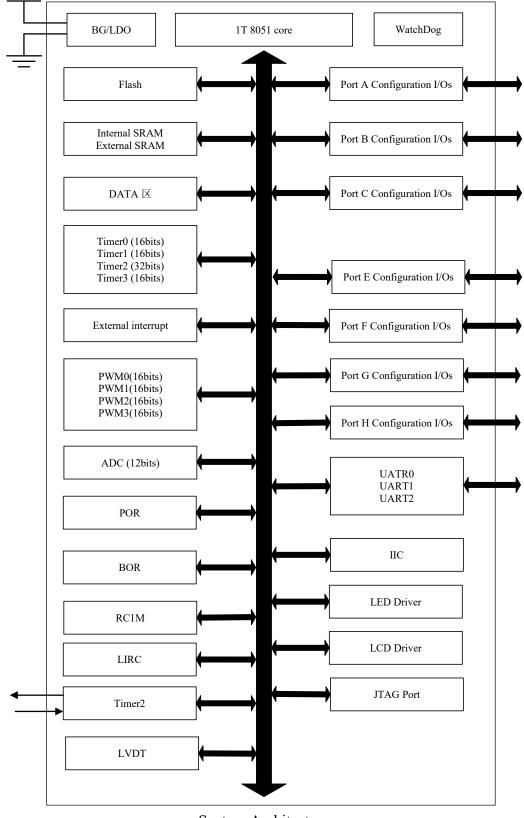


1. BF7515BM44-LJTX MCU General Description

1.1. Features

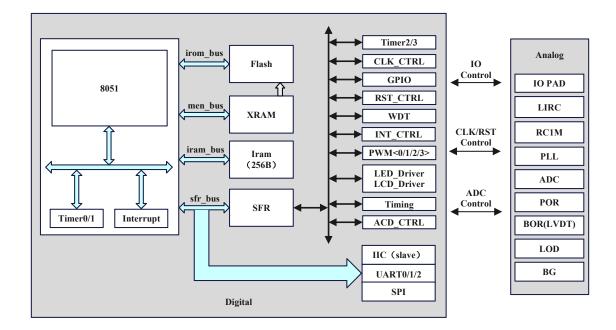
- > Core: 1T 8051
- Operating frequency: 12M, 8M, 4M, 1M,
- Clock error: $\pm 1\%$ @25°C, 5V
 - ±3% @-40°C ~ +105°C, 5V
- Memory (FLASH)
- CODE: 63K Bytes
- DATA: 1K Bytes +2*512 Bytes
- SRAM: 256 Bytes(data)+4K Bytes(xdata)
- Support 2K/4K/8K BOOT function area
- Clock Source, Reset
- Internal low-speed clock LIRC: 32kHz Clock error: ±15%@25°C, 5V
 - ±35‰@ -40°C ~ +105°C, 5V
- Internal high-speed RC oscillator: 1MHz
- External crystal oscillator: 32768Hz
- 8 resets, brown-out voltage (Bor): 1.9V
- Low voltage detection: 2.7V/3.0V/3.8V
- ➢ IO
- Built-in pull-up resistor 30k
- High current sink port (PB0~PB7)
- Support IO function remapping
- IO ports support external interrupt function, INT0~3 (rising-edge, falling-edge, double-edge), INT4(rising-edge, falling-edge)
- Communication Module
- 3*UART communication, support IO mapping
- 1*IIC, support 100/400kHz, support IO mapping
- \circ 1*SPI, support up to 2MHz
- > 16-bit PWM
- PWM0/1 both support 3-channel output, share period and duty cycle
- PWM2 support 1 channel output
- PWM3 support 1 channel output

- > Operating Voltage: 2.5V~5.5V
- ➢ Operating Temperature: -40°C~+105℃
- Enhanced industrial grade, in line with JESD industrial grade reliability certification standards
- > 12-bit High-speed ADC
- Up to 42 analog input channels
- Built-in reference voltage 4V
- > Interrupt
- Two-level interrupt priority capablity
- ADC, LCD, LED, INT0/1/2/3, LVDT, Timer0/1/2/3, UART0/1/2, IIC, WDT, SPI interrupt
- Timer
- 16-bit Timer0/1/3, 32-bit Timer2
- Timer2 clock source: internal low-speed clock LIRC 32kHz or XTAL 32768Hz
- Watchdog timer, overflow time 18ms to 2.304s
- LED Driver
- Support 7*8, 6*7, 5*6, 4*5 dot matrix driver
- Support up to 8 COM x 8 SEG matrix driver
- LCD Driver
- Support 4*16, 8*16, 4*20, 5*19, 6*18
- Low power management
- Idle mode 0 and Idle mode 1
- Idle mode 1, power consumption 26uA@5V
- > With JTAG debugging emulation interface
- Package
- LQFP44

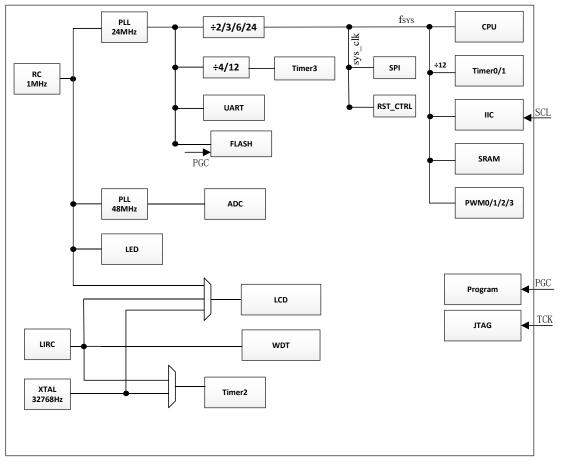

1.2. Overview

BF7515BM44-LJTX uses the high speed 8051 core with 1T instruction cycle, compared to the standard 8051 (12T) instruction cycle, has the quicker running speed, compatibility standard 8051 instruction.

BF7515BM44-LJTX includes a watchdog, LCD display driver, LED serial dot matrix driver, IIC, UART, low voltage detection, power down reset, 16bit PWM, Timer0, Timer1, Timer2, Timer3, 12bit successive approximation ADC, low power management.


1.3. System Architecture

System Architecture

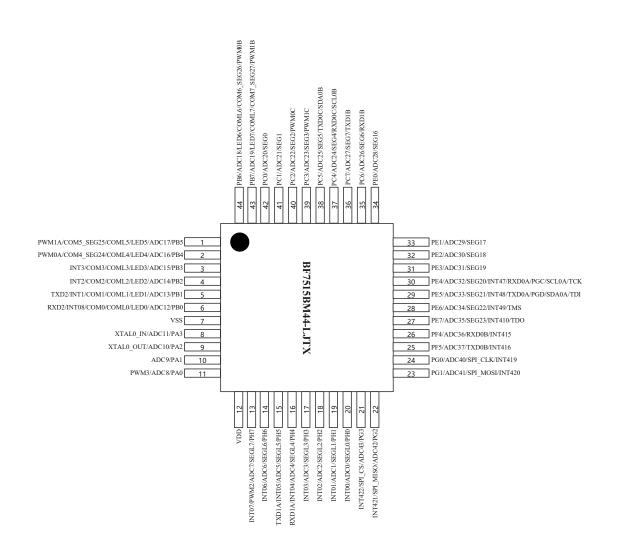


System bus frame diagram

1.4. Clock Diagram

Clock Diagram

1.5. Selection List


Ту	тре	BF7515BM44-LJTX
Operation	voltage (V)	2.5~5.5
Operating fro	equency (Hz)	12M
Co	ore	1T 8051
	CODE	63/61/59/55K
Manager (Dartag)	BOOT	0/2/4/8K
Memory (Bytes)	DATA	1K +2*512
	SRAM	256 +4K
	WDT	1
	Timer0*16bit	1
Timer	Timer1*16bit	1
	Timer2*32bit	1
	Timer3*16bit	1
	IIC	1
Communication module	UART	3
	SPI	1
Analog module	ADC*12bit	42
GF	PIO	42
CO	DM	8
IN	JT	22
	LED Serial	7*8
Display module	LED Ranks	8COM*8SEG
	LCD	8COM*16SEG
	PWM0*16bit	3
PWM module	PWM1*16bit	3
r wivi module	PWM2*16bit	1
	PWM3*16bit	1
Pac	kage	LQFP44

selection list

Note: The space size of CODE area + BOOT area is 63K.

