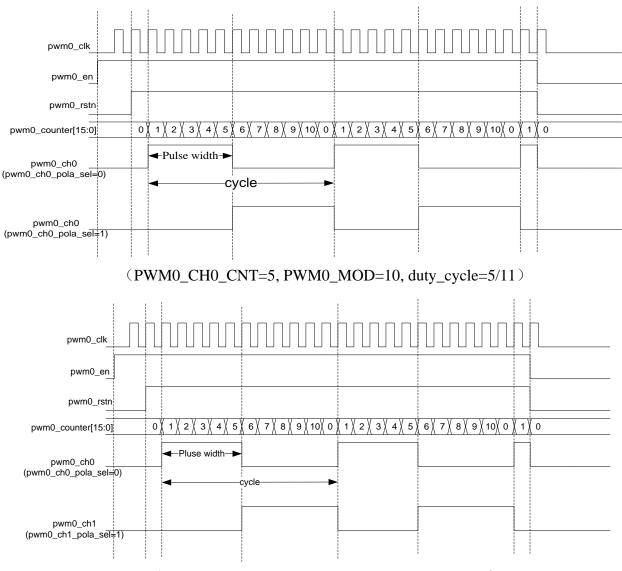
### **11.1. PWM0 Function Description**

PWM0 Function Description:

- Support 4 channels, each channel is individually enabled;
- 16bit counter;
- Counting cycle configurable, adjustable duty cycle per channel;
- Polar complementary output;
- PWM0_B/C/D(PWM0_CH1/2/3) duty cycle can be selected as PWM0_A(PWM0_CH0) configuration, can also choose to configure the duty cycle of your channel.

PWM0 pulse width modulation module can be configured by register for both cycle and pulse width, but the configuration of the register must be selected if the PWM0 output port is valid (highly effective), and each set of registers must be configured from low to high (include PWM0_MOD_L/H, PWM0_CHX_CNT_L/H), In order to ensure that the internal counter of the PWM0 modules is correctly counted, the error waveform is avoided. These configuration values update the register value when the counter changes from (PWM0_MOD) to (PWM0_MOD+1), is the update cycle and duty cycle after a full cycle.

PWM0 module support 4 channels, each channel can be individually controlled to enable. Share a 16-bit counter, the count clock is 24MHz and the system clock is synchronized. The PWM0 signal period is determined by the value of the period configuration register (PWM0_MOD), which is determined by the setting in channel register (PWM0_CHn_CNT). The polarity of the PWM0 signal is determined by the setting in the PWM0_CH_CTRL control bit. 0% and 100% duty cycle is possible.


Pulse width = (PWM0_CHn_CNT)

Cycle = (PWM0_MOD+1)

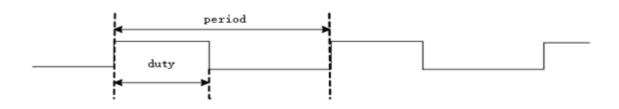
Duty cycle = pulse width / cycle

PWM0 counter counts up from 0x0000, when PWM0_CHn_CNT is counted, the output is inverted. This time is the pulse width. Countine counting until the count overflows at PWM0_MOD+1. If PWM0_CH0_POLA_SEL=0, PWM0 signal enters high state when output is flipped. If PWM0_CH0_POLA_SEL=1, PWM0 signal enters high state when output is overflows. When channel count register (PWM0_CHn_CNT) is set 0x0000, the duty cycle is 0. When channel count register (PWM0_CHn_CNT) is set to a value greater than the value set by the period configuration register (PWM0_MOD) to achieve a 100% duty cycle. The counter is automatically reloaded and will not stop by itself until the register PWM0 is enabled to stop and the counter is cleared.





(PWM0_CH0, PWM0_CH1 complementary output)




### 11.2. PWM1/2 Function Description

PWM1/2 features are as follows:

- The clock source is the clock CLK_24MHz;
- The PWM1/2 high level control register and low level control register and both 16bit registers;
- Output cycle: TPWM1/2_data =  $(PWM1/2_H + PWM1/2_L)*T_{CLK_24MHz}(us);$
- Output duty cycle: DPWM1/2_data =  $PWM1/2_H/(PWM1/2_L + PWM1/2_H)$ ;

PWM1/2 waveform diagram



The PWM1/2 pulse width modulation module can be configured through registers in both high and low time, but the configuration of the register must be enabled again when PWM1/2 is enabled (high effective), the high level control register and the low level control register must be configured in descending order. In order to ensure that the internal counter of the PWM1/2 module is correctly counted, avoiding the generation of incorrect waveforms.

24MHz_clk																	1
sfr_wr															]		-
sfr_addr[7:0]	_X_	99	Х		Х	9a	Х		Х	9b	Х		Х	9c	Х		-
sfr_data_out[7:0]		Х		ff		Х		ff		Х		ff		Х	ff		-
pwm1/2_1_1_cs																	_
pwm1/2_l_h_cs																	-
pwm1/2_h_l_cs																	-
pwm1/2_h_h_cs																	-
pwm1/2_1[15:0]															Х	ffff	_
pwm1/2_h[15:0]															Х	ffff	-

#### PWM1/2 timing diagram

## **11.3. PWM Registers**

	SFR								
Address	Name	RW	Reset value	Description function					
0x99	PWM1_L_L	RW	0x00	PWM1 low level control register(low 8-bit)					
0x9A	PWM1_L_H	RW	0x00	PWM1 low level control register(high 8-bit)					
0x9B	PWM1_H_L	RW	0x00	PWM1 high level control register(low 8-bit)					
0x9C	PWM1_H_H	RW	0x00	PWM1 high level control register(high 8-bit)					
0x9D	PWM2_L_L	RW	0x00	PWM2 low level control register(low 8-bit)					
0x9E	PWM2_L_H	RW	0x00	PWM2 low level control register(high 8-bit)					
0x9F	PWM2_H_L	RW	0x00	PWM2 high level control register(low 8-bit)					
0xA1	PWM2_H_H	RW	0x00	PWM2 high level control register(high 8-bit)					
0xA2	PWM_EN	RW	0x00	PWM control register					
0xA3	PWM0_CH_CTRL	RW	0x00	PWM0 control register					
0xA4	PWM0_CH0_CNT_L	RW	0x00	PWM0 channel 0 count value configuration					
				register low 8 bits					
0xA5	PWM0_CH0_CNT_H	RW	0x00	PWM0 channel 0 count value configuration					
				register high 8 bits					
0xA6	PWM0_CH1_CNT_L	RW	0x00	PWM0 channel 1 count value configuration register low 8 bits					
0xA7	PWM0_CH1_CNT_H	RW	0x00	PWM0 channel 1 count value configuration register high 8 bits					
0xA9	PWM0_CH2_CNT_L	RW	0x00	PWM0 channel 2 count value configuration register low 8 bits					
0xAA	PWM0_CH2_CNT_H	RW	0x00	PWM0 channel 2 count value configuration register high 8 bits					
0xAB	PWM0_CH3_CNT_L	RW	0x00	PWM0 channel 3 count value configuration register low 8 bits					
0xAC	PWM0_CH3_CNT_H	RW	0x00	PWM0 channel 3 count value configuration register high 8 bits					
0xAD	PWM0_MOD_L	RW	0x00	PWM0 cycle configuration register low 8 bits					
0xAE	PWM0_MOD_H	RW	0x00	PWM0 cycle configuration register high 8 bits					

Note:

Channel 0: PWM0_A; Channel 1: PWM0_B; Channel 2: PWM0_C; Channel 3: PWM0_D.



BF7612CMXX-1

PWMI_L_L (99	H) PWMI	I low level	control re	gister (low	8bit)						
Bit number	7	6	5	4	3	2	1	0			
Symbol		-									
R/W		R/W									
Reset value					0						
PWM1_L_H (9.	AH) PWM	1 low leve	el control re	egister (hig	gh 8bit)						
Bit number	7	6	5	4	3	2	1	0			
Symbol					-						
R/W				R	/W						
Reset value					0						
PWM1_H_L (9)	BH) PWM	1 high lev	el control r	egister (lo	w 8bit)						
Bit number	7	6	5	4	3	2	1	0			
Symbol					-						
R/W				R	/W						
Reset value					0						
PWM1_H_H (9	CH) PWM	[1 high lev	el control 1	register (hi	gh 8bit)	1					
Bit number	7	6	5	4	3	2	1	0			
Symbol					-						
R/W		R/W									
Reset value		0									
PWM2_L_L (91	DH) PWM	2 low leve	el control re	egister (lov	v 8bit)	I					
Bit number	7	6	5	4	3	2	1	0			
Symbol					-						
R/W				R	/W						
Reset value					0						
PWM2_L_H (9)	EH) PWM	2 low leve	l control re	egister (hig	h 8bit)	1					
Bit number	7	6	5	4	3	2	1	0			
Symbol					_						
R/W				R	/W						
Reset value					0						
PWM2_H_L (9)	FH) PWM	2 high leve	el control r	egister (hig	gh 8bit)						
Bit number	7	6	5	4	3	2	1	0			
Symbol					-						
R/W				R	/W						
Reset value					0						
PWM2_H_H (A	A1H) PWM	12 high lev	el control	register(hi	gh 8-bit)						
Bit number	7	6	5	4	3	2	1	0			
Symbol					-						
R/W				R	/W						

#### PWM1_L_L (99H) PWM1 low level control register (low 8bit)



Reset value

PWM_EN (A2H	PWM_EN (A2H) PWM control register									
Bit number	7	6	5	4						
Symbol	-	-	PWM0_CH3_CMOD	PWM0_CH2_CMOD						
R/W	-	-	R/W	R/W						
Reset value	-	-	0	0						
Bit number	3	2	1	0						
Symbol	PWM0_CH1_CMOD	PWM2_EN	PWM1_EN	PWM0_EN						
R/W	R/W	R/W	R/W	R/W						
Reset value	0	0	0	0						

0

Bit number	Bit symbol	Description			
		PWM0 channel 3 duty cycle mode select register			
5	PWM0_CH3_CMOD	1: select channel 0 duty cycle			
		0: select its own channel duty cycle			
		PWM0 channel 2 duty cycle mode select register			
4	PWM0_CH2_CMOD	1: select channel 0 duty cycle			
		0: select its own channel duty cycle			
		PWM0 channel 1 duty cycle mode select registe			
3	PWM0_CH1_CMOD	1: select channel 0 duty cycle			
		0: select its own channel duty cycle			
		PWM2 module enable register			
2	PWM2_EN	1: enable			
		0: not enable			
		PWM1 module enable register			
1	PWM1_EN	1: enable			
		0: not enable			
		PWM0 module enable register			
0	PWM0_EN	1: enable			
		0: not enable			

### PWM0_CH_CTRL (A3H) PWM0 control register

	_		_		
Bit number	1	6	5	4	
Symbol	PWM0_CH3_POLA _SEL	PWM0_CH2_POLA_SEL	PWM0_CH1_POLA_SEL	PWM0_CH0_POLA_SEL	
R/W	R/W	R/W	R/W	R/W	
Reset value	0	0	0	0	
Bit number	3	2	1	0	
Symbol	PWM0_CH3_EN	PWM0_CH2_EN	PWM0_CH1_EN	PWM0_CH0_EN	
R/W	R/W	R/W	R/W	R/W	
Reset value	0	0	0	0	



Bit number	Bit symbol	Description				
		Channel 3 polarity selection ch3_pola_sel				
7	PWM0_CH3_POLA_SEL	1: count value overflow makes the output low				
		0: count value overflow makes the output high				
		Channel 2 polarity selection ch2_pola_sel				
6	PWM0_CH2_POLA_SEL	1: count value overflow makes the output low				
		0: count value overflow makes the output high				
		Channel 1 polarity selection ch1_pola_sel				
5	PWM0_CH1_POLA_SEL	1: count value overflow makes the output low				
		0: count value overflow makes the output high				
		Channel 0 polarity selection ch0_pola_sel				
4	PWM0_CH0_POLA_SEL	1: count value overflow makes the output low				
		0: count value overflow makes the output high				
		Channel 3 enable ch3_en				
3	PWM0_CH3_EN	1: enable				
		0: not enable				
		Channel 2 enable ch2_en				
2	PWM0_CH2_EN	1: enable				
		0: not enable				
		Channel 1 enable ch1_en				
1	PWM0_CH1_EN	1: enable				
		0: not enable				
		Channel 0 enable ch0_en				
0	PWM0_CH0_EN	1: enable				
		0: not enable				

PWM0_CH0_CNT_L (A4H) PWM0 channel 0 count value configuration register low 8 bits

Bit number	7	6	5	4	3	2	1	0				
Symbol		PWM0_CH0_CNT_L										
R/W		R/W										
Reset value				(	)							

Bit number	Bit symbol			Description					
7~0	PWMO	CH0 CN		Channel 0 co	ount config	guration reg	gister low	8 bits.	
/~0	PWM0_CH0_CNT_L			Configure PWM output duty cycle.					
PWM0_CH0_CNT_H (A5H) PWM0 channel 0 count value configuration register high 8 bits									
Bit number	7	6	5	4	3	2	1	0	
Symbol				PWM0_CH	IO_CNT_I	ł			
R/W		R/W							
Reset value		0							



## BF7612CMXX-1

Bit number	]	Bit symbol		Description					
7~0	DWM	0_CH0_CI	NT U	Channel (	) count cor	figuration	register hi	gh 8 bits.	
/~0	F W WI		№1_П	Configure PWM output duty cycle.					
PWM0_CH1_CNT_L (A6H) PWM0 channel 1 count value configuration register low 8 bits									
Bit number	7	6	5	4	3	2	1	0	
Symbol				PWM0_CH	I1_CNT_I				
R/W		R/W							
Reset value				(	)				

Bit number	Bit symbol	Description						
		Channel 1 count configuration register low 8						
7~0	PWM0_CH1_CNT_L	bits.						
		Configure PWM output duty cycle.						
PWM0_CH1_CNT_H (A7H) PWM0 channel 1 count value configuration register high 8 bits								

Bit number	7	6	5	4	3	2	1	0			
Symbol		PWM0_CH1_CNT_H									
R/W		R/W									
Reset value		0									

Bit number	E	Bit symbol			Description					
7~0	DWM	CH1 CN	тц	Channel 1 co	ount config	guration reg	gister high	8 bits.		
/~0	PWM0_CH1_CNT_H			Configure PWM output duty cycle.						
PWM0_CH2_CNT_L (A9H) PWM0 channel 2 count value configuration register low 8 bits										
Bit number	7	6	5	4	3	2	1	0		
Symbol		PWM0_CH2_CNT_L								
R/W	R/W									

0

Bit number		Bit symbol			Description					
7~0	PWI	PWM0_CH2_CNT_L			Channel 2 count configuration register low 8 bits. Configure PWM output duty cycle.					
PWM0_CH2_CNT_H (AAH) PWM0 channel 2 count value configuration register high 8 bits										
Bit number	7	6	5	4	3	2	1	0		
Symbol			]	PWM0_CH	H2_CNT_H	ł				
R/W		R/W								
Reset value		0								

Bit number	Bit symbol	mbol Description			
7.0	DWMO CUO CNT U	Channel 2 count configuration register high 8 bits.			
7~0	PWM0_CH2_CNT_H	Configure PWM output duty cycle.			