1.6. Pin Assignment

BF7515BM44-LJTX LQFP44 package pin diagram

1.7. Pin Description

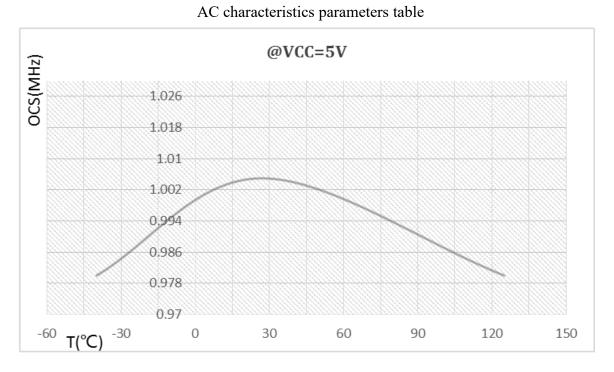
BF7515BM44-LJTX	Function description
	Default function: GPIO <pb5></pb5>
	Other function: ADCXX: ADC channel
1	LEDX: LED serial dot matrix
1	COMLX: LED matrix COM; Large sink current port
	COMX_SEGXX: LCD COM can be shared as SEG
	PWMXX: PWM output port
	Default function: GPIO <pb4></pb4>
	Other function: ADCXX: ADC channel
2	LEDX: LED serial dot matrix
	COMLX: LED matrix COM; Large sink current port
	COMX_SEGXX: LCD COM can be shared as SEG
	PWMXX: PWM output port
	Default function: GPIO <pb3></pb3>
	Other function: ADCXX: ADC channel
3	LEDX: LED serial dot matrix
5	COMLX: LED matrix COM; Large sink current port
	COMX: LCD COM
	INTX: External Interrupt
	Default function: GPIO <pb2></pb2>
	Other function: ADCXX: ADC channel
4	LEDX: LED serial dot matrix
	COMLX: LED matrix COM; Large sink current port
	COMX: LCD COM
	INTX: External Interrupt
	Default function: GPIO <pb1></pb1>
	Other function: ADCXX: ADC channel
	LEDX: LED serial dot matrix
5	COMLX: LED matrix COM; Large sink current port
	COMX: LCD COM
	INTX: External Interrupt
	TXDX: Serial port transmission
	Default function: GPIO <pb0></pb0>
	Other function: ADCXX: ADC channel
6	LEDX: LED serial dot matrix
	COMLX: LED matrix COM; Large sink current port
	COMX: LCD COM

	INTXX: External Interrupt
	RXDXX: serial port receiving
7	Default function: GND <vss></vss>
1	
8	Default function: GPIO <pa3> Other function: ADCXX: ADC channel</pa3>
0	XTAL0 IN: External crystal oscillator input
	Default function: GPIO <pa2></pa2>
9	Other function: ADCXX: ADC channel
9	XTAL0 OUT: External crystal oscillator output
	Default function: GPIO <pa1></pa1>
10	Other function: ADCXX: ADC channel
11	Default function: GPIO <pa0></pa0>
11	Other function: ADCXX: ADC channel
13	PWMXX: PWM output port
12	Default function: power supply <vcc></vcc>
	Default function: GPIO <ph7></ph7>
13	Other function: SEGLX: SEG of LED column matrix
13	ADCXX: ADC channel
	PWMXX: PWM output port
	INTXX: External Interrupt
	Default function: GPIO <ph6></ph6>
14	Other function: SEGLX: SEG of LED column matrix ADCXX: ADC channel
	INTXX: External Interrupt Default function: GPIO <ph5></ph5>
	Other function: SEGLX: SEG of LED column matrix
15	ADCXX: ADC channel
15	INTXX: External Interrupt
	TXDX: Serial port transmission
	Default function: GPIO <ph4></ph4>
	Other function: SEGLX: SEG of LED column matrix
16	ADCXX: ADC channel
10	INTXX: External Interrupt
	RXDXX: serial port receiving
	Default function: GPIO <ph3></ph3>
	Other function: SEGLX: SEG of LED column matrix
17	ADCXX: ADC channel
	INTXX: External Interrupt
	Default function: GPIO <ph2></ph2>
18	Other function: SEGLX: SEG of LED column matrix
10	ADCXX: ADC channel

	INTXX: External Interrupt
	Default function: GPIO <ph1></ph1>
10	Other function: SEGLX: SEG of LED column matrix
19	ADCXX: ADC channel
	INTXX: External Interrupt
	Default function: GPIO <ph0></ph0>
20	Other function: SEGLX: SEG of LED column matrix
20	ADCXX: ADC channel
	INTXX: External Interrupt
	Default function: GPIO <pg3></pg3>
21	Other function: ADCXX: ADC channel
21	SPI_CS: SPI chip select signal
	INTXX: External Interrupt
	Default function: GPIO <pg2></pg2>
22	Other function: ADCXX: ADC channel
22	SPI_MISO: SPI master data input
	INTXX: External Interrupt
	Default function: GPIO <pg1></pg1>
22	Other function: ADCXX: ADC channel
23	SPI_MOSI: SPI master data output
	INTXX: External Interrupt
	Default function: GPIO <pg0></pg0>
24	Other function: ADCXX: ADC channel
24	SPI_CLK: SPI clock
	INTXX: External Interrupt
	Default function: GPIO <pf5></pf5>
25	Other function: ADCXX: ADC channel
23	TXDX: Serial port transmission
	INTXX: External Interrupt
	Default function: GPIO <pf4></pf4>
26	Other function: ADCXX: ADC channel
20	RXDXX: serial port receiving
	INTXX: External Interrupt
	Default function: GPIO <pe7></pe7>
	Other function: ADCXX: ADC channel
27	SEGXX: SEG of LCD
	INTXX: External Interrupt
	TDO: Simulation test data serial output
	Default function: GPIO <pe6></pe6>
28	Other function: ADCXX: ADC channel
	SEGXX: SEG of LCD

	INTXX: External Interrupt
	TMS: Simulation test mode selection
	Default function: GPIO <pe5></pe5>
	Other function: ADCXX: ADC channel
	SEGXX: SEG of LCD
	INTXX: External Interrupt
29	TXDX: Serial port transmission
	PGD: Programming port PGD
	SDAXX: Serial data line of IIC
	TDI: Simulation test data serial input
	Default function: GPIO <pe4></pe4>
	Other function: ADCXX: ADC channel
	SEGXX: SEG of LCD
	INTXX: External Interrupt
30	RXDXX: serial port receiving
	PGC: Programming port PGC
	SCLXX: Serial clock line of IIC
	TCK: Simulation test clock
	Default function: GPIO <pe3></pe3>
31	Other function: ADCXX: ADC channel
	SEGXX: SEG of LCD
	Default function: GPIO <pe2></pe2>
32	Other function: ADCXX: ADC channel
	SEGXX: SEG of LCD
	Default function: GPIO <pe1></pe1>
33	Other function: ADCXX: ADC channel
	SEGXX: SEG of LCD
	Default function: GPIO <pe0></pe0>
34	Other function: ADCXX: ADC channel
	SEGXX: SEG of LCD
	Default function: GPIO <pc6></pc6>
35	Other function: ADCXX: ADC channel
55	SEGXX: SEG of LCD
	RXDXX: serial port receiving
	Default function: GPIO <pc7></pc7>
36	Other function: ADCXX: ADC channel
50	SEGXX: SEG of LCD
	TXDX: Serial port transmission
	Default function: GPIO <pc4></pc4>
37	Other function: ADCXX: ADC channel
	SEGXX: SEG of LCD

	RXDXX: serial port receiving
	SCLXX: Serial clock line of IIC
	Default function: GPIO <pc5></pc5>
	Other function: ADCXX: ADC channel
38	SEGXX: SEG of LCD
	TXDX: Serial port transmission
	SDAXX: Serial data line of IIC
	Default function: GPIO <pc3></pc3>
20	Other function: ADCXX: ADC channel
39	SEGXX: SEG of LCD
	PWMXX: PWM output port
	Default function: GPIO <pc2></pc2>
40	Other function: ADCXX: ADC channel
40	SEGXX: SEG of LCD
	PWMXX: PWM output port
	Default function: GPIO <pc1></pc1>
41	Other function: ADCXX: ADC channel
	SEGXX: SEG of LCD
	Default function: GPIO <pc0></pc0>
42	Other function: ADCXX: ADC channel
	SEGXX: SEG of LCD
	Default function: GPIO <pb7></pb7>
	Other function: ADCXX: ADC channel
43	LEDX: LED serial dot matrix
	COMLX: LED matrix COM; Large sink current port
	COMX_SEGXX: LCD COM can be shared as SEG
	PWMXX: PWM output port
	Default function: GPIO <pb6></pb6>
	Other function: ADCXX: ADC channel
44	LEDX: LED serial dot matrix
	COMLX: LED matrix COM; Large sink current port
	COMX_SEGXX: LCD COM can be shared as SEG
	PWMXX: PWM output port


Package pin correspondence diagram

2. Electrical Characteristics

2.1. AC Characteristics

Demonster	Chl	Cor	nditions	Min	Tym	Max	T I * 4	
Parameter	Symbol	VCC	Temperature	IVIIII	Тур	wax	Unit	
c	Internal high-speed	517	25°C	-1%	1	+1%	MIT	
f _{RC1M}	RC oscillator	5V	-40°C ~105°C	-3%	1	+3%	MHz	
C	System clock	5V	25°C	-1%	12/8/4/1	+1%		
f _{SYS}			-40°C ~105°C	-3%	12/8/4/1	+3%	MHz	
C	Internal low-speed		25°C	-15%	32	+15%	1 11	
f _{LIRC}	RC oscillator	5V	-40°C ~105°C	-35%	32	+35%	kHz	

RC1M temperature characteristic curve

Semiconductor

2.2. DC Characteristics

						Та	=25°C
Parameter	Symbol	VCC	Test Conditions Conditions	Min	Тур	Max	Unit
VCC	Operating Voltage	ating		2.5	-	5.5	V
		3.3V	f _{RC1M} / PLL on, f _{SYS}	-	3	4	
		5V	=12MHz, f _{LIRC} on, no load, all peripherals off	-	3.1	4.1	
		3.3V	f _{RC1M} / PLL on, f _{SYS} =8	-	2.7	3.7	
Ŧ	Active mode	5V	MHz, f _{LIRC} on, no load, all peripherals off	-	2.8	3.8	
Iop	current	3.3V	f_{RC1M} / PLL on, $f_{SYS}=4$	-	2.3	3.3	mA
		5V	MHz, f _{LIRC} on, no load, all peripherals off	-	2.4	3.4	
		3.3V	f _{RC1M} / PLL on, f _{SYS} =1	-	1.9	2.9	
		5V	MHz, f _{LIRC} on, no load, all peripherals off	-	2	3	
Ŧ	idle mode 1 $3.3V$ f_{RC1M} PLL/ f_{SYS} off, f_{LIRC}		-	27	36		
I _{STB1}	current	5V	on, all peripherals off	-	26	35	μA
		3.3V	WDT_CTRL=7, WDT interrupt 2s wake up, 2ms working time, IO	-	30	39	μΑ
	current for	5V	output is low, close other functions	-	29	38	, pu i
I stb2		3.3V	Timer2 external crystal oscillator wakes up in 2s, 2ms working time,	-	30	39	μΑ
		5V	IO output is low, and other functions are closed	-	29	38	
V _{IL}	Input low level	2.5~5.5V	-	-	-	0.3*VCC	V
V _{IH}	Input high level	2.5~5.5V	-	0.7*VCC	-	-	V
V _{INTL}	INT input low level	2.5~5.5V	-	-	-	0.3*VCC	V
V _{INTH}	INT input high level	2.5~5.5V	-	0.7*VCC	-	-	V

Vol	output low voltage	5V	I _{OL} =60mA	-	-	0.1*VCC	V
V _{OH}	output high voltage	5V	I _{OH} =14mA	0.9*VCC	-	-	V
Iol	IO sink current	5V	V _{OL} =0.1VCC	-	60	75	mA
І _{ОН}	IO Source current	5V	V _{OH} =0.9VCC	-	14	18	mA
Ісом	PB large sink current	5V	V _{OL} =0.1VCC	-	120	-	mA
I _{Leak}	Input leakage current	5V	-	-	1	5	μΑ
R _{PH}	IO internal pull-up	5V	-	18	30	42	kΩ

DC characteristics parameters table

2.3. ADC Characteristics

							Ta=25°C
D (Coursel al	Test	Test Conditions		Trm	Max	T T •/
Parameter	Symbol VCC Conditions Mi	Min	Тур	wiax	Unit		
V _{ADC}	Supply Voltage	-	-	2.5	-	5.5	V
N _R	Accuracy	-	-	-	9	10	Bit
V _{ADCI}	ADC Input voltage	-	-	VSS		VREF	V
I _{ADCI}	input current	-	-	-	-	1	μΑ
DNL	Differential nonlinear error	5V	-	-	±4	±6	LSB
INL	Integral nonlinear error	5V	-	-	±4	±6	LSB
t2	ADC sampling time	-	-	0.5	-	-	μs
t _{ADC}	ADC conversion time	-	-	2.875	-	-	μs
RESO	Resolution	-	-		12		Bit
N _{ADC}	Input channel	-	-	-	-	42	Channel

ADC characteristic parameter table

2.4. Limit Parameters

D (Test Conditions		Min	T-m	Max	TT •4
Parameter	Symbol	VCC	Conditions	Min	Тур	Max	Unit
VCC	Supply voltage when working	-	-	VSS+2.5	-	VSS+5.5	V
T _{STG}	Non-working storage temperature	-	-	-40 - 125		°C	
Та	Operating temperature	-	-	-40	-	105	°C
Vin	I/O input voltage	-	-	VSS-0.5	-	VCC+0.5	V
Ivcc	Power supply VCC current	-	-	120			mA
I _{VSS}	Ground VSS current	-	-	120			mA
Iola	IOL total current	-	-	100			mA
Ioha	IOH total current	-	-	-100		mA	
ESD(HBM)	Port electrostatic discharge voltage	-	-	-8	-	8	kV

Limit parameters characteristics parameters table

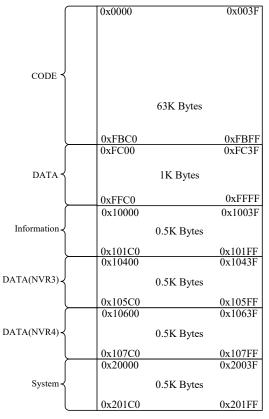
Notes: Exceed the limit parameters may cause damage to the chip, unable to expect the chip work outside the above indicated range. If you work under conditions outside the marked range for a long time, it may affect the reliability of the chip.

3. RAM, FLASH and SFR

3.1. Flash

FLASH memory features are as follows:

- CODE area: ICP programming supports block erase, page erase, byte write, CODE area 63KB is used as user code, it is recommended not to exceed 63KB
- DATA area: support page erase, byte write
- Program/erase times: CODE area: at least 20000 times @25°C


DATA area: at least 20000 times @25°C, based on stability, erasing time $\geq =5$ ms

• Data retention period: 100 years@25°C

20 years@85°C

- Support IAP BOOT upgrade function, storage protection, 2/4/8K optional
- The erased states are all ones

CFG_11:[7:6] When CFG_BOOT_SEL = 3:

Flash storage architecture

Module	Size (Bytes) Address		Page
CODE	63K	0x0000~0xFBFF	126
DATA	1K	0xFC00~0xFFFF	1
Information	512	0x10000~0x101FF	1

DATA (NVR3)	512	0x10400~0x105FF	1
DATA (NVR4)	512	0x10600~0x107FF	1
System	512	0x20000~0x201FF	1

Method 1: Reading Flash information steps:

- 1. Turn off the interrupt;
- 2. Configure SPROG_CMD = 0x88;
- 3. Configure SPROG_ADDR_L, SPROG_ADDR_H, select the address to be read;
- 4. Read SPROG_RDATA data;
- 5. Need to continue to read data, jump to step 2, 3;
- 6. After reading SPROG_RDATA data, configuration SPROG_CMD = 0x00;
- 7. Configure SPROG_ADDR_L=0x00, SPROG_ADDR_H=0x00;
- 8. Restore interrupt settings.

Method 2: Reading Flash information steps:

- 1. Turn off the interrupt;
- 2. Configure the secondary bus address;
- 3. Read the data;
- 4. Need to continue to read data, jump to step 2 and 3;
- 5. Restore interrupt settings

Steps to read the unique identification code (UID) of the chip:

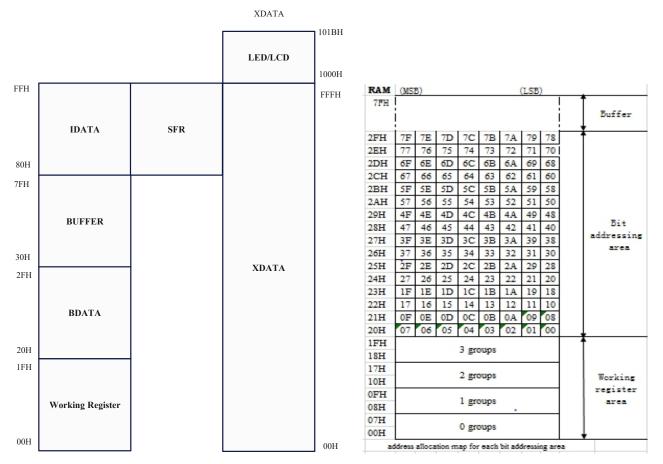
- 1. Turn off the interrupt;
- 2. Configure SPROG_CMD = 0x88;
- 3. Configure SPROG_ADDR_L, SPROG_ADDR_H, select the address to be read, 0x41A8~0x41AF corresponds to product ID1~ID8.
- 4. Read SPROG_RDATA data;
- 5. Need to continue to read data, jump to step 2 and 3;
- 6. After reading SPROG_RDATA data, configure SPROG_CMD = 0x00;
- 7. Configure SPROG_ADDR_L=0x00, SPROG_ADDR_H=0x00;
- 8. Restore interrupt settings.

3.2. RAM

There are 256 Bytes internal, the address is 00H~FFH, including working registers group, bit addressing areas, buffers and SFR, the buffer contain the stack area.

Internal low 128 Bytes, 00H~7FH has 128 Bytes. Read and write data by immediate addressing or indirect addressing.