Reset value

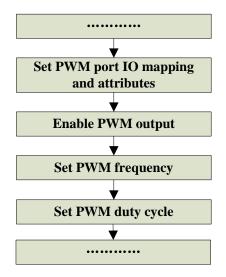


#### PWM0_CH3_CNT_L (ABH) PWM0 channel 3 count value configuration register low 8 bits

Bit number	7	6	5	4	3	2	1	0				
Symbol		PWM0_CH3_CNT_L										
R/W		R/W										
Reset value		0										

Bit number		Bit symbo	ol	Description					
7~0	PWM	10_CH3_C	CNT_L	Channel 3 count configuration register low 8 bits. Configure PWM output duty cycle.					
PWM0_CH3_CNT_H (ACH) PWM0 channel 3 count value configuration register high 8 bits									
Bit number	7	6	5	4	3	2	1	0	
Symbol			]	PWM0_CH	I3_CNT_I	ł			
R/W	R/W								
Reset value	0								

Bit number	Bit symbol	Description					
7~0	PWM0_CH3_CNT_H	Channel 3 count configuration register low 8 bits.					
		Configure PWM output duty cycle.					
PWM0 MOD L (ADH) PWM0 cycle configuration register low 8 bits							


Bit number	7	6	5	4	3	2	1	0			
Symbol		PWM0_MOD_L									
R/W		R/W									
Reset value		0									

Bit number	Bit symbol				Descr	iption			
7~0	PWM0 MOD L		PWM0 count cycle configuration register low 8 bits. Configure PWM output duty cycle.						
PWM0_MOD_H (AEH)PWM0 cycle configuration register high 8 bits									
Bit number	7	7 6 5 4 3 2 1 0						0	
Symbol				PWM0_3	MOD_H				
R/W		R/W							
Reset value		0							

Bit number	Bit symbol	Description
7~0		PWM0 count cycle configuration register high 8 bits.
	PWM0_MOD_H	Configure PWM output duty cycle.



## **11.4. PWM Configure Process**



PWM configure process

Note: Frequency range: 370 Hz~369 kHz is recommended.



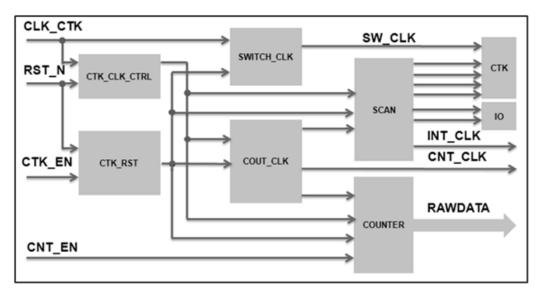
## 12. Touch Key

### **12.1. Function Description**

CSD features:

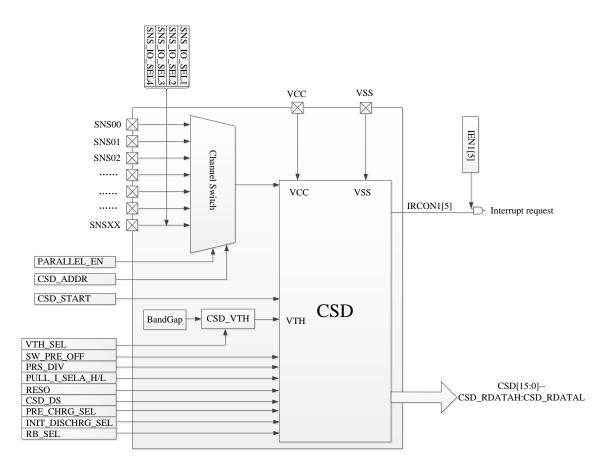
- CSD charge and discharge clock three modes are optional:
  - ▶ Fixed frequency division of the system clock 6M~369K
  - > PRS 1.5M normal distribution
  - > PRS 1.5M evenly distribution
- CSD count clock 24M, 12M, 6M, 4M is optional;
- Counting width 9-16 bits optional;
- Only asynchronous scan mode is supported.

BF7612CMXX implements multiple functions through a series of register. The relationship between the capacitance detection related quantity and the SFR value is as follows:


The count value is proportional to RESO, Rb resistance, PULL_I_SELA_H, and inversely proportional to VTH_SEL. In the case of ensuring complete charge and discharge, it is proportional to the charge and discharge frequency set by PRS_DIV.

Channel touch variation is proportional to RESO and Rb, and inversely proportional to VTH_SEL. In the case of ensuring complete charge and discharge. Compared with the charge and disarge frequency set by PRS_DIV and the amount of touch change.

The signal-to-noise ratio of touch is proportional to VTH_SEL and PULL_I_SELA_L, and inversely proportional to CSD_DS. When the charge and discharge are incomplete, it is inversely proportional to the charge-discharge frequency set by PRS_DIV and the signal-to-noise ratio.

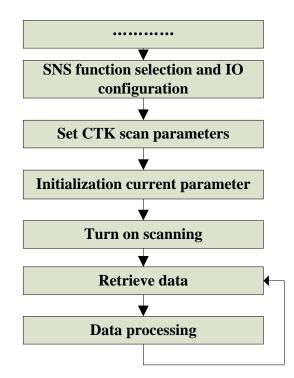

The time for a signal touch key detection is related to RESO and CSD_DS.

Notes: When configuring parameters, ensure that the touch key is fully charged and discharged.



CSD module structure diagram






CSD structure diagram



### **12.2. Touch Key Configure Process**

CTK touch key scan for query or interrupt mode. At first, configuring the CTK scanning parameter. Second, starting CTK scanning; Then obtain and save CTK data at CTK interrupt, software algorithm for data processing and touch key output judgement.



CTK configure process

Through the sensitivity parameter configuration, a set of parameters with better signal-to-noise ratio is obtained, thereby improving the accuracy of the button judgment.

- 1. **RESO:** 0~7 CTK capacitiance scanning resolution, counter digits: (**RESO + 9**)**bit**, the bigger CTK scanning resolution, the bigger the downward rawdata, the noise is increased at the same time, conversely reverse.
- 2. **VTH_SEL:** 0~7, the lower VTH, the bigger raw data, the noise is increased at the same time, conversely reverse.
- 3. **CSD_DS:** Detect speed **0:24M**, **1:12M**, **2:6M**, **3:4M**, the slower detect speed the slower raw data simple time, conversely reverse. Suggest default 24M, at least twice the speed of the PRS clock.
- 4. RB_SEL: Rb resistance select: 0:10K, 1:20K, 2:30K, 3:40K, 4:60K, 5:80K, 6:150K,
  7:300K; The greater resistance, the bigger raw data, the noise is increased at the same time, conversely reverse, 60K/80K is recommended.
- 5. **PRS_DIV:** front-end charge and discharge clock frequency selection register:
  - i. 0 ~61: fixed frequency: F=F48m/2/(PRS_DIV+4)  $(6M\sim369K)$ ;
  - ii. 62: the highest frequency 3M, the lowest frequency 1M, center frequency 1.5M, normal distribution;
  - iii. 63: the highest frequency 3M, the lowest frequency 1M, center frequency 1.5M, evenly distributed;
  - iv. The larger the PRS clock, the larger the amount of charge in Rawdata, and the greater the noise introduced, and vice versa.
- 6. **PULL_I_SELA_L:** pull-up current source low 8 bit.

Pull-up current source =255.5-0.5*{PULL_I_SELA_H, PULL_I_SELA_L}, the smaller the current source, the smaller the count value, default: 0x00.

7. **PULL_I_SELA_H:** pull-up current source high bit, default: 0x01.

Notes:

1. Rawdata is the real-time raw count value of the CTK capacitor counter.

2. In practical applications, it is necessary to view the data through the programming software and compare the parameters with good signal-to-noise ratio.

3. Chip supply voltage and reference voltage: VCC-VTH>0.5V.

## 12.3. Registers

	SFR register							
Address	Name	RW	Reset value	Function description				
0xCA	CSD_START	RW	0x00	CSD scan open register				
0xCB	SNS_SCAN_CFG1	RW	0x00	Touch key scan configuration register 1				
0xCC	SNS_SCAN_CFG2	RW	0x40	Touch key scan configuration register 2				
0xCD	SNS_SCAN_CFG3	RW	0x70	Touch key scan configuration register 3				
0xCE	CSD_RAWDATAL	R	0x00	CSD count value, low 8 bits				
0xCF	CSD_RAWDATAH	R	0x00	CSD count value, high 8 bit				
0xD1	PULL_I_SELA_L	RW	0x00	CSD pull up current source selection register				
0xD2	SNS_ANA_CFG	RW	0x2F	CSD scan parameter configuration register				
0xD3	SNS_IO_SEL1	RW	0x00	SNS channel selection register 1				
0xD4	SNS_IO_SEL2	RW	0x00	SNS channel selection register 2				
0xD5	SNS_IO_SEL3	RW	0x00	SNS channel selection register 3				
0xD6	SNS_IO_SEL4	RW	0x00	SNS channel selection register 4				
0xE6	IEN1	RW	0x00	Interrupt enable register 1				
0xF1	IRCON1	RW	0x00	Interrupt flag register 1				
0xF6	IPL1	RW	0x00	Interrupt priority register 1				
0xFE	PD_ANA	RW	0x1F	Module switch control register				

#### CSD SFR register list

### CSD_START(CAH) CSD scan open register

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	-	-		-
R/W	-	-	-	-	-	-		R/W
Reset value	-	_	-	_	-	_		0

Bit number	Bit symbol	Description
0		1: Start scanning; 0: Stop scanning Write 1 to CSD_START to start the scan. After one scan, the hardware will automatically set it to 0. To start the next scan, the software needs to set it to 1 again; if CSD_START=0 during the scan process, the scan will stop immediately, and the relevant signals inside the module reset Note: It must be used according to the process configuration: CSD_START=1, interrupt detected, configure CSD_START=0. Configuration of CSD_START is not



	allowed during scan							
SNS_SCAN_CFG1 (CBH) Touch key scan configuration register 1								
Bit number	7	7 6 5 4 3 2 1 0						
Symbol	-	SW_PRE_OFF	PRS_DIV					
R/W	-	R/W	R/W					
Reset value	-	0	0					

Bit number	Bit symbol	Description
C	SW DDE OEE	Front-end charge and discharge clock switch control.
6	SW_PRE_OFF	1: close sw_clk; 0: open sw_clk
		Front-end charge and discharge clock frequency selection
		register:
		0~61: fixed frequency: F=F48m/2/(PRS_DIV+4)
5~0		(6M~369K);
5~0	PRS_DIV	62: highest frequency 3M, lowest frequency 1M, center
		frequency 1.5M, normal distribution;
		63: highest frequency 3M, lowest frequency 1M, center
		frequency 1.5M, evenly distributed.

SNS_SCAN_CFG2 (CCH) Touch key scan configuration register 2

			8 8					
Bit number	7	6	5	4	3	2	1	0
Symbol	-	PULL_I_SELA_H	PARALLEL_EN		CS	SD_AD	DR	
R/W	-	R/W	R/W	R/W				
Reset value	-	1	0			0		

Bit number	Bit symbol	Description
6	PULL_I_SELA_H	CSD pull-up current source configuration highest bit.
		SNS channel shunt enable register.
5	PARALLEL_EN	1: multi-channel parallel;
		0: signal channel.
4.0		Detect channel address, corresponding to the channel
4~0	CSD_ADDR	number 0~25.

SNS_SCAN_CFG3(CDH) Touch key scan configuration register 3

				· · ·				
Bit number	7	6	5	4	3	2	1	0
Symbol	-	]	RESC	)	CSD_DS		PRE_CHRG_SEL	INIT_DISCHRG_SEL
R/W	-		R/W		R/	W	R/W	R/W
Reset value	-	1	1	1	0	0	0	0

Bit number	Bit symbol	Description				
	DEGO	Counter bit selection register.				
6~4	RESO	000: 9 bit; 001: 10 bit; 010: 11 bit;				



			011:1	2bit; 1	00: 13 bit;	101:14	bit;		
			110:1	<b>5 bit</b> ; 1	11: 16 bit.				
2.2	001		Count	clock free	quency sele	ction regis	ter.		
3~2	CSI	D_DS	00: 24	M: 01:	12M; 10:	6M: 11:	4M: defa	ault 0.	
				arge time		- , .	,		
1	PRE_CH	HRG_SEL		U					
				s; 1: 40us					
0	INIT DIS	CHRG_SEL		-	me selection	n			
Ŭ	IIII_DIS		0: 2us	; 1: 10us.					
CSD_RAWDA	CSD_RAWDATAL (CEH) CSD counter, low 8-bit								
Bit number	7	6	5	4	3	2	1	0	
Symbol		RAWDATA<7:0>							
R/W					R				
Reset value					0				
CSD_RAWDA	TAH (CFH	I) CSD coun	ter, high	8-bit					
Bit number	7	6	5	4	3	2	1	0	
Symbol				RAWDA	TA<15:8>				
R/W					R				
Reset value					0				
PULL_I_SELA	_L (D1H)	CSD pull-up	current	source sel	ection regis	ster			
Bit number	7	7 6 5 4 3 2 1 0							
Symbol		PULL_I_SEL<7:0>							
R/W		R/W							
Reset value					0				

Bit number	Bit symbol	Description					
7~0	PULL_I_SEL<7:0>	CSD pull up current source size selection switch. The default is 0.					
SNS_ANA_CFG (D2H) CSD scan parameter configuration register							

Bit number	7	6	5	4	3	2	1	0	
Symbol	-	-		RB_SEL		VTH_SEL			
R/W	-	-	R/W				R/W		
Reset value	-	-	1	0	1	1	1	1	

Bit number	Bit symbol	Description
5~4	RB_SEL	<ul> <li>Rb resistance size selection.</li> <li>0: 10k; 1: 20k; 2: 30k; 3: 40k;</li> <li>4: 60k; 5: 80k; 6: 150k; 7: 300k; 60K/80K is recommended.</li> <li>Need to read Rb80K calibration value from chip flash when using: CBYTE[0x43CD]K/80K, proportional calculation normalization sensitivity.</li> </ul>



2~1	VTH_SEL	VTH voltage selection signal VTH voltage selection signal, 000: 1.5V, 001: 2.1V; 010: 2.5V; 011: 2.9V; 100: 3.2V; 101: 3.5V; 110: 3.9V; 111: 4.2V.
-----	---------	----------------------------------------------------------------------------------------------------------------------------------------------------------------

SNS IO SEL1(D3H) SNS channel selection register 1

Bit number	7	6	5	4	3	2	1	0
Symbol		SNS_IO_SEL1[7:0]						
R/W		R/W						
Reset value		0						

Bit number	Bit symbol	Description
7~0	SNS_IO_SEL1[7:0]	SENSOR port selection enable bit 1: Select SENSOR; 0: Do not select SENSOR 00000001=SNS0; 00000010=SNS1; 00000100=SNS2; 00001000=SNS3;
		00010000=SNS4; 00100000=SNS5; 01000000=SNS6; 10000000=SNS7

SNS_IO_SEL2 (D4H) SNS channel selection register 2

	( )			0		· · · · · · · · · · · · · · · · · · ·					
Bit number	7	6	5	4	3	2	1	0			
Symbol		SNS_IO_SEL2 [7:0]									
R/W		R/W									
Reset value		0									

Bit number	Bit symbol	Description
7~0	SNS_IO_SEL2 [7:0]	SENSOR port selection enable bit 00000001=SNS8; 00000010=SNS9; 00000100=SNS10; 00001000=SNS11; 00010000=SNS12; 00100000=SNS13; 01000000=SNS14; 10000000=SNS15

SNS_IO_SEL3 (D5H) SNS channel selection register 3

Bit number	7	6	5	4	3	2	1	0
Symbol		SNS_IO_SEL3[7:0]						
R/W		R/W						
Reset value				(	)			

Bit number	Bit symbol	Description
7~0	SNS_IO_SEL3[7:0]	SENSOR port selection enable bit 1: Select SENSOR;



	0: Do not select SENSOR
	00000001=SNS16; 00000010=SNS17;
	00000100=SNS18; 00001000=SNS19;
	00010000=SNS20; 00100000=SNS21;
	01000000=SNS22; 10000000=SNS23

SNS_IO_SEL4 (D6H) SNS channel selection register 4

<u></u>	(_ = ===) ==				=			
Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	-	-	SNS_IO_	SEL4[1:0]
R/W	-	-	-	-	-	-	R/W	
Reset value	-	-	-	-	-	-	0	

Bit number	Bit symbol	Description
	SENSOR port selection enable bit	
1~0	SNS IO SEL 4[1.0]	1: Select SENSOR to enable;
1~0	SNS_IO_SEL4[1:0]	0: Do not select SENSOR enable
		01=SNS24; 10=SNS25

#### IEN1 (E6H) Interrupt enable register 1

Bit number	7	6	5	4	3	2	1	0
Symbol	EX7	EX6	EX5	EX4	EX3	EX2	-	-
R/W	R/W	R/W	R/W	R/W	R/W	R/W	-	-
Reset value	0	0	0	0	0	0	-	-