Internal high 128 Bytes, 80H~FFH has 128 Bytes. Read and write data only by immediate addressing or indirect addressing.


Special function register SFR: the address is 80H~FFH, Read and write data only by direct addressing.

Xdata have 4K Bytes, the address is 0000H~0FFFH, users can use this area completely. To read and write data through the data pointer or working registers group addressing mode.

LED/LCD storage RAM occupies XRAM, the address is 1000~101BH. This area is the LED display buffer, and the display content is modified by changing the area data

Note reserved stack space when writing a program, in order to avoid stack overflow and program goes wrong. Stack first address automatically assigned by program, when programming with C language, but it must be stored in data or idata. KEIL stack can be set in the first address in STARTUP.A51.

RAM address space allocation map

The following table lists the methods to get value in the three parts of KAM.				
	MOV	A,direct		
	MOV	direct,A		
DATA	MOV	direct,#data		
DATA	MOV	direct1,direct2		
	MOV	Rn,direct		
	MOV	direct,Rn		
	MOV	A,@Ri		
	MOV	@Ri,A		
IDATA	MOV	direct,@Ri		
	MOV	@Ri,direct		
	MOV	@Ri,#data		
XDATA	MOVX @I	DPTR,A		
ADATA	MOVX A,	@DPTR		

The following table lists the methods to get value in the three parts of RAM:

Flash Secondary bus register

Note:

1. In the above table, n ranges from 0 to 7, and i ranges from 0 to 1.

2. If PDATA variable is defined, when the compiler has MOVX @Ri,A instruction, it is necessary to clear the SFR register address 0xA0 address to 0.

3.3. SFR Table

Address	Name	RW	Reset	Function description
0x80	DATAB	RW	0xFF	PB data register
0x81	SP	RW	0x07	Stack pointer register
0x82	DPL	RW	0x00	Data pointer register0 low 8-bit
0x83	DPH	RW	0x00	Data pointer register0 high 8-bit
0x84	TIMER3_CFG	RW	0x00	TIMER3 configuration register
0x85	TIMER3_SET_H	RW	0x00	TIMER3 count value configuration register, high 8 bits
0x86	TIMER3_SET_L	RW	0x00	TIMER3 count value configuration register, low 8 bits
0x87	PCON	RW	0x00	Idle mode 1 select register
0x88	TCON	RW	0x05	Timer control register
0x89	TMOD	RW	0x00	Timer mode register
0x8A	TL0	RW	0x00	Timer 0 counter low 8-bit
0x8B	TL1	RW	0x00	Timer 1 counter low 8-bit
0x8C	TH0	RW	0x00	Timer 0 counter high 8-bit
0x8D	TH1	RW	0x00	Timer 1 counter high 8-bit
0x8E	SOFT_RST	RW	0x00	Soft reset register
0x90	DATAC	RW	0xFF	PC port data register
0x91	WDT_CTRL	RW	0x00	WDT timing overflow control register
0x92	WDT_EN	RW	0x00	WDT timing enable register
0x93	TIMER2_CFG	RW	0x00	TIMER2 configuration register
0x94	TIMER2_SET_H	RW	0x00	TIMER2 count value configuration register, high 8 bits
0x95	TIMER2_SET_L	RW	0x00	TIMER2 count value configuration register, low 8 bits
0x96	REG_ADDR	RW	0x00	Second address bus register
0x97	REG_DATA	RW	0x00	Second data read and write bus register
0x98	SCI_S1	R	0x00	UART2 interrupt flag register
0x99	PWM0_L_L	RW	0x00	PWM0 low level control register(low 8-bit)
0x9A	PWM0_L_H	RW	0x00	PWM0 low level control register(high 8-bit)
0x9B	PWM0_H_L	RW	0x00	PWM0 high level control register(low 8-bit)
0x9C	PWM0_H_H	RW	0x00	PWM0 high level control register(high 8-bit)
0x9D	PWM1_L_L	RW	0x00	PWM1 low level control register(low 8-bit)
0x9E	PWM1_L_H	RW	0x00	PWM1 low level control register(high 8-bit)
0x9F	PWM1_H_L	RW	0x00	PWM1 high level control register(low 8-bit)
0xA0	P2_XH	RW	0xFF	MOVX @Ri, A operation pdata address high 8 bits
0xA1	PWM1_H_H	RW	0x00	PWM1 high level control register(high 8-bit)
0xA2	PWM2_L_L	RW	0x00	PWM2 low level control register(low 8-bit)
0xA3	PWM2_L_H	RW	0x00	PWM2 low level control register(high 8-bit)
0xA4	PWM2_H_L	RW	0x00	PWM2 high level control register(low 8-bit)

BF7515BM44-LJTX

0xA5	PWM2 H H	RW	0x00	PWM2 high level control register(high 8-bit)
0xA5 0xA6	PWM3 L L	RW	0x00	PWM3 low level control register(low 8-bit)
0xA0	PWM3_L_L PWM3_L H	RW	0x00	PWM3 low level control register(high 8-bit)
0xA7	IEN0	RW	0x00	Interrupt enable register
0xA8 0xA9	PWM3 H L	RW	0x00	
	PWM3_H_L PWM3 H H			PWM3 high level control register(low 8-bit)
0xAA		RW	0x00	PWM3 high level control register(high 8-bit))
0xAD	SYS_CLK_CFG	RW	0x08	System clock configuration register
0xAE	INT_PE_STAT	RW	0x00	Interrupt status register
0xAF	SCAN_START	RW	0x00	LCD, LED scan open register
0xB0	DATAE	RW	0xFF	PE data register
0xB1	DP_CON	RW	0x00	LCD, LED control register
0xB2	DP_MODE	RW	0x00	LCD, LED mode register
0xB3	SCAN_WIDTH	RW	0x00	LED period configuration register
0xB4	LED2_WIDTH	RW	0x00	LED dot matrix drive mode cycle configuration register
0xB5	SPI_CFG1	RW	0x15	SPI control register 1
0xB6	SPI_CFG2	RW	0x18	SPI control register 2
0xB8	IPL0	RW	0x00	Interrupt priority register 0
0xB9	DP_CON1	RW	0x00	LCD contrast configuration register
0xBA	SCI_C2	RW	0x00	UART2 control register 2
0xBB	SCI_C3	R/RW	0x00	UART2 control register 3
0xBC	SCI_S2	R/RW	0x00	UART2 synchronization interval control register
0xBD	SCI_D	RW	0xFF	UART2 data register
0xBE	SPI_STATE	RW	0x01	SPI status flag register
0xBF	SPI_SIPD	RW	0x00	SPI data register
0xC0	DATAF	RW	0xFF	PF data register
0xC1	ADC_SPT	RW	0x00	ADC sample time configuration register
0xC2	SCI_INT_CLR	RW	0x00	UART2 module interrupt clear register
0xC3	ADC_SCAN_CFG	RW	0x00	ADC scan configuration register
0xC4	ADCCKC	RW	0x00	ADC clock and filter configuration register
0xC5	ADC_RDATAH	R	0x00	ADC scan result register high 4 bits
0xC6	ADC_RDATAL	R	0x00	ADC scan result register low 8 bits
0xC7	EXINT_STAT	RW	0x00	External interrupt status register
0xC8	DATAG	RW	0x0F	PG data register
0xCA	PULL_I_SELA_L	RW	0x00	Pull-up current source size selection register
0xCE	SPROG ADDR H	RW	0x00	Address control register
0xCF	SPROG ADDR L	RW	0x00	Address control register low 8 bits
0xD0	PSW	R/RW	0x00	Program status word register
0xD1	SPROG DATA	RW	0x00	Write data register
0xD2	SPROG CMD	RW	0x00	Command register

Semiconductor

BF7515BM44-LJTX

0xD3	SPROG_TIM	RW	0xDD	Erase time control register
0xD4	SPROG_RDATA	R	0x00	information block/system block data read register
0xD5	INT_POBO_STAT	RW	0x00	Boost/buck interrupt status register
0xD6	UART1_BDL	RW	0x00	UART1 baudrate control register
0xD7	UART1_CON1	RW	0x00	UART1 mode control register 1
0xD8	DATAH	RW	0xFF	PH data register
0xD9	UART1_CON2	RW	0x0C	UART1 mode control register 2
0xDA	UART1_STATE	RW	0x00	UART1 status flag register
0xDB	UART1_BUF	RW	0xFF	UART1 data register
0xDC	UART0_BDL	RW	0x00	UART0 baudrate control register
0xDD	UART0_CON1	RW	0x00	UART0 mode control register 1
0xDE	UART0_CON2	RW	0x0C	UART0 mode control register 2
0xDF	UART0_STATE	RW	0x00	UART0 status flag register
0xE0	ACC	RW	0x00	Accumulator
0xE1	IRCON2	RW	0x00	Interrupt flag register 2
0xE2	UART0_BUF	RW	0xFF	UART0 data register
0xE3	IICADD	RW	0x00	IIC address register
0xE4	IICBUF	RW	0x00	IIC send and receive data register
0xE5	IICCON	RW	0x10	IIC configuration register
0xE6	IEN1	RW	0x00	Interrupt enable register 1
0xE7	IEN2	RW	0x00	Interrupt enable register 2
0xE8	IICSTAT	R/RW	0x44	IIC status register
0xE9	IICBUFFER	RW	0x00	IIC transmit and receive data buffer register
0xEA	TRISA	RW	0x0F	PA direction register
0xEB	TRISB	RW	0xFF	PB direction register
0xEC	TRISC	RW	0xFF	PC direction register
0xED	SCI_C1	RW	0x00	SCI control register 1
0xEE	TRISE	RW	0xFF	PE direction register
0xEF	TRISF	RW	0xFF	PF direction register
0xF0	В	RW	0x00	B register
0xF1	IRCON1	RW	0x00	Interrupt flag register 1
0xF2	TRISG	RW	0x0F	PG direction register
0xF4	IPL2	RW	0x00	Interrupt priority register 2
0xF6	IPL1	RW	0x00	Interrupt priority register 1
0xF7	TRISH	RW	0xFF	PH direction register
0xF8	DATAA	RW	0x0F	PA data register

SFR register summary

Notes:

- 1. Register whose addresses end in 8 or 0 can be operated by bit, such as 0x80, 0x88 register address.
- 2. Reset value: reset value in different modes (ROM address jump reset, WDT overflow reset, power on reset, brown-out reset, debug reset, pointer overflow reset, flash program reset, software reset);

Power-on reset: rst_state is 0x02;

Reset in other modes: The reset flag bit corresponding to rst_state is 1, and other reset flags remain in their original state.

3. R: Read only; RW: Read and write.

3.4. Secondary Bus Register Table

The BF7515BM44-LJTX series supports expanded secondary bus registers for expanding more register functions. Just write the address of the secondary bus register to be accessed into REG_ADDR, and then access the corresponding secondary bus register through the REG_DATA register. It is recommended that when reading and writing secondary bus registers, first EA = 0, and then EA = 1 after the operation is completed. Prevent other interrupts or operations from modifying the address or data of the secondary bus register.

	Secondary bus register							
Address	Name	Bit	Reset value					
0x96	REG_ADDR	<7:0>	RW	Secondary bus address configuration register	0x00			
0x97	REG_DATA	<7:0>	RW	Secondary bus data read and write registers	0x00			

Address	Name	RW	Reset value	Function
0x00	CFG0_REG	R	0xFF	Configuration word register 0
0x01	CFG1_REG	R	0xFF	Configuration word register 1
0x02	CFG2_REG	R	0xFF	Configuration word register 2
0x03	CFG3_REG	R	0xFF	Configuration word register 3
0x04	CFG4_REG	R	0xFF	Configuration word register 4
0x05	CFG5_REG	R	0xFF	Configuration word register 5
0x06	CFG6_REG	R	0xFF	Configuration word register 6
0x07	CFG7_REG	R	0xFF	Configuration word register 7
0x08	CFG8_REG	R	0xFF	Configuration word register 8
0x09	CFG9_REG	R	0xFF	Configuration word register 9
0x0A	CFG10_REG	R	0xFF	Configuration word register 10
0x0B	CFG11_REG	R	0xFF	Configuration word register 11
0x0C	CFG12_REG	R	0xFF	Configuration word register 12
0x0D	CFG13_REG	R	0xFF	Configuration word register 13
0x0F	RST_STAT	RW	rst_state	Reset flag register
0x17	PU_PA	RW	0x00	PA port pull-up resistor control register
0x18	PU_PB	RW	0x00	PB port pull-up resistor control register
0x19	PU_PC	RW	0x00	PC port pull-up resistor control register
0x1B	PU_PE	RW	0x00	PE port pull-up resistor control register
0x1C	PU_PF	RW	0x00	PF port pull-up resistor control register
0x1D	PU_PG	RW	0x00	PG port pull-up resistor control register
0x1E	PU_PH	RW	0x00	PH port pull-up resistor control register

Semiconductor

BF7515BM44-LJTX

0x1F	LCD IO SEL 1	RW	0x00	LCD SEG0-7 port select configuration register
0x21	LCD IO SEL 3	RW	0x00	LCD SEG16-23 port selection configuration register
0x21	LCD IO SEL 4	RW	0x00	LCD SEG24-27 port selection configuration register
0x23	COM IO SEL	RW	0x00	COM select configuration register
0x24	SEG IO SEL	RW	0x00	LED SEG0-7 port select configuration register
0x25	ODRAIN EN	RW	0x00	PC4/5/PE4/5 open drain output enable register
0x2A	ADC IO SEL0	RW	0x00	ADC function selection register
0x2C	SEL LVDT VTH	RW	0x00	LVDT threshold selection register
0x2D	PD_ANA	RW	0xFF	Analog module switch register
0x30	IDLE WAKE CFG	RW	0x07	System wakeup configuration register
0x31	LED DRIVE	RW	0x00	LED port drive capability configuration register
0x32	ADC CFG SEL	RW	0x00	ADC configuration register
0x33	PWM IO SEL	RW	0x00	PWM port selection register
0x34	PERIPH IO SEL1	RW	0x10	External port function selection register 1
0x35	PERIPH IO SEL2	RW	0x00	External port function selection register 2
0x36	PERIPH IO SEL3	RW	0x00	External port function selection register 3
0x37	PERIPH IO SEL4	RW	0x00	External port function selection register 4
0x38	PERIPH IO SEL5	RW	0x00	External port function selection register 5
0x39	EXT INT CON1	RW	0x55	External interrupt configuration register 1
0x3A	EXT INT CON2	RW	0x01	External interrupt configuration register 2
0x3E	SPI TX START ADDR	RW	0x00	SPI High-speed mode send buffer first address
0x3F	SPI RX START ADDR	RW	0x00	SPI high-speed mode receive buffer first address
				SPI high-speed mode data cache address number low
0x40	SPI_NUM_L	RW	0x00	8 bits
0.41		DUU	0.00	SPI high-speed mode data cache address number high
0x41	SPI_NUM_H	RW	0x00	8 bits
0x42	ADC_CFG_SEL1	RW	0x02	ADC comparator offset cancellation selection register
0x50	IIC_FIL_MODE	RW	0x02	IIC filter selection register
0x53	ADC_IO_SEL1	RW	0x00	ADC select enable register
0x54	ADC_IO_SEL2	RW	0x00	ADC select enable register
0x55	ADC_IO_SEL3	RW	0x00	ADC select enable register
0x56	ADC_IO_SEL4	RW	0x00	ADC select enable register
0x57	ADC_IO_SEL5	RW	0x00	ADC select enable register
0x5A	FLASH_BOOT_EN	RO	0x00	BOOT mode status register
0x5B	EEP_SELECT	RW	0x00	DATA area selection register
0x60	SCI_BDH	RW	0x00	SCI baud rate control register high 5 bits
0x61	SCI_BDL	RW	0x00	SCI baud rate control register low 8 bits
0x62	SFR_LDO_CTRL	RW	0x00	Reserved
0x6A	BOOT_CMD	RW	0x00	Program space jump instruction register

BF7515BM44-LJTX

0x6B	ROM_OFFSET_L	R	0x00	The low 8 bits of the address offset of the CODE area
0x6C	ROM_OFFSET_H	R	0x00	The high 8 bits of the address offset of the CODE area

List of secondary bus registers

Note: Reset value: reset value in different modes;

Power-on reset: rst_state is 0x02;

Reset in other modes: The reset flag bit corresponding to rst_state is 1, and other reset flags remain in their original state.

4. Register Summary

4.1. SFR Register Details

DATAB(80H)PB data register										
Bit number	7	6	5	4	3	2	1	0		
Symbol	PB7	PB6	PB5	PB4	PB3	PB2	PB1	PB0		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset value	1	1	1	1	1	1	1	1		

Bit number	Bit symbol	Description
		PB data register, configurable PB group IO port as GPIO port
7~0		output level, the read value is the current level state of IO
		port (input) or configured output value (output).

SP(81H) Stack pointer register

Bit number	7	6	5	4	3	2	1	0			
Symbol		SP[7:0]									
R/W				R/	W						
Reset value				-	7						
DPL(82H) Data	pointer reg	gister0 lov	w 8-bit								
Bit number	7	6	5	4	3	2	1	0			
Symbol				DPL	[7:0]						
R/W				R/	W						
Reset value				()						
DPH(83H) Data	pointer re	gister0 hig	gh 8-bit								
Bit number	7	6	5	4	3	2	1	0			
Symbol				DPH	[7:0]						
R/W		R/W									
Reset value				()						
TIMER3_CFG	(84H) TIM	ER3 conf	iguration re	egister							
Bit number	7~3	;	2			[()			

Bit number	7~3	2	1	0
Symbol	-	TIMER3_CLK_SEL	TIMER3_RLD	TIMER3_EN
R/W	-	R/W	R/W	R/W
Reset value	-	0	0	0

Bit number	Bit symbol	Description
2	TIMER3_CLK_SEL	TIMER3 timing clock selection register. 1: select clk_24m/4;

		0: select clk_24m/12.
		TIMER3 auto reload enable register
1	TIMER3_RLD	1: auto reload mode;
		0: manual reload mode.
		TIMER3 count enable register
		Configure 1 to start timing, configure 0 to stop timing
0	TIMER3_EN	In manual reload mode, the hardware will automatically
		clear this register after the timing is completed.
		Configure the register during the scan process to re-count.