Bit number	Bit symbol	Description
		CSD interrupt enable
5	EX5	1: Interrupt enable;
		0: Interrupt disable

#### IRCON1 (F1H) Interrupt flag register 1

Bit number	7	6	5	4	3	2	1	0
Symbol	IE7	IE6	IE5	IE4	IE3	IE2	-	-
R/W	R/W	R/W	R/W	R/W	R/W	R/W	-	-
Reset value	0	0	0	0	0	0	-	-

Bit number	Bit symbol	Description
~	IE5	CSD interrupt flag
5	5 IE3	1: With CSD interrupt flag; 0: No CSD interrupt flag

### IPL1 (F6H) Interrupt priority register 1

Bit number	7	6	5	4	3	2	1	0
Symbol	IPL1.7	IPL1.6	IPL1.5	IPL1.4	IPL1.3	IPL1.2	-	-
R/W	R/W	R/W	R/W	R/W	R/W	R/W	-	-
Reset value	0	0	0	0	0	0	-	-



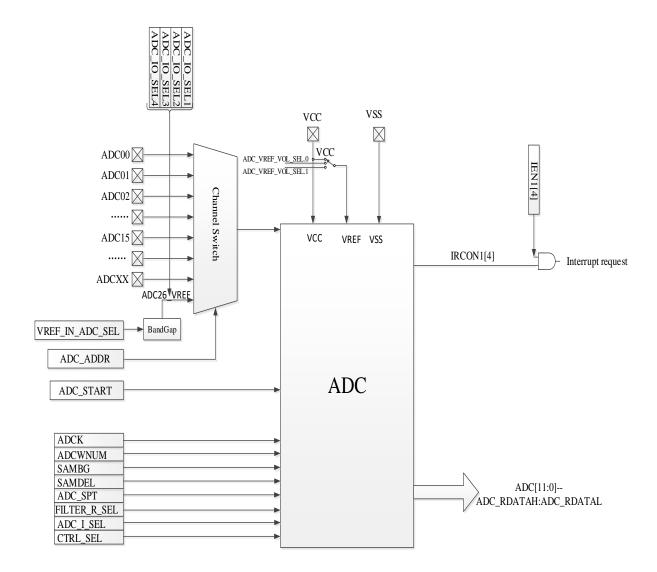
Bit number	Bit symbol	Description
		CSD interrupt priority
5	IPL1.5	0: Low priority
		1: High priority;

PD_ANA (FEH) Module switch control register

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	PD_LVDT	PD_BOR	PD_XTAL_32K	PD_CSD	PD_ADC
R/W	-	-	-	R/W	R/W	R/W	R/W	R/W
Reset value	-	-	-	1	1	1	1	1

Bit number	Bit symbol	Description
1		CSD work control register:
1	PD_CSD	0: Working; 1: Not working




## **13. ADC**

### 13.1. Function Description

The BF7612CMXX contains a single-ended, 12-bit linear successive approximation analogto-digital converter (ADC), and the reference voltage of the ADC is connected to the VCC of the chip. ADC channels can input independent analog signals. The ADC module converts 1 channel each time, ADC_START= $0 \rightarrow 1(\checkmark)$  starts the conversion, after the conversion is completed, the ADC result register is updated and an interrupt is generated.

The ADC module of the BF7612CMXX chip has the following features:

- 12-bit resolution linear and successive approximation to ADC
- Single conversion mode
- Sample time and conversion speed can be configured



ADC structure block diagram



## **13.1.1. ADC Detection Time**

Timing requirements: (ADCWNUM+3) * t_{ADCK} > 4 * t_{ADCCKV}

ADC clock (ADCK): 0: 8MHz; 1: 6MHz; 2: 4MHz; 3: 3MHz

ADC comparator offset cancellation analog input clock (ADCCKV):

0: 12MHz; 1: 8MHz; 2: 4MHz; 3: 2MHz

Voltage settling time after ADC external input signal plus RC filtering  $\geq 2*(ADC \text{ conversion time})$ The ADC detection time formula is as follows:

•		tADC ADC conversion time		
t1 Delay time before sampling	t2 sampling time	t3 Sampling completed distance conversion interval time	t4 The time when the sampled signal is converted to data	After the conversion is complete time across time
	1 1 5 9			

As shown in the table, the ADC conversion time formula:

Formula	Note
$t_{ADC} = t1 + t2 + t3 + t4 + t5$	ADC conversion time
$t1 = SAMDEL^* t_{ADCK}$	SAMDEL: Pre-sampling delay time select register
$t2 = 4 * (ADC_SPT+1) * t_{ADCK}$	ADC_SPT: ADC sampling time configuration register
$t3 = (3 + ADCWNUM) * t_{ADCK}$	ADCWNUM: Distance conversion interval after sampling
$t4 = (2*1 + 12) * t_{ADCK}$	ADCK: ADC clock
t5 = 200ns	-

### **13.1.2. ADC Reference Voltage**

When selecting VCC as the ADC reference voltage:

When the power supply voltage fluctuates greatly or drops, the formula can be used:

ADCINNER_Data/ VREF_IN_ADC_SEL = 4096/VCC can inversely calculate the VCC

voltage value, and the Vin voltage value can be inversely calculated by the formula

Vin_Data/Vin=4096/VCC.

ADCINNER_Data: ADC internal channel data;

Vin_Data: ADC input channel data;

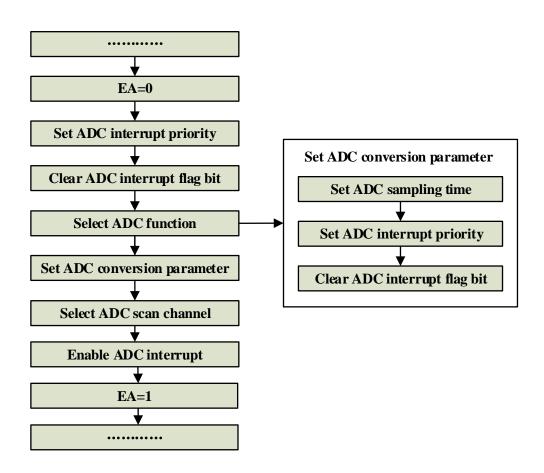
Vin: input voltage;

VREF_IN_ADC_SEL: Need to read chip calibration value,

Vin = (Vin_Data/ADCINNER_Data)*VREF_IN_ADC_SEL, VREF_IN_ADC_SEL needs to read the chip calibration value, first obtain the internal channel data, and then obtain the input voltage Vin_Data data, and the interval between two data acquisitions is as short as possible;

### 13.1.3. ADC Interrupt

ADC input interrupt conditions:




- 1. The configuration sequence is ADC_IO_SEL enable;
- 2. ADC interrupt enable;
- 3. ADC_ADDR (Address and ADC_IO_SEL must correspond);
- 4. ADC_START.

Note on initial configuration timing during application: If there is an application where ADC and IO port functions are multiplexed, you need to pay attention to the switching timing, If ADC_IO_SEL is enabled or disabled or address does not correspond to ADC_IO_SEL, ADC scanning cannot be turned on, and the configuration sequence must be followed: ADC_IO_SEL enable ->ADC interrupt enable->ADC_ADDR(Address and ADC_IO_SEL must correspond) -> ADC_START, t o enable ADC scan

When the pin is configured as ADC Function, the pin needs to be configured as IO input mode, and other multiplexing functions, are turned off, such as pull resistors.

## **13.2. ADC Configuration Process**



ADC configuration flowchart

	SFR register								
Address	Name	RW	Reset value	Description					
0xB4	ADC_SPT	RW	0x00	ADC sample time configuration register					
0xB5	ADC_SCAN_CFG	RW	0x00	ADC scan control register					
0xB6	ADCCKC	RW	0x00	ADC clock control register					
0xB9	ADC_RDATAH	R	0x00	ADC scan result register high 4 bits					
0xBA	ADC_RDATAL	R	0x00	ADC scan result register low 8 bits					
0xBB	ADC_CFG1	RW	0x00	ADC sample sequence control register 1					
0xBC	ADC_CFG2	RW	0x02	ADC sample sequence control register 2					
0xD9	ADC_IO_SEL1	RW	0x00	ADC selection enable register 1					
0xDA	ADC_IO_SEL2	RW	0x00	ADC selection enable register 2					
0xDB	ADC_IO_SEL3	RW	0x00	ADC selection enable register 3					
0xDC	ADC_IO_SEL4	RW	0x00	ADC selection enable register 4					
0xE6	IEN1	RW	0x00	Interrupt enable register 1					
0xF1	IRCON1	RW	0x00	Interrupt flag register 1					
0xF6	IPL1	RW	0x00	Interrupt priority register 1					
0xFE	PD_ANA	RW	0x1F	Module switch control register					

ADC SFR register list

Secondary bus register							
Address	Name	RW	<b>Reset value</b>	Description			
0x2D	ADC_CFG_SEL	RW	xxxx_xx00b	ADC control register			

## **13.3.1. ADC Sample Time Configuration Register**

ADC_SPT (B4H) ADC sample time configuration register

Bit number	7	6	5	4	3	2	1	0	
Symbol		ADC_SPT							
R/W		R/W							
Reset value	0								

Bit number	Bit symbol	Description
7~0	ADC_SPT	ADC sample time configuration register Sample time: $t^2 = (ADC_SPT+1)^*4^* t_{ADCK}$

### 13.3.2. ADC Scan Control Register

ADC_SCAN_CFG (B5H) ADC scan control register



## BF7612CMXX-1

Bit number	7	6	5	4	3	2	1	0	
Symbol	-	-		ADC_START					
R/W	-	-		R/W					
Reset value	-	-		0					

Bit number	Bit symbol	Description
		ADC channel address selection register
		00000: Corresponding to ADC0;
		00001: Corresponding to ADC1;
5~1	ADC_ADDR	
5~1	ADC_ADDR	11000: Corresponding to ADC24;
		11001: Corresponding to ADC25;
		11010: Corresponding to ADC26_VREF;
		Reserved all other values
		ADC scan open register:
		0: ADC module does not scan;
		1: ADC module starts to scan
		ADC_START is set from 0 to 1. ADC starts to scan, after
0	ADC_START	scanning once, ADC_START hardware is automatically set
		to 0, corresponding to the ADC interrupt flag bit. The ADC
		interrupt flag bit needs to be cleared by software.
		Note: ADC_START is not allowed to be configured during
		scanning

# 13.3.3. ADC Clock Control Register

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	ADCCKV		ADCK	
R/W	-	-	-	-	R/W		R/W	
Reset value	-	_	-	-	0	0	0	0

Bit number	Bit symbol	Description				
2.2	ADCCVV	ADC comparator offset cancellation analog input clock.				
3~2	ADCCKV	0: 12MHz 1: 8MHz 2: 4MHz 3: 2MHz				
1.0	ADCK	ADC clock				
1~0	ADCK	0: 8MHz 1: 6MHz 2: 4MHz 3: 3MHz				



## 13.3.4. ADC Scan Result Registers

Bit number	7	6	5	4	3	2	1	0	
Symbol	-	-	-	-	ADC_RDATAH[3:0]				
R/W	-	-	-	-	R				
Reset value	-	-	-	-	0				

#### ADC RDATAH (B9H) ADC scan result register high 4 bits

Bit number	Bit s	symbol		Description					
3~0	ADC_RD	ATAH[3:(	)] ADC s	ADC scan result register					
ADC_RDATAL (BAH) ADC scan result register low 8 bits									
Bit number	7	6	5	4	3	2	1	0	
Symbol		ADC_RDATAL[7:0]							
R/W	R								
Reset value			0						

#### Bit number Bit symbol Description ADC_RDATAL[7:0] ADC scan result register 7~0

### 13.3.5. ADC Sample Sequence Control Register 1

ADC CFG1 ()	BBH) ADC sar	nple sequence contro	ol register 1

Bit number	7	6	5	4	3	2	1	0		
Symbol		А	DCWNU	SAMBG	SAMDEL					
R/W	R/W					R/W	R/W			
Reset value	0					0		0		

Bit number	Bit symbol	Description
7~3	ADCWNUM	Selection of distance conversion interval time after sampling 00000: (3+0) * t _{ADCK} ; 00001: (3+1) *t _{ADCK} ; 00010: (3+2) * t _{ADCK} ; 00011: (3+3) * t _{ADCK} ; 00100: (3+4) * t _{ADCK} ;  11110: (3+30) * t _{ADCK} ; 11111: (3+31) * t _{ADCK} ;
2	SAMBG	Sample timing and comparison timing interval selection 0: Interval of 0* t _{ADCK} ; 1: Interval of 1 * t _{ADCK}
1~0	SAMDEL	Sample delay time selection



	00: 0 * t _{ADCK} ; 01: 2 * t _{ADCK} ;
	10: 4 * tadck; 11: 8 * tadck

## 13.3.6. ADC Sample Sequence Control register 2

ADC CEG2 (B	CH) ADC sam	nling timing co	ontrol register 2
	CIT/ IDC Sum		

		1 0 0	L					
Bit number	7	6	5	4	3	2	1	0
Symbol	FILTE		VREI	F_IN_	ADO	C_I_	CTRL_	
	-	R_SEL	ADC_SEL		SEL[1:0]		SEL	[1:0]
R/W	-	R/W	R/W		V R/W		R/	W
Reset value	-	0	0		0		10	

Bit number	Bit symbol	Description
6	EILTED D CEL	Input signal filtering selection, 0 means no RC filtering,
0	FILTER_R_SEL	1 means RC filtering.
		Input to ADC26 reference voltage selection
		01: 2.253V; other: reserved;
5~4	VREF_IN_ADC_SEL	Need to read the calibration voltagevalue from the chip
5~4	VKEF_IN_ADC_SEL	flash when using.
		VREF_IN_ADC_SEL voltage =
		{ CBYTE[0x43C6], CBYTE[0x43C7]}mV.
		ADC bias current size selection register.
	ADC_I_SEL[1:0]	ADC_I_SEL[0]:
		0 is the comparator bias current is 4uA;
3~2		1 is the comparator bias current is 5uA;
		ADC_I_SEL[1]:
		0 is the op amp bias current is 4uA;
		1 is the op amp bias current is 5uA;
		ADC comparator offset cancellation selection signal,
		the default is 10.
1~0		CTRL_SEL[1:0]:
1~0	CTRL_SEL[1:0]	00/01: sampling first in offset cancellation;
		10: all switches are disconnected together;
		11: the switch is disconnected in turn.

## **13.3.7. ADC Selection Enable Registers**

ADC_IO_SEL1 (D9H) ADC selection enable register 1

	· /			0				
Bit number	7	6	5	4	3	2	1	0



Symbol	ADC_IO_SEL1[7:0]
R/W	R/W
Reset value	0

Bit number	Bit symbol	Description					
7~0	ADC_IO_SEL1[7:0]	Enable the ADC control function that disables analog input pins 1: Select ADC function; 0: Not select ADC function 00000001 = ADC00; 00000010 = ADC01; 00000100 = ADC02; 00001000 = ADC03; 00010000 = ADC04; 00100000 = ADC05;					
		01000000 = ADC06;  10000000 = ADC07					

ADC_IO_SEL2 (DAH) ADC selection enable register 2

Bit number	7	6	5	4	3	2	1	0		
Symbol	ADC_IO_SEL2[7:0]									
R/W		R/W								
Reset value		0								

Bit number	Bit symbol	Description					
		Enable the ADC control function that disables analog					
		input pins					
		1: Select ADC function;					
7~0	ADC_IO_SEL2[7:0]	0: Not select ADC function					
/~0		00000001 = ADC08;  00000010 = ADC09;					
		00000100 = ADC10; $00001000 = ADC11;$					
		00010000 = ADC12; 00100000 = ADC13;					
		01000000 = ADC14; $10000000 = ADC15$					

## ADC_IO_SEL3 (DBH) ADC selection enable register 3

Bit number	7	6	5	4	3	2	1	0		
Symbol	ADC_IO_SEL3[7:0]									
R/W	R/W									
Reset value	0									

Bit number	Bit symbol	Description
		Enable the ADC control function that disables analog
		input pins
7~0	ADC_IO_SEL3[7:0]	1: Select ADC function;
		0: Not select ADC function
		00000001 = ADC16; $00000010 = ADC17;$



00000100 = ADC18;	00001000 = ADC19;
00010000 = ADC20;	00100000 = ADC21;
01000000 = ADC22;	10000000 = ADC23

ADC_IO_SEL4 (DCH) ADC selection enable register 4

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	-	-	ADC_IO_SEL4[1:0]	
R/W	-	-	-	-	-	-	R/W	
Reset value	-	-	-	-	-	-	0	

Bit number	Bit symbol	Description
		Enable the ADC control function that disables analog
		input pins
1~0		1: Select ADC function;
		0: Not select ADC function
		01 = ADC24;  10 = ADC25

## **13.3.8. Interrupt Related Registers**

	El (1 (2011) Interrupt en uere register 1							
Bit number	7	6	5	4	3	2	1	0
Symbol	EX7	EX6	EX5	EX4	EX3	EX2	-	-
R/W	R/W	R/W	R/W	R/W	R/W	R/W	-	-
Reset value	0	0	0	0	0	0	-	-

IEN1 (E6H) Interrupt enable register 1

Bit number	Bit symbol	Description
		ADC interrupt enable
4	EX4	1: Interrupt enable;
		0: Interrupt disable;

IRCON1 (F1H) Interrupt flag register 1

Bit number	7	6	5	4	3	2	1	0
Symbol	IE7	IE6	IE5	IE4	IE3	IE2	-	-
R/W	R/W	R/W	R/W	R/W	R/W	R/W	-	-
Reset value	0	0	0	0	0	0	-	-

Bit number	Bit symbol	Description					
		ADC interrupt flag					
4	IE4	1: With interrupt flag;					
		0: No interrupt flag					
IPL1 (F6H) Interrupt priority register 1							

Bit number         7         6         5         4         3         2         1         0									
	Bif number	7	6	5	4	3	2	1	0



Symbol	IPL1.7	IPL1.6	IPL1.5	IPL1.4	IPL1.3	IPL1.2	-	-
R/W	R/W	R/W	R/W	R/W	R/W	R/W	-	-
Reset value	0	0	0	0	0	0	-	-

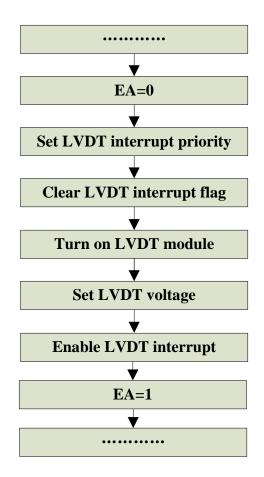
Bit number	Bit symbol	Description
		ADC interrupt priority
4	IPL1.4	0: Low priority;
		1: High priority

## 13.3.9. Module Switch Control Register

Bit number	7~5	4	3	2	1	0
Symbol	-	PD_LVDT	PD_BOR	PD_XTAL_32K	PD_CSD	PD_ADC
R/W	-	R/W	R/W	R/W	R/W	R/W
Reset value	-	1	0	1	1	1

Bit number	Bit symbol	Description
		Analog ADC shut down control register
0	PD_ADC	0: Working;
		1: Not working




# 14. LVDT

### 14.1. Function Describe

BF7612CMXX series supports low pressure alarm function, effectively monitor voltage dynamics. Support four gear voltages are: 2.4V/3.0V/3.6V/4.2V (Preset point buck interrupt, hysteresis 0.1V to generate corresponding boost interrupt).

When the voltage monitoring configures the above threshold, the voltage drops to this threshold will trigger a low voltage interrupt. The system can be propely processed in low voltage interrupts according to the needs of the application.

### **14.2. LVDT Configuration Process**



LVDT configuration flow chart



# 14.3. LVDT Related Registers

			SFR regist	ter	
Address	Name	RW	Reset value	Description	
0x86	x86 INT POBO STAT		000	LVDT power-on/brown-out interrupt	
0x80	INT_POBO_STAT	RW	0x00	status register	
0xE1	IRCON2	RW	RW0x00Interrupt flag register 2		
0xE7	IEN2	RW	0x00	Interrupt enable register 2	
0xF4	IPL2	RW	0x00	Interrupt priority register 2	
0xFE	0xFE PD_ANA RW 0x1F		0x1F	Module switch control register	
0xFF SEL_LVDT_VTH			0x00	LVDT threshold selection register	
		_		11	

LVDT SFR register list

## 14.3.1. Interrupt Related Registers

INT POBO	STAT (86H) LV	DT power-on/brown-ou	t interrupt status register
	_ `` /		1 0

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	-	-	INT_PO_STAT	INT_BO_STAT
R/W	-	-	-	-	-	-	R/W	R/W
Reset value	-	-	-	-	-	-	0	0

Bit number	Bit symbol	Description
		LVDT power-on interrupt status
1	INT_PO_STAT	1: Power-on interrupt is valid;
		0: Power-on interrupt is invalid.
		LVDT brown-out interrupt status
0	INT_BO_STAT	1: Brown-out interrupt is valid;
		0: Brown-out interrupt is invalid

IRCON2 (E1H) Interrupt flag register 2

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	-	IE10	IE9	IE8
R/W	-	-	-	-	-	R/W	R/W	R/W
Reset value	-	-	-	-	-	0	0	0

Bit number	Bit s	ymbol		Description							
0	П	E8	LVDT in	LVDT interrupt flag							
			1: With interrupt flag 0: No interrupt flag								
IEN2 (E7H) Inte	IEN2 (E7H) Interrupt enable register 2										
Bit number	7	6	5	4	3	2	1	0			
Symbol	-	-	_	-	-	EX10	EX9	EX8			



R/W	-	-	-	-	-	R/W	R/W	R/W
Reset value	-	-	-	-	-	0	0	0

Bit number	Bit sy	ymbol	Description							
0	E	VQ	LVDT in	LVDT interrupt enable						
0	EX8		1: Interru	1: Interrupt enable; 0: Interrupt disable;						
IPL2 (F4H) Interrupt priority register 2										
Bit number	7	6	5	4	3	2	1	0		
Symbol	-	-	-	-	-	IPL2.2	IPL2.1	IPL2.0		
R/W	-	-	-	-	-	R/W	R/W	R/W		
Reset value	_	_	-	-	-	0	0	0		

Bit number	Bit symbol Description					
0		LVDT interrupt priority				
0	IPL2.0	0: Low priority; 1: High priority				

### 14.3.2. Module Switch Control Register

PD_ANA (FEH) Module switch control register

Bit number	7~5	4	3	2	1	0
Symbol	-	PD_LVDT	PD_BOR	PD_XTAL_32K	PD_CSD	PD_ADC
R/W	-	R/W	R/W	R/W	R/W	R/W
Reset value	-	1	0	1	1	1

Bit number	Bit symbol	Description
4	PD_LVDT	LVDT control register 1: Close; 0: Open, closed by default

### **14.3.3. LVDT Threshold Selection Register**

SEL_LVDT_VTH (FFH) LVDT threshold selection register

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	-	-		-
R/W	-	-	-	-	-	-	R/W	
Reset value	-	_	I	-	-	-	0	0

Bit number	Bit symbol	Description
1~0		LVDT threshold selection;
		00=2.4V; 01=3.0V; 10=3.6V; 11=4.2V.

Note: It is recommended that the LVDT be configured with 3V. The low gear of the LVDT voltage

detection point can better suppress the power supply ripple. If the high voltage detection voltage gear is disturbed, the software needs to perform debounce processing to reduce the probability of misjudgment.

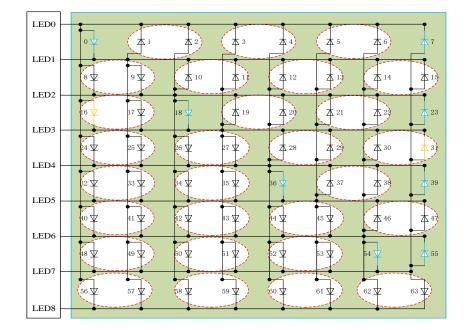
# 15. LED

LED dot matrix drive mode features:

- Support max 64 LED drive, configurable selection lattice 4x4, 5x5, 6x6, 6x7, 7x7, 7x8, 8x8 (fixed pin after configuration);
- Dual led simultaneous conduction mode;
- Signal led on time setting file: register 8 bits, configurable range is 16us-4.096ms (step is 16us);
- Each led driver time can be selected separately;
- IO ports have multiple multiplexing relationships, each IO port needs to be configured through software to switch to LED port, and the LED function of LED0~LED8 corresponding to IO port will be automatically turned on according to the LED matrix mode selection;
- 64-light dot matrix address is unique. See the dot matrix description below for inputting switch light information;

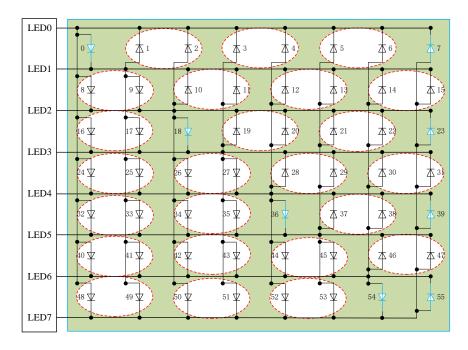
# **15.1. Function Description**

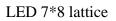
### 15.1.1. LED


LED dot matrix driver circuit consists of a controller, two counter, a comparator and a SRAM memory circuit.

LED dot matrix is a universal 8*8 matrix dual led mode scan, that is, two lights at a time (common cathode).

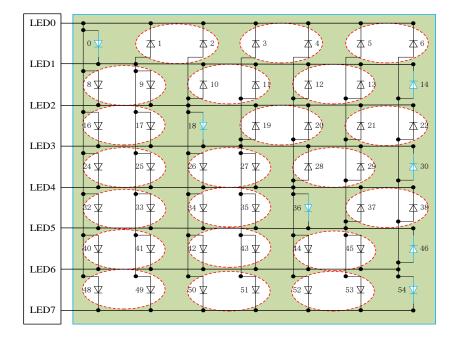
Corresponding to the LED0~LED8 port, up to 8x8=64 lights can be configured. The lights address of the corresponding position is marked in the 8*8 dot matrix below. The display configuration in the SRAM corresponding address lighting situation (1 means light, 0 means no light), The hardware code needs to resolve the lighting address and the current scanning address to automatically complete the corresponding IO port outport control. Configurable dot matrix 4x4, 5x5, 6x6, 6x7, 7x7, 7x8, 8x8, led addresses corresponding to different size lattices are unchanged.

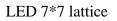




#### 8*8 lattice:

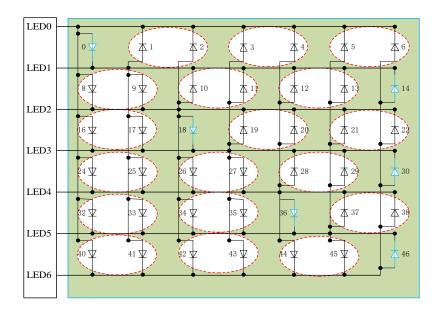


LED 8*8 lattice:


7*8 lattice:



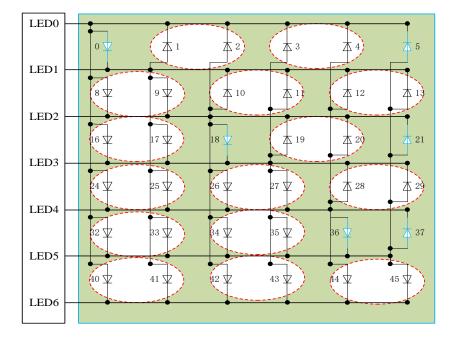



7*7 lattice:

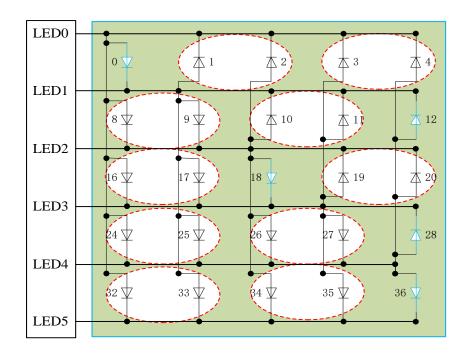


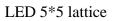



6*7 lattice:



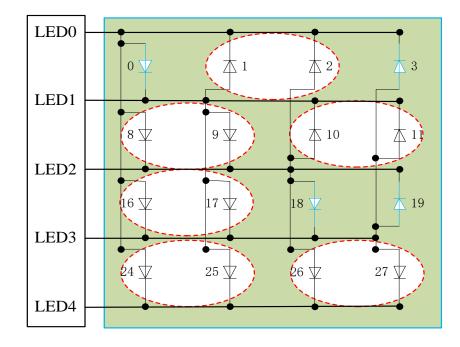
LED 6*7 lattice

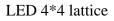




#### 6*6 lattice:



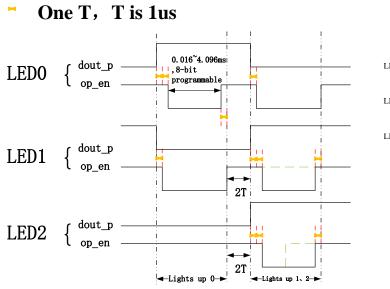
LED 6*6 lattice

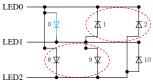

5*5 lattice:









4*4 lattice:



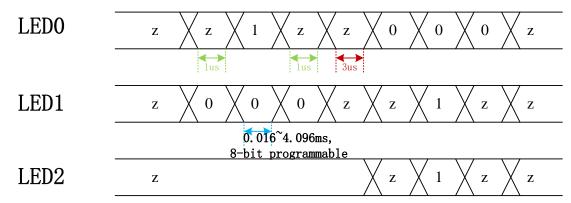



Dot matrix scan timing example:

Take the lighting led 0, 1, 2 as an example, the timing is showen below:






Note: 1. dout_p: output data signal 2. op_en: output enable signal



The state of the IO port is as follows:

Semiconductor

The calculation formula of the total time of led serial dot matrix is as follows:



Total scan time  $t = n1^* t$  single led scan time  $+ n2^* t$  double led scan time  $+ (n1 + n2)^*5^* t$  led

n1: The number of single led groups.

n2: The number of double led groups.

t single led scan time: when  $Dx_SEL=0$ , t single led scan time = t on-time 1.

when  $Dx_SEL=1$ , t single led scan time = t on-time 2.

t double led scan time: It is determined by the long on-time. If led 1 and led 2 scan at the same time.

If led 1 on-time > led 2 on-time, t double led scan time = led 1 on-time.

If led 1 on-time < led 2 on-time, t double led scan time = led 2 on-time.

If led 1 on-time = led 2 on-time, t double led scan time = led 1 on-time = led 2 on-time.

t led: Led clock cycle, 1us.

The on-time of each led is determined by  $Dx_SEL$  stored in sram. When  $Dx_SEL=0$ , select t on-time 1; when  $Dx_SEL=1$ , select t on-time 2

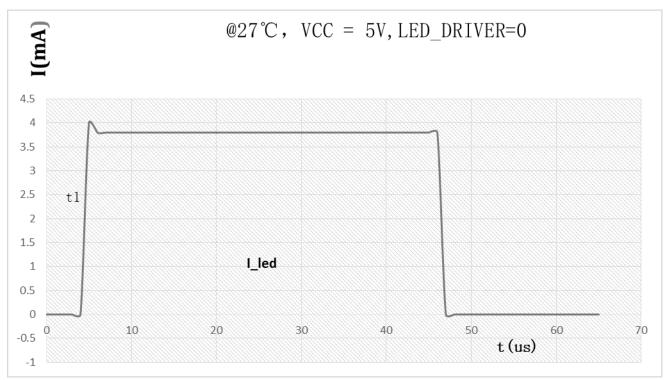
t on-time 1: Register SCAN_WIDTH configuration;

t on-time 2: Register LED2_WIDTH configuration.