TIMER3_SET_H (85H) TIMER3 count value configuration register, high 8 bits

Bit number	7	6	5	4	3	2	1	0
Symbol		-						
R/W		R/W						
Reset value		0						

Bit number	Bit sy	rmbol	Description							
7~0				TIMER3 count value configuration register, high 8 bits, the						
/~0	_			register will count again when configured during scanning.						
TIMER3_SET_	TIMER3_SET_L (86H) TIMER3 count value configuration register, low 8 bits									
Bit number	7	7 6 5 4 3 2 1 0					0			
Symbol				-	-					
R/W	R/W									
Reset value		0								

Bit number	Bit symbol	Description
7.0		TIMER3 count value configuration register, low 8 bits, the
7~0		register will re-count when configured during scanning.

PCON(87H) Idle Mode 1 select register

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	-	-	-	IM1_EN
R/W	-	-	-	-	-	-	-	R/W
Reset value	-	-	-	-	-	-	-	0

Bit number	Bit symbol	Description
7~1		Reserved
		Idle Mode 1 Enable
		1: Idle mode 1;
0	IM1_EN	0: Active mode, automatically cleared after wake-up
		Note: The software delay must be $\geq 100 \mu s$ after wake-up,
		otherwise the wake-up function is abnormal

TCON(88H) Timer control register

Bit number	7	6	5	4	3	2	1	0
Symbol	TF1	TR1	TF0	TR0	IE1	-	IE0	-
R/W	R/W	R/W	R/W	R/W	R/W	-	R/W	-
Reset value	0	0	0	0	0	-	0	-

Bit number	Bit symbol	Description
7	TF1	Timer 1 overflow flag bit, set by hardware when Timer1
/	111	overflows, or TH0 of Timer0 overflows in mode 3.
6	TR1	Timer1 start enable, when set to1, start Timer1, or start
6	IKI	Time0 mode three, TH0 count.
5	TFO	Timer 0 overflow flag, set by hardware when Timer0
5	160	overflows.
4	TR0	Timer0 start enable, set to 1 to start Timer0 counting.
2	117.1	External interrupt 1 flag bit, set by hardware, cleared by
3	IE1	software.
2		Reserved
1	IEO	External interrupt 0 flag bit, set by hardware, cleared by
1	IE0	software.
0		Reserved

TMOD(89H) Timer mode register

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	M1[1:0]		-	-	M0[1:0]	
R/W	-	-	R/W		-	-	R/W	
Reset value	-	-	0	0	-	-	0	0

Bit number	Bit symbol	Description
7~6		Reserved
		Timer 1 mode select bit
		00 : Mode 0 - 13-bit timer
5~4	M1[1:0]	01 : Mode 1 - 16-bit timer
		10 : Mode 2 - 8-bit timer with automatic reloading of initial value
		11 : Mode 3 - Two 8-bit timer
3~2		Reserved
		Timer 0 mode select bit
		00 : Mode 0 - 8-bit timer
1~0	M0[1:0]	01 : Mode 1 - 16-bit timer
		10 : Mode 2 - 8-bit timer with automatic reloading of initial value
		11 : Mode 3 - Two 8-bit timer

TL0(8AH) Timer 0 counter low 8-bit

Semiconductor

Bit number	7	6	5	4	3	2	1	0
Symbol				TL0	[7:0]			
R/W				R/	W			
Reset value				()			
TL1(8BH) Time	er 1 counte	r low 8-bit						
Bit number	7	6	5	4	3	2	1	0
Symbol				TL1	[7:0]			
R/W				R/	W			
Reset value				()			
TH0(8CH) Time	er 0 counte	r high 8-bi	t					
Bit number	7	6	5	4	3	2	1	0
Symbol				TH0	[7:0]			
R/W				R/	W			
Reset value				()			
TH1(8DH) Time	er 1 counte	r high 8-bi	it					
Bit number	7	6	5	4	3	2	1	0
Symbol				TH1	[7:0]			
R/W				R/	W			
Reset value		0						
SOFT_RST(8EE	I) Soft reset register							
Bit number	7	6	5	4	3	2	1	0
Symbol								
R/W				R/	W			
Reset value				()			

Bit number	Bit symbol	Description
7~0		Soft reset register, only when the register value is 0x55, the
/~0		software reset is generated

DATAC(90H) PC port data register

Bit number	7	6	5	4	3	2	1	0
Symbol	PC7	PC6	PC5	PC4	PC3	PC2	PC1	PC0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset value	1	1	1	1	1	1	1	1

Bit number	Bit symbol	Description
7~0		PC data register, you can configure the output level when the IO port of the PC group is used as a GPIO port, and the read value is the current level state of the IO port (input) or the configured output value (output)

WDT_CTRL(91H) WDT timing overflow control register

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	-	WDT_TIME_SEL		
R/W	-	-	-	-	-	R/W		
Reset value	-	-	-	-	-	0	0	0

Bit number	Bit symbol	Description				
2.0	2~0 WDT_TIME_SEL	WDT timing overflow control register, the timing length is as follows:				
2~0		0x00: 18ms; 0x01: 36ms; 0x02: 72ms; 0x03: 144ms;				
		0x04: 288ms; 0x05: 576ms; 0x06: 1152ms; 0x07: 2304ms				

WDT_EN(92H) WDT timing enable register

Bit number	7	6	5	4	3	2	1	0
Symbol		WDT_EN						
R/W		R/W						
Reset value				()			

Bit number	Bit symbol	Description
7~0	WDT EN	WDT timer enable configuration register, when the
/~0	I WDT EN I	configuration value is 0x55, the watchdog is closed

TIMER2_CFG (93H) TIMER2 configuration register

Bit number	7~4	3	2	1	0
Symbol	-	TIMER2_CNT_MOD	TIMER2_CLK_SEL	TIMER2_RLD	TIMER2_EN
R/W	-	R/W	R/W	R/W	R/W
Reset value	-	0	0	0	0

Bit number	Bit symbol	Description
		TIMER2 counting step mode selection register
3	TIMER2_CNT_MOD	1: The counting step is 65536 clocks
		0: The counting step is one clock
		TIMER2 clock selection register
2	TIMER2_CLK_SEL	1: select XTAL 32768Hz
		0: select LIRC 32kHz
		TIMER2 auto reload enable register
1	TIMER2_RLD	1: Auto reload mode
		0: manual reload mode
		TIMER2 count enable register
		Configure 1 to start timing, configure 0 to stop timing
0	TIMER2_EN	In manual reload mode, the hardware will automatically
		clear this register after the timing is completed
		Configure the register during the scan process to

	re-count.							
TIMER2_SET_H(94H) TIMER2 count value configuration register, high 8 bits								
Bit number	7	6	5	4	3	2	1	0
Symbol								
R/W		R/W						
Reset value				()			

Bit number	Bit symbol	Description			
7.0		TIMER2 count value configuration register, high 8 bits, the			
7~0		register will count again when configured during scanning.			
TIMED SET I (054) TIMED count value configuration register low 8 bits					

TIMER2_SET_L(95H) TIMER2 count value configuration register, low 8 bits

Bit number	7	6	5	4	3	2	1	0		
Symbol		-								
R/W		R/W								
Reset value		0								

Bit number	Bit symbol	Description			
7.0		TIMER2 count value configuration register, low 8 bits, the			
7~0		register will re-count when configured during scanning			

REG_ADDR (96H) Second address bus register

Bit number	7	6	5	4	3	2	1	0		
Symbol		REG_ADDR								
R/W				R/	W					
Reset value	0	0	0	0	0	0	0	0		

Bit number	Bit symbol	Description
7~0	REG_ADDR	Secondary bus address configuration register

REG_DATA (97H) Second data read and write bus register

Bit number	7	6	5	4	3	2	1	0		
Symbol		REG_DATA								
R/W				R/	W					
Reset value	0	0	0	0	0	0	0	0		

Bit number	Bit symbol	Description
7~0	REG_DATA	Secondary bus data read and write registers

SCI_S1(98H) UART2 interrupt flag register

Bit number	7	6	5	4	
Symbol	SCI_TE	SCI_TF	SCI_RI	SCI_I	
R/W	R	R	R	R	

Reset value	0	0	0	0
Bit number	3	2	1	0
Symbol	SCI_RO	SCI_N	SCI_F	SCI_P
R/W	R	R	R	R
Reset value	0	0	0	0