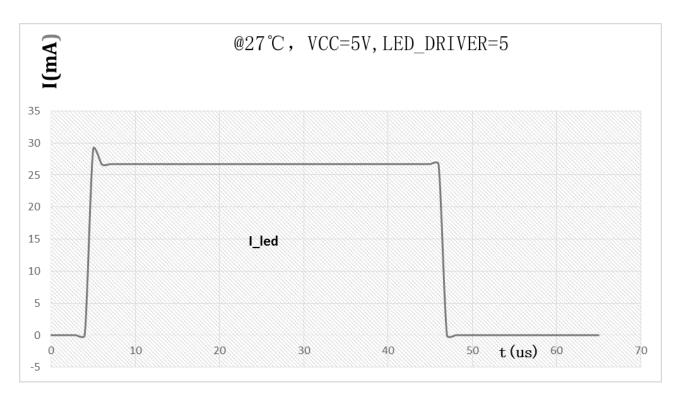
### **15.2. Drive Current Description**

LED_DRIVE	I_led current (mA)
0	3.8
1	8.5
2	13.1
3	17.7
4	22.2
5	26.7
6	31.0
7	35.4
8	39.8
9	44.0
10	48.3
11	52.6
12	56.8
13	61.0
14	65.0
15	69.1


 $(Ta = 25^{\circ}C, VCC = 5V, LED \text{ voltage drop } 1.8V \sim 2.3V)$ 

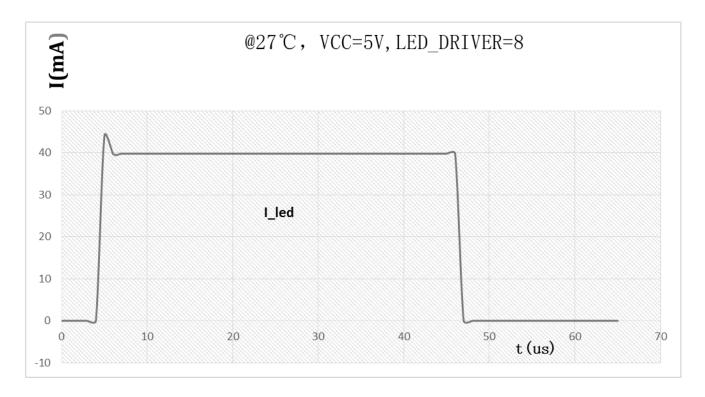
Notes:

LED drive current register list

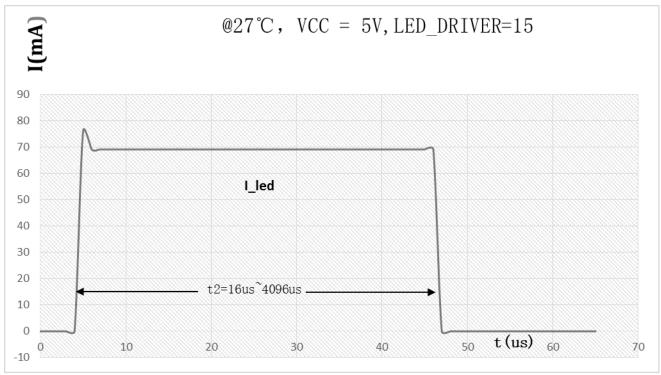

- LED drive current deviation range (±8%) @VCC=5V, Ta=(-40℃~105℃), The setting of the LED_DRIVE is recommended to be smaller than the nominal Ifp of the LED. The LED to be driven should select the LED with the same forward voltage V_F.
- 2. LED_DRIVE: LED drive capability configuration register; I_led: LED conducts steady state current.






LED serial dot matrix drive current-time diagram under several common configurations:






LED_DRIVER VS Time Figure2





LED_DRIVER VS Time Figure3



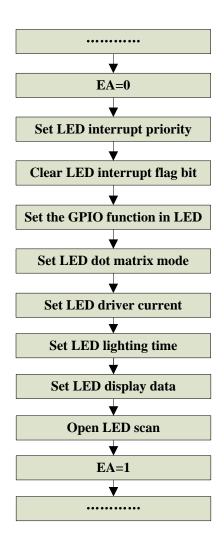
LED_DRIVER VS Time Figure4



## **15.3. Display Configuration Address**

LED dot matrix drive mode corresponding to display configuration:

Dx indicates whether the light is selected or not, 0: not bright, 1: bright;


Dx_SEL indicates that the light is selected for the lighting cycle, 0: select the first segment of the light cycle, 1: select the second segment of the light cycle.

Address	7	6	5	4	3	2	1	0
200H	D7	D6	D5	D4	D3	D2	D1	D0
201H	D15	D14	D13	D12	D11	D10	D9	D8
202H	D23	D22	D21	D20	D19	D18	D17	D16
203H	D31	D30	D29	D28	D27	D26	D25	D24
204H	D39	D38	D37	D36	D35	D34	D33	D32
205H	D47	D46	D45	D44	D43	D42	D41	D40
206H	D55	D54	D53	D52	D51	D50	D49	D48
207H	D63	D62	D61	D60	D59	D58	D57	D56
208H	D7_SEL	D6_SEL	D5_SEL	D4_SEL	D3_SEL	D2_SEL	D1_SEL	D0_SEL
209H	D15_SEL	D14_SEL	D13_SEL	D12_SEL	D11_SEL	D10_SEL	D9_SEL	D8_SEL
20AH	D23_SEL	D22_SEL	D21_SEL	D20_SEL	D19_SEL	D18_SEL	D17_SEL	D16_SEL
20BH	D31_SEL	D30_SEL	D29_SEL	D28_SEL	D27_SEL	D26_SEL	D25_SEL	D24_SEL
20CH	D39_SEL	D38_SEL	D37_SEL	D36_SEL	D35_SEL	D34_SEL	D33_SEL	D32_SEL
20DH	D47_SEL	D46_SEL	D45_SEL	D44_SEL	D43_SEL	D42_SEL	D41_SEL	D40_SEL
20EH	D55_SEL	D54_SEL	D53_SEL	D52_SEL	D51_SEL	D50_SEL	D49_SEL	D48_SEL
20FH	D63_SEL	D62_SEL	D61_SEL	D60_SEL	D59_SEL	D58_SEL	D57_SEL	D56_SEL

LED dot matrix drive mode table



# **15.4. LED Configure Process**



LED configure process



## **15.5. LED Related Register**

	SFR register						
Address	Name	RW	<b>Reset Value</b>	Function description			
0xAF	SCAN_START	RW	0x00	LED scan open register			
0XB0	DP_CON	RW	0x00	LED scan control register			
0XB1	SCAN_WIDTH	RW	0x00	LED scan on time 1 control register			
0xB2	LED2_WIDTH	RW	0x00	LED scan on time 2 control register			
0xB3	LED_DRIVE	RW	0x00	LED drive capability configuration register			
0xE6	IEN1	RW	0x00	Interrupt enable register 1			
0xF1	IRCON1	RW	0x00	Interrupt flag register 1			
0xF6	IPL1	RW	0x00	Interrupt priority register 1			

LED SFR register list

### 15.5.1. LED scan open register

SCAN_START	SCAN_START(AFH) LED scan open register							
Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	-	-	-	-
R/W	-	-	-	-	-	-	-	R/W
Reset value	-	-	-	-	-	-	-	0

#### SCAN_START(AFH) LED scan open register

Bit number	Bit symbol	Description
0		LED Scan On Register
		1: Start scanning;
		0: Disable scan

## 15.5.2. LED scan control register

DP_CON (B0H) LED scan control register

Bit number	7	6	5	4	3	2	1	0		
Symbol	-	-	_	DI	DUTY_SEL		DUTY_SEL		SCAN_MODE	COM_MOD
R/W	-	-	-		R/W		R/W	R/W		
Reset value	-	-	-	0	0	0	0	0		

Bit number	Bit symbol	Description
		LED port drive mode matrix selection configuration register.
4~2 DUTY	DUTY CEI	0: no matrix
	DUTY_SEL	1: 4x4 matrix (LED0~LED4)
		2: 5x5 matrix (LED0~LED5)



		3: 6x6 matrix (LED0~LED6)
		4: 6x7 matrix (LED0~LED7)
		5: 7x7 matrix (LED0~LED7)
		6: 7x8 matrix (LED0~LED7)
		7: 8x8 matrix (LED0~LED8)
		LED scan mode.
1	SCAN_MODE	1: cycle scan mode
		0: interrupt scan mode
		Large sink current ports drive enable.
		1: COM port function lock, work as a large current IO port.
		0: COM port function is not locked and can be configured as
0		other functions.
0	0 COM_MOD	When the COM port locks the large sink current IO port, by
		configuring GPIO registers output drive timing, it is vaild
		when all of the following LED scan configurations are
		invalid.

# 15.5.4. LED scan on time 1 control register

SCAN_WIDTH (B1)	H) LED scan on time	l control register

Bit number	7	6	5	4	3	2	1	0
Symbol	_							
R/W		R/W						
Reset value	0							

Bit number	Bit symbol	Description
7~0		LED dot matrix drive mode, corresponding to a signal led lighting time configuration register——on time 1 configuration period=(scan_width+1)*16us, support configuration range 0.016~4.096ms.

# 15.5.5. LED scan on time 2 control register

#### LED2_WIDTH (B2H) LED scan on time 2 control register

	(= ===) ==			0					
Bit number	7	6	5	4	3	2	1	0	
Symbol									
R/W		R/W							
Reset value		0							

Bit italieof Bit Symoor Description	Bit number	Bit symbol	Description
-------------------------------------	------------	------------	-------------



	LED dot matrix drive mode, corresponding to a signal le
7~0	lighting time configuration register—on time 2 configuration
/~0	 period=(led2_width+1)*16us, support configuration range
	0.016~4.096ms.

### 15.5.5. LED drive capability configuration register

LED2_DRIVE (B3H) LED drive capability configuration register

	· · ·	-		<u> </u>	U			
Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-			-	
R/W	-	-	-	-		R	/W	
Reset value	-	-	-	-	0	0	0	0

Bit number	Bit symbol	Description
7~4		Reserved
3~0		LED port drive capability configuration register 0~15— 3.77mA~69.14mA, please refer to LED drive ammeter for details.

## **15.5.7. Interrupt Related Registers**

### IEN1 (E6H) Interrupt enable register 1

Bit number	7	6	5	4	3	2	1	0
Symbol	EX7	EX6	EX5	EX4	EX3	EX2	-	-
R/W	R/W	R/W	R/W	R/W	R/W	R/W	-	-
Reset value	0	0	0	0	0	0	-	-

Bit number	Bit symbol	Description
6	EVC	LED interrupt enable
0	EX6	1: Interrupt enable; 0: Interrupt disable;

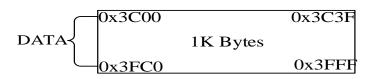
### IRCON1 (F1H) Interrupt flag register 1

Bit number	7	6	5	4	3	2	1	0
Symbol	IE7	IE6	IE5	IE4	IE3	IE2	-	-
R/W	R/W	R/W	R/W	R/W	R/W	R/W	-	-
Reset value	0	0	0	0	0	0	-	_

Bit number	Bit symbol	Description
	IE6	LED interrupt flag
6	IEO	1: With interrupt flag 0: No interrupt flag

IPL1 (F6H) Interrupt priority register 1






Bit number	7	6	5	4	3	2	1	0
Symbol	IPL1.7	IPL1.6	IPL1.5	IPL1.4	IPL1.3	IPL1.2	-	-
R/W	R/W	R/W	R/W	R/W	R/W	R/W	-	-
Reset value	0	0	0	0	0	0	_	_

Bit	number	Bit symbol	Description
	6	IPL1.6	LED priority 0: Low priority; 1: High priority

## **15. DATA**

When the secondary bus register EEP_SELECT = 0: the size of the DATA area is 1024 Bytes for one page, and the address is (0x3C00~0x3FFF). When using it, it needs to be page erased, and then the byte write operation can only be written after erasing. Enter once.



{SPROG_ADDR_H[1:0],SPROG_ADDR_L[7:0]} The logical address (0~1023) corresponds to the physical address (0x3C00~0x3FFF).

When the secondary bus register  $EEP_SELECT = 1$ : select NVR3/4, 512 Bytes is one page.

			0x4400	0x443F
	NVR3≺		512	Bytes
DATA≺			0x45C0	0x45FF
DAIA		ſ	0x4600	0x463F
	NVR4≺	)	512	Bytes
		l	0x47C0	0x47FF

When NVR3:SPROG_ADDR_H[0] = 0,

 $\{SPROG_ADDR_H[0], SPROG_ADDR_L[7:0]\}$  The logical address (0~511) corresponds to the physical address (0x4400~0x45FF).

When NVR4:SPROG_ADDR_H[0] = 1,

 $\{SPROG_ADDR_H[0], SPROG_ADDR_L[7:0]\}$  The logical address (0~511) corresponds to the physical address (0x4600~0x47FF).



### 15.1. Page Erase Step

EEP_SELECT = 0, select operation (0x3C00~0x3FFF), 1*1024 bytes.

EEP_SELECT = 1, select NVR3/NVR4, 2*512 bytes. For details, see the description of the register SPROG_ADDR_H.

- 1. SPROG_TIM[4:0] = 0~9(suggest 5ms), byte write time is fixed at 23.5us, The main() program function is only configured once.
- 2. Close interrupt;
- 3. Configuration SPROG_ADDR_L = 0x00;
- 4. Configuration SPROG_ADDR_H = 0x00; select to erase the page;
- 5. Configuration SPROG_CMD = 0x96;
- 6. Write 4 NOP instructions;

7. Start erasing, the CPU turns off the clock fsys, and then turns on the clock fsys after completion;

8. Need to continue to erase data, jump to step 3;

9. Configuration SPROG_ADDR_L=0x00, SPROG_ADDR_H=0x00, restore interrupt settings.

### 15.2. Byte Write Step

EEP_SELECT = 0, select operation (0x3C00~0x3FFF), 1*1024 bytes.

EEP_SELECT = 1, select operation NVR3/NVR4, 2*512 bytes.

1. SPROG_TIM[4:0] =  $0 \sim 9$ (suggest 5ms), byte write time is fixed at 23.5us, The main() program function is only configured once.

- 2. Close interrupt;
- 3. Configuration SPROG_ADDR_H, SPROG_ADDR_L, byte write address;
- 4. Configuration SPROG_DATA;
- 5. Configuration SPROG_CMD = 0x69;
- 6. Write 4 NOP instructions;

7. Start writing, the CPU turns off the clock  $f_{SYS}$ , and then turns on the clock  $f_{SYS}$  after completion;

8. Need to continue to write data, jump to step 3;

9. Configuration SPROG_ADDR_L=0x00, SPROG_ADDR_H=0x00, restore interrupt settings.

Note: It is strongly not recommended that the DATA area address (0x3C00~0x3FFF) be stored as the user CODE.



# **15.3. Registers**

	SFR register										
Address	Name	RW	Reset value	Function description							
0xF9	SPROG_ADDR_H	RW	0x00	Address control register							
0xFA	SPROG_ADDR_L	RW	0x00	Address control register							
0xFB	SPROG_DATA	RW	0x00	Data register							
0xFC	SPROG_CMD	RW	0x00	Command register							
0xFD	SPROG_TIM	RW	0x5A	Erase time control register							

	Secondary bus register								
Address	AddressNameRWReset valueFunction description								
0x20	EEP_SELECT	RW	0x00	DATA area selection register					

# 15.4. Register Detailed Description

SPROG_ADDR_H (F9H)	Address Control Register
--------------------	--------------------------

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	-	-		
R/W	-	-	-	-	-	R/W		
Reset value	-	_	-	_	-	0	0	0

Bit number	Bit symbol	Description
		When $EEP_SELECT = 0$ ,
		Bit[2]: DATA area selection enable,
		0: Select 0x3C00~0x3FFF; 1: Reserved.
		{SPROG_ADDR_H[1:0], SPROG_ADDR_L[7:0]} means
		0x3C00~0x3FFF address
2~0		When $EEP_SELECT = 1$ ,
		Bit[2] = 0, select NVR3 (512Bytes);
		Bit[2] = 1, select NVR4 (512Bytes)
		{SPROG_ADDR_H[0], SPROG_ADDR_L[7:0]} represents
		the byte address within the page
		Bit[1]: reserved;



#### SPROG_ADDR_L(FAH)Address register, lower 8 bits

Bit number	7	6	5	4	3	2	1	0	
Symbol		-							
R/W				R/	W				
Reset value				(	)				

Bit number	Bit sym	Bit symbol Description						
7~0		Lo	Lower 8 bits of address					
SPROG_DATA	DG_DATA(FBH) Data register							
Bit number	7	7 6 5 4 3 2 1 0						
Symbol					_			
R/W		R/W						
Reset value		0						

Bit number	Bit symbol Description								
7~0			Data to be written						
SPROG_CMD()	FCH) Com	CH) Command register							
Bit number	7	7 6 5 4 3 2 1 0							
Symbol					-				
R/W		R/W							
Reset value		0							

Bit number	Bit symbol	Description
7~0		Write 0x96: page erase; Write 0x69: byte burning.

### SPROG_TIM(FDH) Erase time control register

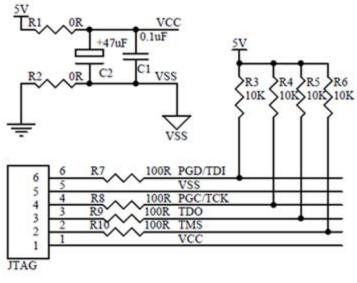
Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	-	-	-	-
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset value	0	1	0	1	1	0	1	0

Bit number	Bit symbol	Description
7~5		Byte write time is fixed at 23.5us
		When EEP_SELECT=0,
		bit[4:0]: 0~9 corresponds to the erasing time (1~10ms) +
1.0		0.13ms (step 1ms), >9 is 10.13ms.
4~0	SPROG_TIM[4:0]	When EEP_SELECT=1,
		bit[4:0]: 0~9 corresponds to erasing time (0.5~5ms) +
		0.065ms (step 0.5ms), and when >9, it is 5.065ms.

EEP_SELECT(20H)DATA area selection register



Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	-	-	-	-
R/W	-	-	-	-	-	-	-	R/W
Reset value	-	-	_	-	-	-	-	0


Bit number	Bit symbol	Description
7~1		Reserved
0		1: Select NVR3/4 as DATA area NVR3, 1 page, 512 Bytes; NVR4, 1 page, 512 Bytes 0: Select DATA area (0x3C00~0x3FFF), 1 page, 1024 Bytes

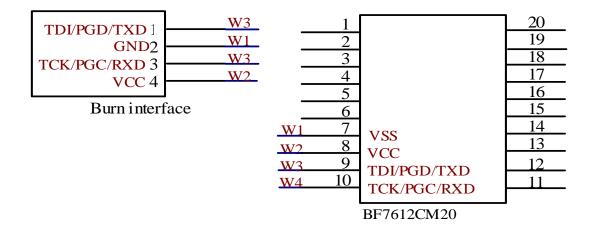


# **17. Burning and Debugging**

### **17.1. JTAG Circuit Connection**

When debugging, you need to connect the TDI(PGD), TCK(PGC), TMS, TDO, VCC, VSS. In JTAG debug mode, the function of the JTAG port is blocked. It is not recommended to operate other functions that configure the JTAG debug I/O port to avoid affecting the JTAG debug function. Only four lines of TDI(PGD), TCK(PGC), VCC and VSS are connected during programming.




JTAG circuit connection



### 17.2. TouchKey TouchKey Programming

Connect the chip TDI(PGD), TCK(PGC), VCC, VSS four lines. When entering the programming interface, select the chip of the corresponding model. Open the compiled HEX file, click on a built-in flash to wait for burning.

When entering the debugging interface, first burn the HEX file with the debug data transmission mode, click to open the debug to view the touch key data. For example:



Note: refer to the TK programming guide for specific operation instructions.



### **18. CPU Instruction System**

### **18.1. Instruction Code**

The BF7612CMXX instructions are divided into signal-byte instructions, double-byte instructions and three-byte instructions.

Signal-byte instructions: A signal-byte instruction consists of 8 bit binary code. There are only instruction opcodes in the instruction, no instruction operand or instruction operand is implied in the instruction opcode. There are 49 such instructions.

Double-byte instructions: Consists of two bytes, one for opcode and the other for the operand (or operand address), stored in order in program memory. There are 46 such instructions.

Three-byte instructions: Consists of one byte of instruction opcode and two bytes of operands (or operand address). There are 16 such instructions.



### **18.2. Instruction Set**

In order to describe the instructions conveniently, some symbols are used in the instructions. The meanings of these symbols are as follows:

Addr 11	Low 11 bit address
addr 16	16 bit address
direct	Direct addressing, 8 bit internal data and address(including SFR)
bit	Bit address
#data	8 bit immediate
#data16	16 bit immediate
rel	Signed 8 bit relative displacement
n	Number 0~7
Rn	R0~R7 working register of the current register bank
i	Number 0, 1
Ri	working register R0, R1
@	Register indirect addressing
←	Data transfer direction
$\land$	Logic 'and'
$\vee$	Logic 'or'
$\oplus$	Logic 'xor'
	Have an effect on the flag
×	No effect on the flag

#### CPU instruction symbol table

Provides the assembly instructions used, the function of each instruction, the number of bytes occupied, the execution cycle of the instruction, and the effect on the corresponding flags:

8 bit data transfer instruction								
Mnemonic		Function	In	npact o	n the	flag	Number	Number
Minemo	onic	Function	Р	OV	AC	CY	of bytes	of cycles
	Rn	A←(Rn)	$\checkmark$	×	×	×	1	1
MOV A	direct	A←(direct)	$\checkmark$	×	×	×	2	1
MOVA	@Ri	A←((Ri))		×	×	×	1	1
	#data	A←data	$\checkmark$	×	×	×	2	1
	А	Rn←(A)	×	×	×	×	1	1
MOV Rn	direct	Rn←(direct)	×	×	×	×	2	2
	#data	Rn←data	×	×	×	×	2	1
	А	direct1←(A)	×	×	×	×	2	1
MOV direct1	Rn	direct1←(Rn)	×	×	×	×	2	1
	direct2	direct1←(direct2)	×	×	×	×	3	2
MOV direct	@Ri	direct←((Ri))	×	×	×	×	2	2



1	#data	direct←data	×	×	×	×	3	1
	А	(Ri)←(A)	×	×	×	×	1	1
MOV @Ri	direct	(Ri)←(direct)	×	×	×	×	2	2
	#data	(Ri)←data	×	×	×	×	2	1
16 bit data tra			1		I	<u> </u>		
			Im	pact on	the fla	ıg		Number
Mnemonic		Function	D			CV	Number	of
			Р	OV	AC	CY	of bytes	cycles
MOV DPTR,	#data16	DPTR←data16		×	×	×	3	1
External data	transfer and t	able lookup instruction	S					
Mnemonic		Function	Im	pact on	the fla	ıg	Number	Number
Milemonic		Function	Р	OV	AC	CY	of bytes	of cycles
MOVX @D	OPTR,A	(DPTR)←(A)	×	×	×	×	1	1
MOVC A,	@A+DPT R	A←((A)+(DPTR))		×	×	×	1	1
	@A+PC	A←((A)+(PC))		×	×	×	1	1
MOVX A,	@DPTR	A←(DPTR)		×	×	×	1	1
Notes: The nu	umber of cycl	es and the number of by	tes o	of the M	10VX	instru	uction can b	e
configured the	rough register	rs CKCON<2:0>.						
Exchange clas	ss instruction							
		Function	Impact on the flag				Number	Number
Mnemonic								of
			D	OV	٨C	$\mathbf{C}\mathbf{V}$	of bytes	01
			Р	OV	AC	CY	of bytes	cycles
	Rn	(Rn)←(A)	P √	OV ×	AC ×	CY ×	of bytes 1	
XCH A,	Rn direct	(Rn)←(A) (A)←(direct)					,	cycles
XCH A,			  $\times$	×	×	×	1	cycles 1
XCH A, XCHD A,@R	direct @Ri	(A)←(direct)	$$ $$ $\times$ $$	×××	×××	×××	1 2	cycles 1 2
	direct @Ri	$(A) \leftarrow (direct)$ $(A) \leftarrow ((Ri))$	  $\times$	× × ×	× × ×	× × ×	1 2 1	cycles           1           2           2           2
XCHD A,@R	direct @Ri Ri	(A)←(direct) (A)←((Ri)) (A)3~0~((Ri))3~0 (A)7-4~(A)3-0	$$ $$ $\times$ $$	× × × ×	× × × ×	× × × ×	1 2 1 1	cycles           1           2           2           2           2
XCHD A,@R SWAP A Arithmetic op	direct @Ri Ri	$(A) \leftarrow (direct)$ $(A) \leftarrow ((Ri))$ $(A) 3 \sim 0 \sim ((Ri)) 3 \sim 0$ $(A) 7 - 4 \sim (A) 3 - 0$ ection	$$ $$ $$ Imp	× × × × ×	× × × × ×	× × × × ×	1 2 1 1 1 1 1 Number	cycles 1 2 2 2 1 1 Number
XCHD A,@R SWAP A	direct @Ri Ci Deration instru	$(A) \leftarrow (direct) (A) \leftarrow ((Ri)) (A) 3~0~((Ri)) 3~0 (A) 7-4~(A) 3-0 ction Function$	$\frac{}{}$ $\frac{}{}$ Imp	× × × × × × or on	× × × × × the fla	× × × × × × ×	1 2 1 1 1 1	cycles       1       2       2       2       1
XCHD A,@R SWAP A Arithmetic op	direct @Ri &i beration instru Rn	$(A) \leftarrow (direct)$ $(A) \leftarrow ((Ri))$ $(A)3 \sim 0 \sim ((Ri))3 \sim 0$ $(A)7-4 \sim (A)3-0$ ction         Function $A \leftarrow (A) + (Rn)$	$\frac{}{}$ $\frac{}{}$ Imp	× × × × × × or $\mathbf{OV}$	$\begin{array}{c} \times \\ \times \\ \times \\ \times \\ \times \\ \end{array}$ the fla AC $$	$\begin{array}{c} \times \\ \times \\ \times \\ \times \\ \times \\ \end{array}$	1 2 1 1 1 1 1 1 Number of bytes 1	cycles 1 2 2 2 1 1 Number of cycles 1
XCHD A,@R SWAP A Arithmetic op Mnemonic	direct @Ri ti Deration instru Rn direct	$(A) \leftarrow (direct)$ $(A) \leftarrow ((Ri))$ $(A) 3 \sim 0 \sim ((Ri)) 3 \sim 0$ $(A) 7 - 4 \sim (A) 3 - 0$ ctionFunction $A \leftarrow (A) + (Rn)$ $A \leftarrow (A) + (direct)$	$  \frac{}{} $ $  \frac{}{} $ $  \frac{Imj}{P} $ $ $ $ $	$\begin{array}{c} \times \\ \times \\ \times \\ \times \\ \times \\ \times \\ \end{array}$	$\begin{array}{c} \times \\ \times \\ \times \\ \times \\ \times \\ \end{array}$ the flate of t	$\begin{array}{c} \times \\ \times \\ \times \\ \times \\ \times \\ \end{array}$	1 2 1 1 1 1 Number of bytes	cycles 1 2 2 2 1 1 Number of cycles 1 2
XCHD A,@R SWAP A Arithmetic op	direct @Ri &i beration instru Rn	$(A) \leftarrow (direct)$ $(A) \leftarrow ((Ri))$ $(A)3 \sim 0 \sim ((Ri))3 \sim 0$ $(A)7-4 \sim (A)3-0$ ction         Function $A \leftarrow (A) + (Rn)$	$  \frac{}{} $	$\begin{array}{c} \times \\ \times \\ \times \\ \times \\ \times \\ \times \\ \end{array}$	$\begin{array}{c} \times \\ \times \\ \times \\ \times \\ \times \\ \end{array}$ the fla $\begin{array}{c} AC \\  \\  \\  \\  \\  \end{array}$	$\begin{array}{c} \times \\ \times \\ \times \\ \times \\ \times \\ \end{array}$	1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 1 1	cycles 1 2 2 2 1 1 Number of cycles 1
XCHD A,@R SWAP A Arithmetic op Mnemonic	direct @Ri ti Deration instru Rn direct	$(A) \leftarrow (direct)$ $(A) \leftarrow ((Ri))$ $(A) 3 \sim 0 \sim ((Ri)) 3 \sim 0$ $(A) 7 - 4 \sim (A) 3 - 0$ ctionFunction $A \leftarrow (A) + (Rn)$ $A \leftarrow (A) + (direct)$ $A \leftarrow (A) + ((Ri))$ $A \leftarrow (A) + ((Ri))$ $A \leftarrow (A) + (data)$	$ \begin{array}{c}  \\  \\  \\  \\  \\  \\ \hline \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\ $	$\begin{array}{c} \times \\ \times \\ \times \\ \times \\ \times \\ \times \\ \end{array}$	$\begin{array}{c} \times \\ \times \\ \times \\ \times \\ \times \\ \end{array}$ $\begin{array}{c} \times \\ \times \\ \end{array}$	$\begin{array}{c} \times \\ \times \\ \times \\ \times \\ \times \\ \end{array}$	1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2	cycles 1 2 2 2 1 1 Number of cycles 1 2
XCHD A,@R SWAP A Arithmetic op Mnemonic	direct @Ri ti eration instru Rn direct @Ri	$(A) \leftarrow (direct)$ $(A) \leftarrow ((Ri))$ $(A)3 \sim 0 \sim ((Ri))3 \sim 0$ $(A)7 - 4 \sim (A)3 - 0$ ction         Function $A \leftarrow (A) + (Rn)$ $A \leftarrow (A) + (direct)$ $A \leftarrow (A) + ((Ri))$	$  \frac{}{} $	$\begin{array}{c} \times \\ \times \\ \times \\ \times \\ \times \\ \times \\ \end{array}$	$\begin{array}{c} \times \\ \times \\ \times \\ \times \\ \times \\ \end{array}$ the fla $\begin{array}{c} AC \\  \\  \\  \\  \\  \end{array}$	$\begin{array}{c} \times \\ \times \\ \times \\ \times \\ \times \\ \end{array}$	1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 1 1	cycles         1         2         2         2         1         Vumber         of cycles         1         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2
XCHD A,@R SWAP A Arithmetic op Mnemonic	direct @Ri ti eration instru Rn direct @Ri #data	$(A) \leftarrow (direct)$ $(A) \leftarrow ((Ri))$ $(A) 3 \sim 0 \sim ((Ri)) 3 \sim 0$ $(A) 7 - 4 \sim (A) 3 - 0$ ctionFunction $A \leftarrow (A) + (Rn)$ $A \leftarrow (A) + (direct)$ $A \leftarrow (A) + ((Ri))$ $A \leftarrow (A) + ((Ri))$ $A \leftarrow (A) + (data)$	$ \begin{array}{c}  \\  \\  \\  \\  \\  \\ \hline \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\ $	$\begin{array}{c} \times \\ \times \\ \times \\ \times \\ \times \\ \times \\ \end{array}$	$\begin{array}{c} \times \\ \times \\ \times \\ \times \\ \times \\ \end{array}$ $\begin{array}{c} \times \\ \times \\ \end{array}$	$\begin{array}{c} \times \\ \times \\ \times \\ \times \\ \times \\ \end{array}$	1 2 1 1 1 1 1 1 1 1 1 1 0 f bytes 1 2 1 2	cycles         1         2         2         2         1         Vumber         of cycles         1         2         2         1         2         2         1         2         1         2         1         2         1         2         1         1         2         1
XCHD A,@R SWAP A Arithmetic op Mnemonic ADD A,	direct @Ri eration instru Rn direct @Ri #data Rn	$(A) \leftarrow (direct)$ $(A) \leftarrow ((Ri))$ $(A) 3 \sim 0 \sim ((Ri)) 3 \sim 0$ $(A) 7 \sim (A) 3 \sim 0$ $(A) 7 \sim (A) 3 \sim 0$ ctionFunction $A \leftarrow (A) + (Rn)$ $A \leftarrow (A) + (direct)$ $A \leftarrow (A) + ((Ri))$ $A \leftarrow (A) + ((Ri))$ $A \leftarrow (A) + (Rn) + (C)$ $A \leftarrow (A) + (direct)$	$ \begin{array}{c}  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  $	$\begin{array}{c} \times \\ \times \\ \times \\ \times \\ \times \\ \times \\ \end{array}$	$\begin{array}{c} \times \\ \times \\ \times \\ \times \\ \times \\ \end{array}$ $\begin{array}{c} \times \\ \end{array}$ $\begin{array}{c} \times \\ \times \\$ $\end{array}$ $\end{array}$ $\begin{array}{c} \times \\$ $\end{array}$ $\end{array}$ $\begin{array}{c} \times \\$ $\end{array}$ $\end{array}$ $\end{array}$ $\end{array}$ $\end{array}$ $\end{array}$ \\ $\end{array}$ $\end{array}$ $\end{array}$ $\end{array}$ $\end{array}$ $\end{array}$ $\end{array}$ $\end{array}$ \\ $\end{array}$ \\ $\end{array}$ \\  \\  \\ \\  \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	$\begin{array}{c} \times \\ \times \\ \times \\ \times \\ \times \\ \end{array}$	1 2 1 1 1 1 1 1 1 1 1 1 0 0 bytes 1 2 1 2 1 2 1	cycles         1         2         2         1         2         1         Number         of cycles         1         2         1         2         1         1         1         1         1