Bit number	Bit symbol	Description			
		Send buffer empty interrupt flag			
7	SCI_TE	1: Sending buffer is empty;			
		0: Sending buffer is full, read only			
		Send complete interrupt flag			
6	SCI_TF	1: Sending completed, the transmitter is idle;			
		0: the transmitter is working, read only			
		Receive full interrupt flag			
5	SCI_RI	1: The receive buffer is full;			
		0: The receive buffer is empty, read-only			
		Idle line interruption mark			
4	SCI_I	1: Idle line detected;			
		0: Idle line not detected, read only			
		Receive overflow flag			
3	SCI_RO	1: Receive overflow (new data is lost);			
		0: No overflow, read only			
		Noise mark			
2	SCI_N	1: Noise detected;			
		0: Noise not detected, read only			
		Frame error flag			
1	SCI_F	1: Frame error detected;			
		0: Frame error not detected, read only			
		Parity error flag,			
0	SCI_P	1: Receiver parity check error;			
		0: Parity check is correct, read only			

PWM0_L_L (99H) PWM0 low level control register(low 8-bit)

Bit number	7	6	5	4	3	2	1	0	
Symbol				-	-				
R/W				R/	W				
Reset value				()				

PWM0_L_H (9AH) PWM0 low level control register(high 8-bit)

Bit number	7	6	5	4	3	2	1	0
Symbol				-	-			
R/W				R/	W			

Semiconductor

Reset value		0								
<u>PWM0_H_L (9</u>	BH) PWM	0 high lev	el control r	egister(lov	v 8-bit)					
Bit number	7	6	5	4	3	2	1	0		
Symbol					-					
R/W		R/W								
Reset value					0					
<u>PWM0_H_H (9</u>	CH) PWM	I) PWM0 high level control register(high 8-bit)								
Bit number	7	6	5	4	3	2	1	0		
Symbol					-					
R/W				R/	′W					
Reset value				(0					
PWM1_L_L (91	OH) PWM	1 low leve	el control re	egister(low	8-bit)		1	1		
Bit number	7	6	5	4	3	2	1	0		
Symbol					-					
R/W		R/W								
Reset value				(0					
PWM1_L_H (9)	EH) PWM	EH) PWM1 low level control register(high 8-bit)								
Bit number	7	6	5	4	3	2	1	0		
Symbol					-					
R/W				R/	′W					
Reset value				(0					
PWM1_H_L (9)	FH) PWM	1 high lev	el control r	egister(low	v 8-bit)					
Bit number	7	6	5	4	3	2	1	0		
Symbol					-					
R/W				R/	′W					
Reset value				(0					
P2_XH (A0H) N	MOVX @F	₹i, A oper	ation pdata	address hi	gh 8 bits					
Bit number	7	6	5	4	3	2	1	0		
Symbol					-					
R/W				R/	′W					
Reset value	1	1	1	1	1	1	1	1		
Bit number	Bit symb	ool			Descript	ion				
7.0		. Whe	en using M	OVX @Ri,	A instruct	tion, when	operating	pdata		
7~0		P2_XH area, P2_XH needs to be cleared to 0								
PWM1_H_H (A	1H) PWM	1 high lev	vel control	register(hig	gh 8-bit)					
Bit number	7	6	5	1	2	2	1	0		

Bit number	7	6	5	4	3	2	1	0
Symbol	_							
R/W	R/W							

Reset value		0						
PWM2_L_L (A	2H) PWM	H) PWM2 low level control register(low 8-bit)						
Bit number	7	6	5	4	3	2	1	0
Symbol				-				
R/W				R/	W			
Reset value				()			
PWM2_L_H (A	.3H) PWM	2 low leve	l control re	egister(higł	n 8-bit)			
Bit number	7	6	5	4	3	2	1	0
Symbol				-				
R/W				R/	W			
Reset value				()			
PWM2_H_L (A	4H) PWM	2 high leve	el control r	egister(low	v 8-bit)			
Bit number	7	6	5	4	3	2	1	0
Symbol				-	-			
R/W				R/	W			
Reset value				()			
PWM2_H_H (A	5H) PWM	12 high lev	el control 1	register(hig	gh 8-bit)			
Bit number	7	6	5	4	3	2	1	0
Symbol				-	-			
R/W				R/	W			
Reset value				()			
PWM3_L_L (A	6H) PWM	3 low level	l control re	gister(low	8-bit)			
Bit number	7	6	5	4	3	2	1	0
Symbol				-	-			
R/W				R/	W			
Reset value				()			
PWM3_L_H (A	7H) PWM	3 low leve	l control re	egister(high	n 8-bit)			
Bit number	7	6	5	4	3	2	1	0
Symbol				-	-			
R/W		R/W						
Reset value				()			
IEN0(A8H) Inte	errupt enab	le register						
Bit number	7	6	5	4	3	2	1	0
Symbol	EA	-	-	-	ET1	EX1	ET0	EX0
R/W	R/W	-	-	-	R/W	R/W	R/W	R/W
Reset value	0	-	-	-	0	0	0	0

Bit number	Bit symbol	Description
7	7 FA	Interrupt enable bit.
/		0: Mask all interrupts (EA has priority over the respective

		interrupt enable bits of the interrupt sources);
		1: The interrupt is turned on. Whether the interrupt request
		of each interrupt source is allowed or forbidden is
		determined by the respective enable bit.
6~4		Reserved
		Timer 1 overflow interrupt enable bit
3	ET1	0: Disable timer 1 (TF1) to apply for interrupt;
		1: Allow TF1 flag bit to request interrupt.
		INT_EXT1 enable bit.
2	EX1	0: Disable INT_EXT1 to apply for interrupt;
		1: Allow INT_EXT1 to apply for interrupt.
		Timer 0 overflow interrupt enable bit
1	ET0	0: Disable timer 0 (TF0) to apply for interrupt;
		1: Allow TF0 flag bit to request interrupt.
		INT_EXT0 enable bit
0	EX0	0: Disable INT_EXT0 to apply for interrupt;
		1: Allow INT_EXT0 to apply for interrupt.

PWM3_H_L (A9H) PWM3 high level control register(low 8-bit)

Bit number	7	6	5	4	3	2	1	0
Symbol		_						
R/W		R/W						
Reset value				()			

PWM3 H H (AAH) PWM3 high level control register(high 8-bit)

Bit number	7	6	5	4	3	2	1	0
Symbol		_						
R/W		R/W						
Reset value				()			

SYS_CLK_CFG(ADH) System clock configuration register

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	IM0_EN	PLI	L_CLK_S	SEL	PD_SYS_CLK
R/W	-	-	-	R/W	R/W	R/W	R/W	R/W
Reset value	-	-	-	0	1	0	0	0

Bit number	Bit symbol	Description
5		Reserved
		Idle Mode 0 enable
4	IM0_EN	1: Enter Idle Mode 0;
		0: Exit Idle Mode 0
2 1		PLL clock divider selection register
3~1	PLL_CLK_SEL	000~011: reserved;

		100: 12MHz; 101: 8MHz; 110: 4MHz; 111: 1MHz
		Core clock enable
0	PD_SYS_CLK	0: turn on the core clock;
		1: turn off the core clock

INT_PE_STAT(AEH) Interrupt status register

	()F	<u> </u>		
Bit number	7	6	5	4
Symbol	-	INT_TIMER3_STAT	INT08_STAT	INT_WDT_STAT
R/W	-	R/W	R/W	R/W
Reset value	-	0	0	0
Bit number	3	2	1	0
Symbol	INT_TIMER2_STAT	-	INT_LCD_STAT	INT_LED_STAT
R/W	R/W	-	R/W	R/W
Reset value	0	-	0	0

Bit number	Bit symbol	Description			
7		Reserved			
6	INT_TIMER3_STAT	TIMER3 interrupt status flag, this bit is cleared by writing0 and can also be cleared by writing TIMER3_CFG1 : interrupt is valid;0: interrupt is invalid			
5	INT08_STAT	INT08 port interrupt status, this bit is cleared by writing 0 and it can also be cleared by writing INT08_IO_SEL=0 1: interrupt is valid; 0: interrupt is invalid			
4	INT_WDT_STAT	WDT interrupt status flag, this bit is cleared by writing 0 and can also be cleared by writing WDT_CTRL 1 : interrupt is valid; 0: interrupt is invalid			
3	INT_TIMER2_STAT	TIMER2 interrupt status flag, this bit is cleared by writing 0 and can also be cleared by writing TIMER2_CFG 1: interrupt is valid; 0: interrupt is invalid			
2		Reserved			
1	INT_LCD_STAT	LCD interrupt status mark, write 0 to clear this bit, write SCAN_START operation can also be cleared 1: interrupt is valid; 0: interrupt is invalid			
0	INT_LED_STAT	LED interrupt status mark, this bit is cleared by writing and it can also be cleared by writing SCAN_START 1: interrupt is valid;			

SCAN_START	SCAN_START(AFH) LCD, LED scan open register							
Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	-	-	-	-
R/W	-	-	-	-	-	-	-	R/W
Reset value	-	-	-	-	-	-	-	0
	1			1			1	

0: interrupt is invalid

Bit number	Bit symbol	Description
		LCD, LED scan on register
0		1: Scan on;
		0: Scan off

DATAE(B0H) PE data register

Bit number	7	6	5	4	3	2	1	0
Symbol	PE7	PE6	PE5	PE4	PE3	PE2	PE1	PE0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset value	1	1	1	1	1	1	1	1

Bit number	Bit symbol	Description
7~0		PE data register, you can configure the output level of PE group IO port as GPIO port, the read value is the current level state of IO port (input) or configure output value (output).