	А	A←(A)+1		×	×	×	1	1
1	Rn	$Rn \leftarrow (Rn)+1$	×	×	×	×	1	1
	direct	direct $\leftarrow$ (direct)+1	×	×	×	×	2	2
INC	@Ri	(Ri)←((Ri))+1	×	×	×	×	1	2
	DPTR	$\frac{(1d)^{-1}}{\text{DPTR}} \leftarrow ((\text{DPTR}))^{+}$	×	×	×	×	1	1
DA A		BCD code adjustment		×	$\checkmark$	$\checkmark$	1	1
	Rn	A←(A)-(Rn)-(C)	$\checkmark$	×	×	×	1	1
	direct	A←(A)-(direct)-(C)	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	2	2
SUBB A	@Ri	(A)←(A)-((Ri))-(C)	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	1	2
	#data	A←(A)-data-(C)	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	2	1
	А	A←(A)-1	$\checkmark$	×	×	×	1	1
DEC	Rn	Rn←(Rn)-1	×	×	×	×	1	1
DEC	direct	direct←(direct)-1	×	×	×	×	2	2
	@Ri	(Ri)←((Ri))-1	×	×	×	×	1	2
MUL AB		BA←(A)*(B) after performing the multiplication operation, the lower byte is stored in A and the high byte is stored in B.	$\checkmark$	$\checkmark$	×	0	1	1
DIV AB		A←(A)/(B) B←remainder	$\checkmark$	$\checkmark$	×	0	1	1
accumulator A are greater that	A are greater an 9 or CY=1	iction is used, the adjus than 9 or AC=1. then A . then A←A+60H.						
Logical opera	tion instruction	on	T		41		Name	Namban
Mnemonic		Function	Imj P	pact on OV	AC	ig CY	Number of bytes	Number of cycles
CLR A		А←00Н	r √	×	X	×	1	1
CPL A		$A \leftarrow (\overline{A})$		×	×	×	1	1
	Rn	$A \leftarrow (A) \land (Rn)$		×	×	×	1	1
	direct	$A \leftarrow (A) \land (direct)$		×	×	×	2	2
	uncer			^	^			
ANL A,	@Ri	$A \leftarrow (A) \land ((Ri))$		×	×	X	1	2
ANL A,	@Ri #data	$A \leftarrow (A) \land ((Ri))$ $A \leftarrow (A) \land data$		×	×	×	1 2	2
ANL A,	@Ri #data A	$A \leftarrow (A) \land ((Ri))$ $A \leftarrow (A) \land data$ direct \leftarrow (A) \land(direct)	$\sqrt{\sqrt{1}}$	× × ×	× × ×	× × ×	1 2 2	2 1 2



		data						
	Rn	$A \leftarrow (A) \lor (Rn)$		×	×	×	1	1
0.7.7	direct	$A \leftarrow (A) \lor (direct)$		×	×	×	2	2
ORL A,	@Ri	$A \leftarrow (A) \lor ((Ri))$	$\checkmark$	×	×	×	1	2
	#data	$A \leftarrow (A) \lor data$	$\checkmark$	×	×	×	2	1
ODL d'are et	А	direct (direct) (A)	×	×	×	×	2	2
ORL direct,	#data	direct←(direct)∨ data	×	×	×	×	3	2
	Rn	$A \leftarrow (A) \oplus (Rn)$	$\checkmark$	×	×	×	1	1
	direct	$A \leftarrow (A) \oplus (direct)$	$\checkmark$	×	×	×	2	2
XRL A,	@Ri	$A \leftarrow (A) \oplus ((Ri))$	$\checkmark$	×	×	×	1	2
	#data	$A \leftarrow (A) \oplus data$	$\checkmark$	×	×	×	2	1
VDL 1	А	direct←(direct)⊕ (A)	×	×	×	×	2	2
XRL direct,	#data	direct←(direct)⊕ data	×	×	×	×	3	2
Loop, shift cl	ass instructio	n	<u> </u>		1			
			Im	Impact on the flag			Number	Number
Mnemonic		Function	Р	OV	AC	CY	of bytes	of cycles
RL A		The content in A is rotated left by one bit.	×	×	×	×	1	1
RLC A		A content with carry left shift one bit.		×	×	$\checkmark$	1	1
RR A		The content in A is rotated right by one bit.	×	×	×	×	1	1
RRC A		A content with carry right shift one bit.		×	×	$\checkmark$	1	1
Call, return cl	ass instruction	on					-	-
Mnemonic		Function	Im	pact on	the fla	ng	Number	Number
whemonic		FUNCTION	Р	OV	AC	CY	of bytes	of cycles
LCALL addr	16	(PC)←(PC)+3. (SP)←(PC), (PC)←addr16	×	×	×	×	3	2
ACALL addr	11	$(PC) \leftarrow (PC)+2.$ $(SP) \leftarrow (PC),$ $(PC10 \sim 0) \leftarrow addr11$	×	×	×	×	2	2
RET								



BF7612CMXX-1

RETI		(PC)←((SP)) return from interrupt	×	×	×	×	1	2
Transfer	class instruction	nom menupt						
			Im	nact on	the fl		Number	Number
Mnemor	nic	function	Impact on the flagPOVACCY		CY	of bytes	of cycles	
LJMP	addr16	PC←addr15~0	×	×	×	×	3	1
AJMP	addr11	PC10~0←addr10~0	×	×	×	×	2	1
SJMP	rel	PC←(PC)+rel	×	×	×	×	2	1
JMP	@A+DPTR	$PC \leftarrow (A) + (DPTR)$	×	×	×	×	1	1
		PC←(PC)+2.						
JZ	rel	If (A)=0,	×	×	×	×	2	2
		$PC \leftarrow (PC) + rel$						
		PC←(PC)+2.						
JNZ	rel	If (A)≠0,	×	×	×	×	2	2
		PC←(PC)+rel						
		PC←(PC)+2.						
JC	rel	If (CY)=1.	×	×	×	×	2	2
		PC←(PC)+rel						
		PC←(PC)+2.						
DIG	1	If						
JNC	rel	$(CY)=0,PC\leftarrow(PC)+r$	×	×	×	×	2	2
		el						
		PC←(PC)+3.						
JB	bit,rel	If (bit)=1.	×	×	×	×	3	2
		PC←(PC)+rel						
		PC←(PC)+3.						
IND	bit,rel	If	X	X	~	Ň	3	2
JNB	bit,rei	(bit)=0,PC $\leftarrow$ (PC)+r	×	×	×	×	3	2
		el						
		PC←(PC)+3.						
JBCbit,1	rel	If (bit)=1. bit←0,	×	×	×	×	3	2
		PC←(PC)+rel						
		PC←(PC)+3.						
		If (A) ≠direct						
	A, direct, rel	PC(PC)+rel	×	×	×	×	3	2
CJNE		If (A)<(direct),						
CINE		CY←1						
		PC←(PC)+3.						
	A,#data,rel	If (A) ≠data	×	×	×	×	3	2
		PC(PC)+rel						



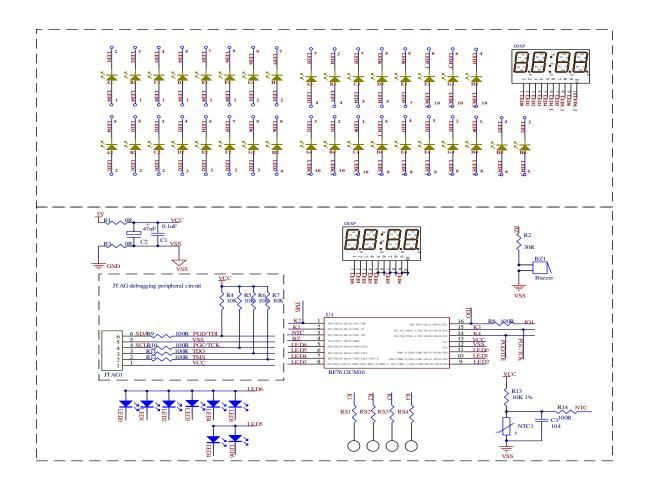
		If (A)<(data),						
		CY←1						
		PC←(PC)+3.						
		If (Rn) ≠data						
	Rn,#data,rel	PC←(PC)+rel	×	×	×	×	3	1
		If (Rn)<(data),						
		CY←1						
		PC←(PC)+3.						
		If ((Ri)) ≠data						
	@Ri,#data,rel	PC←(PC)+rel	×	×	×	×	3	2
		If ((Ri))<(data),						
		CY←1			-			
		PC←(PC)+2.						
	Rn,rel	Rn←(Rn)-1.	×	×	×	×	2	1
		If (Rn) ≠0,	~				2	1
DJNZ		PC←(PC)+rel						
DUIL		PC←(PC)+3.						
	direct,rel	(direct)←(direct)-1.	×	×	×	×	3	2
	uncet,iei	If (direct) $\neq 0$ ,				^	C	2
		PC←(PC)+rel						
Stack en	npty operation cla	es instruction						
Stuck, en	inpry operation cia		1				1	
Mnemon				pact on	1	T T	Number	Number
		Function	Im P	pact on OV	the fla	ag CY	Number of bytes	Number of cycles
Mnemon		Function SP←(SP)+1.(SP)←(			1	T T		
Mnemon	ic	Function SP←(SP)+1.(SP)←( direct)	Р	OV	AC	CY	of bytes	of cycles
Mnemon PUSH	lic direct	Function $SP \leftarrow (SP)+1.(SP) \leftarrow ($ direct)direct \leftarrow (SP), SP \leftarrow (S)	Р	OV	AC	CY	of bytes 2	of cycles 2
Mnemon PUSH POP	ic	Function $SP \leftarrow (SP)+1.(SP) \leftarrow ($ direct)direct \leftarrow (SP), SP \leftarrow (SP)-1	P           ×           ×	OV × ×	AC           ×           ×	CY × ×	of bytes 2 2	of cycles22
Mnemon PUSH POP NOP	ic direct direct	Function         SP←(SP)+1.(SP)←(         direct)         direct←(SP),SP←(S         P)-1         empty operation	Р ×	OV ×	AC ×	CY ×	of bytes 2	of cycles 2
Mnemon PUSH POP NOP	lic direct	Function         SP←(SP)+1.(SP)←(         direct)         direct←(SP),SP←(S         P)-1         empty operation	P           ×           ×           ×	OV           ×           ×           ×	AC × × ×	CY           ×           ×           ×	of bytes 2 2 1	of cycles 2 2 1
Mnemon PUSH POP NOP Bit manij	ic direct direct	Function         SP←(SP)+1.(SP)←(         direct)         direct←(SP),SP←(S         P)-1         empty operation	P × × ×	OV × × ×	AC × × × the fla	CY × × ×	of bytes 2 2 1 Number	of cycles 2 2 1 Number
Mnemon PUSH POP NOP Bit manij	ic direct direct pulation instructio	Function         SP←(SP)+1.(SP)←(         direct)         direct←(SP),SP←(S         P)-1         empty operation         on         Function	P × × × Imp	OV × × × × v	AC × × × × the fla	CY × × × ×	of bytes 2 2 1 Number of bytes	of cycles 2 2 1 1 Number of cycles
Mnemon PUSH POP NOP Bit manij	ic direct direct pulation instructio Anemonic C,bit	Function $SP \leftarrow (SP)+1.(SP) \leftarrow ($ direct)direct)direct \leftarrow (SP), SP \leftarrow (SP	P × × × Imp P ×	OV × × × × vacuum	AC × × × × the fla AC ×	CY × × × × ×	of bytes 2 2 1 Number of bytes 2	of cycles 2 2 1 1 Number of cycles 2
Mnemon PUSH POP NOP Bit manij	ic direct direct pulation instructio Anemonic C,bit bit,C	Function         SP←(SP)+1.(SP)←(         direct)         direct←(SP),SP←(S         P)-1         empty operation         on         Function         CY←bit         bit←CY	P × × × Imp P ×	OV × × × × v pact on OV × × ×	AC × × × the fla AC × × ×	$\begin{array}{c} CY \\ \times \\ \times \\ \times \\ \end{array}$	of bytes 2 2 1 Number of bytes 2 2 2	of cycles 2 2 1 1 Number of cycles 2 2 2
Mnemon PUSH POP NOP Bit manij	ic direct direct pulation instruction Anemonic C,bit bit,C C	FunctionSP $\leftarrow$ (SP)+1.(SP) $\leftarrow$ ( direct)direct $\leftarrow$ (SP), SP $\leftarrow$ (S P)-1empty operationonFunctionCY $\leftarrow$ bitbit $\leftarrow$ CYCY $\leftarrow$ 0	P × × × × × ×	OV       ×       ×       ×       ×       ×       ×       OV       ×       ×       ×       ×	AC × × × × the fla AC × × × × ×	$\begin{array}{c} CY \\ \times \\ \times \\ \times \\ \end{array}$	of bytes 2 2 1 1 Number of bytes 2 2 1	of cycles 2 2 2 1 1 Number of cycles 2 2 2 1
Mnemon PUSH POP Bit manij MOV	ic direct direct pulation instruction Anemonic C,bit bit,C C bit	Function $SP \leftarrow (SP)+1.(SP) \leftarrow ($ direct)direct)direct \leftarrow (SP), SP \leftarrow (SP	P × × × × Imp P × × ×	OV       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×	AC × × × × × × × × × × × × × × × × × ×	$\begin{array}{c} CY \\ \times \\ \times \\ \times \\ \end{array}$	of bytes 2 2 1 1 Number of bytes 2 2 2 1 2 1 2	of cycles 2 2 1 1 Number of cycles 2 2 2 1 2 1 2
Mnemon PUSH POP Bit manij MOV	ic direct direct pulation instruction Anemonic C,bit bit,C C bit C	Function $SP \leftarrow (SP)+1.(SP) \leftarrow ($ direct)direct \leftarrow (SP), SP \leftarrow (SP)	P × × × Imp P × × × ×	OV       ×       ×       ×       ×       ov       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×	AC × × × × the fla AC × × × × × × ×	$\begin{array}{c} \mathbf{CY} \\ \times \\ \times \\ \times \\ \mathbf{X} \\ \mathbf{X} \\ \mathbf{X} \\ \mathbf{V} \\ \mathbf{V} \\ \mathbf{X} \\ \mathbf{V} \\ V$	of bytes 2 2 1 1 Number of bytes 2 2 2 1 2 1 2 1	of cycles 2 2 1 1 Number of cycles 2 2 2 1 2 1 2 1
Mnemon PUSH POP NOP Bit manij MOV CLR	ic direct direct pulation instruction Anemonic C,bit bit,C C bit C bit C bit	FunctionSP $\leftarrow$ (SP)+1.(SP) $\leftarrow$ ( direct)direct $\leftarrow$ (SP), SP $\leftarrow$ (S P)-1empty operationonFunctionONCY $\leftarrow$ bitbit $\leftarrow$ CYCY $\leftarrow$ 0bit $\leftarrow$ 0CY $\leftarrow$ 1bit $\leftarrow$ 1	P × X X X X X X X X X X X X X X X X X X	OV       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×	AC × × × × × × × × × × × × × × × ×	$\begin{array}{c} \mathbf{CY} \\ \times \\ \times \\ \times \\ \mathbf{X} \\ X$	of bytes 2 2 1 1 Number of bytes 2 2 2 1 2 1 2 1 2 1 2	of cycles 2 2 1 1 Vumber of cycles 2 2 2 1 2 1 2 1 2 1 2
Mnemon PUSH POP NOP Bit manij MOV CLR	ic direct direct pulation instruction Anemonic C,bit bit,C C bit C bit C bit C	FunctionSP $\leftarrow$ (SP)+1.(SP) $\leftarrow$ ( direct)direct $\leftarrow$ (SP), SP $\leftarrow$ (S P)-1empty operationonFunctionOnCY $\leftarrow$ bitbit $\leftarrow$ CYCY $\leftarrow$ 0bit $\leftarrow$ 0CY $\leftarrow$ 1bit $\leftarrow$ 1CY $\leftarrow$ (CY)	P × × Im P × × × × × ×	OV       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×	AC × × × × × × × × × × × × × × × ×	$\begin{array}{c} \mathbf{CY} \\ \times \\ \times \\ \mathbf{X} \\ \mathbf{X} \\ \mathbf{X} \\ \mathbf{X} \\ \mathbf{V} \\ \mathbf{X} \\ \mathbf{V} \\ \mathbf{X} \\ \mathbf{V} \\ \mathbf{X} \\ \mathbf{V} \\ \mathbf{V} \\ \mathbf{X} \\ \mathbf{V} \\ $	of bytes         2         2         1         Number         of bytes         2         2         1         2         1         2         1         2         1         2         1         2         1         2         1         2         1         2         1	of cycles         2         2         1         Vumber         of cycles         2         2         1         2         1         2         1         2         1         2         1         2         1         2         1         2         1         2         1
Mnemon PUSH POP NOP Bit manij MOV CLR SETB	ic direct direct pulation instruction Anemonic C,bit bit,C C bit C bit C bit	FunctionSP $\leftarrow$ (SP)+1.(SP) $\leftarrow$ ( direct)direct $\leftarrow$ (SP), SP $\leftarrow$ (S P)-1empty operationonFunctionONCY $\leftarrow$ bitbit $\leftarrow$ CYCY $\leftarrow$ 0bit $\leftarrow$ 0CY $\leftarrow$ 1bit $\leftarrow$ 1	P × X X X X X X X X X X X X X X X X X X	OV       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×	AC × × × × × × × × × × × × × × × ×	$\begin{array}{c} \mathbf{CY} \\ \times \\ \times \\ \times \\ \mathbf{X} \\ X$	of bytes 2 2 1 1 Number of bytes 2 2 2 1 2 1 2 1 2 1 2	of cycles 2 2 1 1 Vumber of cycles 2 2 2 1 2 1 2 1 2 1 2



	C ,/bit	$C \leftarrow (C) \land (\overline{bit})$	×	×	×	$\checkmark$	2	2	
ODI	C,bit	$C \leftarrow (C) \lor (bit)$	×	×	×	$\checkmark$	2	2	
ORL	C,/bit	$C \leftarrow (C) \lor (\overline{bit})$	×	×	×	$\checkmark$	2	2	
Pseudo-instruction									
Mnemonic	Mnemonic	2	Mn	emonio	c				
ORG	【tab:】 O	ORG addr16	Det	fine the	e first a	addres	s of tab		
EQU	tab EQU d	lata/tab	Assign values to labels						
DB	[tob.]	DB item or item tabel	The byte content used to define a cell or						
		DB item of item tabel	batch of cells of memory						
DW	[tob.]	DW item or item tabel	16 bit word content used to define two or						
DW			more cells in memory						
DS	[tob.] D	S expression	Specifies to leave several memory cells						
03		5 expression	starting with the label						
BIT	tab BIT ad	ldress	Assign a bit address to a label						
END	END is pla	aced at the end of the as	ssembly language program to tell the						
END	assembler	that the source program	end	s here.					

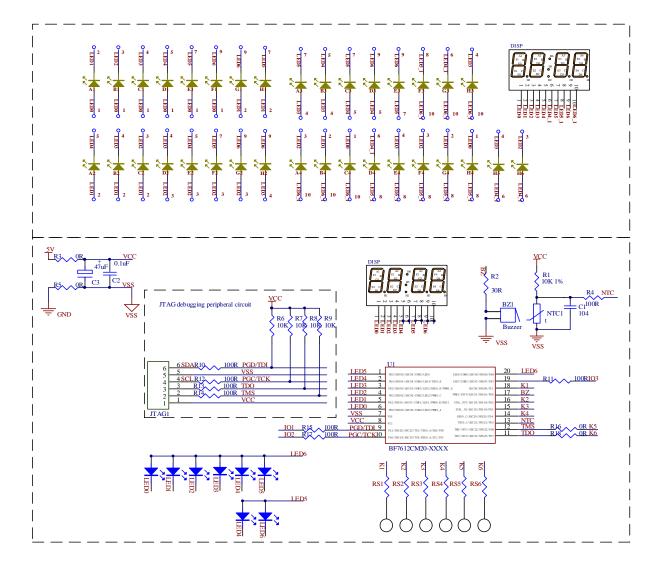
CPU instruction set table

### CPU related register


SFR regis	SFR register							
Address	Name	RW	Reset value	Description				
0x81	SP	RW	0x07	Stack pointer register				
0x82	DPL	RW	0x00	Data pointer register 0 low 8 bit				
0x83	DPH	RW	0x00	Data pointer register 0 high 8 bit				
0x87	PCON	RW	0x00	Idle mode select register				
0xE0	ACC	RW	0x00	Accumulator				
0xF0	В	RW	0x00	B register				

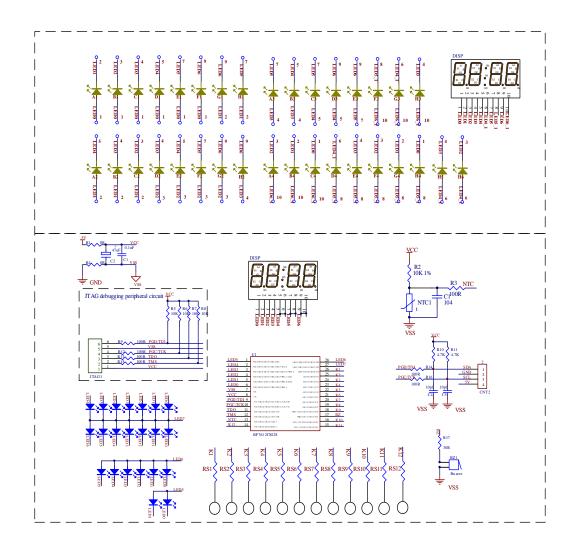
CPU SFR register list




# **19. Reference Application Circuits**

## 19.1. BF7612CM16-SJLX Reference Circuit





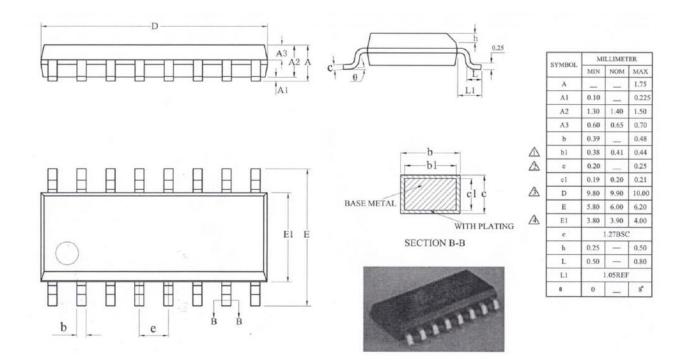

### 19.2. BF7612CM20-SJLX Reference Circuit





### 19.3. BF7612CM28-SJLX Reference Circuit

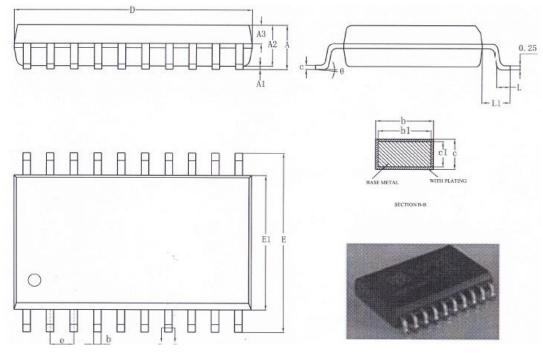



#### Note:

- 1. The above schematic diagram is for reference only. The RSX channel resistance is recommended to be 1K~8.2K, normal 4.7K.
- 2. The JTAG debugging peripheral circuit is only used for JTAG debugging. If the emulator or adapter board has a pull-up resistor, there is no need to connect the JTAG pull-up resistor.
- 3. Replace the  $0\Omega$  resistors with parallel power and ground with magnetic beads. The EMI test item (RE) can increase the test margin. The recommended parameter is  $600\Omega@100MHz$ .



# 20. Packages

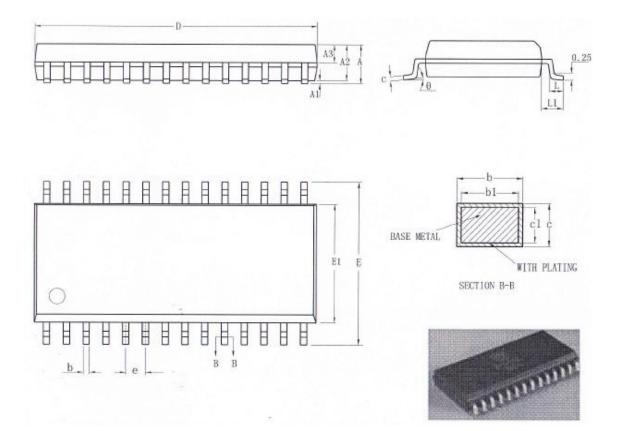

## 20.1. SOP16







### 20.2. SOP20



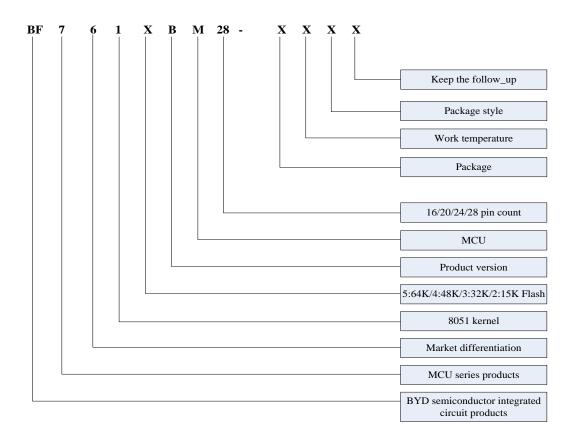

SOP20 package

DU		SOP20 MILLIMETERS	S
DIM	MIN	NOM	MAX
А	-	-	2.650
A1	0.100	0.200	0.300
A2	2.250	2.300	2.350
b	0.350	-	0.440
С	0.250	-	0.310
D	12.600	12.800	13.000
E1	7.300	7.500	7.700
Е	10.100	10.300	10.500
е		1.270(BSC)	
L	0.7	-	1
θ	0 °	-	8 °
End face waste rubber	-	-	0.2
Total length of plastic body	12.800	13.000	13.300



### 20.3. SOP28




SOP28 package

	-		
DIM		SOP28 MILLIMETERS	
DIM	MIN	NOM	MAX
А	2.250	2.400	2.650
A1	0.100	0.200	0.300
A2	2.250	2.300	2.350
b	0.300	0.425	0.480
с	0.250	0.285	0.310
D	17.800	18.000	18.200
E1	7.300	7.500	7.700
Е	10.100	10.300	10.500
е		1.270(BSC)	
L	0.7	-	1
θ	0 °	-	8 °
End face waste rubber	-	-	0.2
Total length of plastic body	18.000	18.300	18.500



# **Ordering information**

Package	Work	temperature	Package style	Keep the follow-up
S: SOP	Car grade	A: -40°C ~+150°C	B: tap	-
T: TSSOP		B: -40°C ~+125°C	L: feed tube	-
M: MSSOP		C: -40°C ~+105°C	T: tray	-
L: LQFP		D: -40°C ~+85°C	-	-
Q: QFN	Industrial grade	K: -40°C ~+85°C	-	-
B: BGA		J: -40°C ~+105°C	-	-
D: DIP		L: -40°C ~+125°C	-	-
-	Consumer grade	<b>P</b> : -25 °C ~+70 °C	-	_
-		<b>Q</b> : 0°C <b>~</b> +70°C	-	_





# **Revision History**

Revised date	Revised content	Reviser	Remarks
2020-09-15	V1.0	JX	V1.0
2020-11-19	<ol> <li>Update instruction set table</li> <li>Update ADC configuration process</li> <li>Amend the steps to read the unique identification code (UID) of the chip</li> <li>Add pull-up resistor selection register table description</li> <li>Update ADC characteristic parameter table</li> <li>Update 2.1 AC characteristics</li> <li>Update 2.4 limit parameters</li> <li>Update the description of register 0xB5, 0xD7</li> <li>Chapter 13 Update ADC Notes</li> <li>Update ADCCKV register description</li> <li>Added note in PWM chapter</li> <li>Update the description of register 0xFE</li> <li>Added description to IIC chapter</li> <li>Update RSX channel resistance recommendations</li> <li>Delete interrupt trigger type</li> <li>IICEN corrected to IIC_EN</li> <li>Update PU_PX register, ODRAIN_EN register description</li> </ol>	JX	V1.1
2021-12-30	<ol> <li>Update BYD LOGO</li> <li>Update D2H description</li> <li>Introduction to updated features</li> <li>Update the selection list</li> <li>Update the FLASH chapter</li> <li>Add secondary bus register</li> <li>Update reset section</li> <li>Update EEPROM description</li> <li>Update reference application circuit</li> <li>Update 'EEPROM' to 'DATA'</li> </ol>	YNN	V1.2
2022-07-19	<ol> <li>Update 'Low Power Mode' to 'Idle Mode'</li> <li>The system clock symbol 'F_sys_clk' is updated to 'fsys'</li> <li>Update the GPIO structure diagram</li> </ol>	YNN	V1.3



5	5. Update instruction set byte count and cycle count	
	description	
6	6. Update the reference circuit	
7	7. Add the description of total led scan time	



## Disclaimer

1. The information contained herein is subject to change without notice, see the revision record for details. Please contact FAE or the agent for the latest version.

2. BYD Semiconductor Co., Ltd. will do its utmost to ensure the high quality and high stability of the company's products. Nonetheless, due to the inherent characteristics of general semiconductor devices such as electrical sensitivity and vulnerability to external physical damage, our products may malfunction or fail under these circumstances. When using our company's products, users are responsible for designing a safe and stable system environment in compliance with safety rules. Users can avoid possible accidents, fires and public injuries by removing redundant devices, failure prevention and fire prevention measures. When the user uses the product, please follow the operating steps specified in the company's latest manual to use the product.

3. The products of BYD Semiconductor Co., Ltd. in this document are designed for general electrical applications (computers, personal tools, office equipment, measuring equipment, industrial mechanical devices, household appliances, etc.). The company's products can not be used in some special equipment that requires extremely high stability and quality, so as to avoid accidents such as casualties. The range of products that cannot be applied includes atomic energy control equipment, aircraft and aviation devices, transportation equipment, traffic signal equipment, combustion control equipment, medical equipment, and all safety equipment. The company shall not be responsible for any loss or injury caused by users who use it within the non-product application ranges listed above.