DP_CON (B1H) LCD, LED control register

Bit number	7	6	5	5 4 3 2 1		0				
Symbol	-	IO_ON	DUTY_SEL			DPSEL	SCAN_MODE	COM_MOD		
R/W	-	R/W	R/W		R/W	R/W	R/W			
Reset value	-	0	0	0 0		0 0 0		0	0	0

Bit number	Bit symbol	Description
		LCD/LED scanning corresponds to the total control bit of all
6	IO ON	IO ports
0	IO_ON	0: Close IO;
		1: Open IO
		LED dot matrix drive mode dot matrix selection
		configuration register
		DP_CON[4:3]:
5~3	DUTY_SEL	0: 4x5 dot matrix
		1: 5x6 dot matrix
		2: 6x7 dot matrix
		3: 7x8 dot matrix

		DP CON[5]:
		4x5 dot matrix—Enable with LED3 (PB3 as the starting
		port.
		LED row and column drive mode single COM port
		conduction duty cycle configuration register:
		0: 1/8 duty cycle
		1: 2/8 duty cycle
		2: 3/8 duty cycle
		3: 4/8 duty cycle
		4: 5/8 duty cycle
		5: 6/8 duty cycle
		6: 7/8 duty cycle
		7: 8/8 duty cycle
		LCD drive mode duty cycle configuration register
		000: 1/4 duty cycle, 1/3 bias (4 COM X 16 SEG)
		COM port: COM0-3
		SEG port: SEG0-7, SEG16-23
		001: 1/8 duty cycle, 1/4 bias (8 COM X 16 SEG)
		COM port: COM0-7
		SEG port: SEG0-7, SEG16-23
		010: 1/4 duty cycle, 1/3 bias (4 COM X 20 SEG)
		COM port: COM0-3
		SEG port: SEG0-7, SEG16-23,
		COM4-7 shared as SEG24-27
		011: 1/5 duty cycle, 1/3 bias (5 COM X 19 SEG)
		COM port: COM0-4
		SEG port: SEG0-7, SEG16-23,
		COM5-7 shared as SEG25-27
		100: 1/6 duty cycle, 1/3 bias (6 COM X 18 SEG)
		COM port: COM0-5
		SEG port: SEG0-7, SEG16-23,
		COM6-7 shared as SEG26-SEG27
		101: 1/6 duty cycle, 1/4 bias (6 COM X 18 SEG)
		COM port: COM0-5
		SEG port: SEG0-7, SEG16-23,
		COM6-7 shared as SEG26-SEG27
		Others: 1/4 duty cycle, 1/3 bias (4 COM X 16 SEG)
		COM port: COM0-3
		SEG port: SEG0-7, SEG16-23
		LCD, LED selection control bit
2	DPSEL	0: Select LCD driver, LED driver is invalid

		1: Select LED driver, LCD driver is invalid
		LCD, LED scan mode configuration
1	SCAN_MODE	1: Cycle scan mode
		0: Interrupt scan mode
		High current sink IO port drive enable
		1: As a high current sink IO port;
0	COM MOD	0: Can be configured for other functions;
0	COM_MOD	When used as a high current sink IO port, by configuring the
		GPIO register to output the drive timing, the LED/LCD scan
		configuration is invalid

DP_MODE(B2H) LCD, LED mode register

· · ·								
Bit number	7	6	5	4	3	2	1	0
Symbol	LED_MOD	LCD_C	CKSEL	LCD_RSEL	LCD_FCSEL		LCD_RMOD	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset value	0	0	0	0	0	0	0	0

Bit number	Bit symbol	Description				
		LED drive mode selection register				
7	LED_MOD	1: Serial dot matrix scanning;				
		0: Row and column matrix scan				
		LCD clock selection register				
6~5	LCD CKSEL	10/11: select RC1M;				
0~3		01: select XTAL 32768Hz;				
		00: select LIRC				
		LCD bias resistance selection control bit				
4	LCD_RSEL	0: The sum of LCD bias resistance is 225k;				
		1: The sum of LCD bias resistance is 900k				
		Charge time control bit				
3~2	LCD_FCSEL	00: 1/8 LCD com period; 01: 1/16 LCD com period;				
		10: 1/32 LCD com period; 11: 1/64 LCD com period				
		Drive mode selection bit				
		00: Traditional resistance mode (slow charging mode), the total				
		bias resistance is $225k/900k$, when LCD_RSEL = 0, the total LCD				
		bias resistance is 225K, when LCD_RSEL = 1, the total LCD bias				
1~0	LCD_RMOD	resistance is 900K				
1,20		01: Traditional resistance mode (fast charging mode), the total				
		bias resistance is 60k				
		10/11: Fast and slow charging automatic switching mode, the total				
		bias resistance is automatically switched between 60k and				
		225k/900k				

SCAN_WIDTH (B3H) LED period configuration register

Bit number	7	6	5	4	3	2	1	0
Symbol					-			
R/W		R/W						
Reset value					0			

Bit number	Bit symbol	Description
		Under LED matrix drive mode, corresponding to the scan time of a
		single COM port
		In the LED dot matrix drive mode, the corresponding single lamp
		lighting time configuration register-the first segment of the lamp
		cycle configuration: period=(scan_width+1)*16us, the support
		configuration range is 0.016~4.096ms;
7~0		When on-time 1 <on-time 2,="" 2.<="" group="" is="" of="" on-time="" scan="" td="" the="" this="" time=""></on-time>
		In LCD drive mode, the corresponding single COM port scan time:
		period=(scan_width+1)*64us, support configuration range
		0.064~4.096ms, high two digits Reserved
		Note: In this mode, this register is only applicable to the LCD
		selection clock CLK_1M mode, the slowest LCD frame rate in
		other clock modes is 64Hz (8*24)

LED2	WIDTH	(B4H)	LED	dot matrix	drive r	node d	cvcle	configura	tion register
				uot matrix	unven	moue v	cycic.	configura	non register

Bit number	7	6	5	4	3	2	1	0	
Symbol		_							
R/W		R/W							
Reset value					0				

Bit number	Bit symbol	Description
		In the LED dot matrix drive mode, the corresponding single
		lamp lighting time configuration register-the second stage of
		lamp cycle configuration
7~0		period=(led2_width+1)*16us
		Note: This register is only applicable to LED dot matrix
		drive mode: when the on time 1 is greater than the on time 2,
		the scan time of this group is on time 1.

SPI_CFG1 (B5H) SPI control register 1

Bit number	7	6	5	4	3	2	1	0
Symbol	RX_IE	SPI_EN	TX_IE	MSTR	CPOL	CPHA	LSBFE	CS_N
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset value	0	0	0	1	0	1	0	1

Bit number	Bit symbol	Description
		Receive enable- SPI receive buffer is full (SPRF) interrupt
7	RX_IE	enable
		1: interrupt is valid; 0: interrupt is disabled (using polling)
6	SPI_EN	SPI enable: 1: module enable open; 0: module enable close
		Transmit enable-SPI transmit buffer empty (SPTEF)
5	TX_IE	interrupt enable
		1: interrupt is valid; 0: interrupt is disabled (using polling)
4	MSTR	Master-slave mode selection: 1: master mode; 0: slave mode
3	CPOL	SCLK active level selection: 1: active low; 0: active high
		SCLK phase selection
2	СРНА	1: Send data at the first valid clock edge
		0: Sample data at the first valid clock edge
		LSB first (shifter direction)
1	LSBFE	1: SPI serial data transmission starts from the lowest bit
		0: SPI serial data transmission starts from the highest bit
0	CS_N	Chip select signal

SPI_CFG2 (B6H) SPI control register 2

`) 0				
Bit number	7	6	5	4	
Symbol	-	FEEDBACK	HSPEED_START	HALF_FUPLEX	
R/W	-	R/W	R/W	R/W	
Reset value	-	0	0	1	
Bit number	3	2	1	0	
Symbol	BIDIR_SELECT	SPR			
R/W	R/W	R/W	R/W	R/W	
Reset value	1	0	0	0	

Bit number	Bit symbol	Description		
		Send the received data to the master\slave		
6	FEEDBACK	1: Send the received data to the master\slave		
		0: Send the data written by MCU to the master\slave		
	5 HSPEED_START	The high-speed SPI communication mode is turned on and		
		the hardware is automatically pulled down after the work is		
		completed		
5		1: High-speed SPI communication mode is on; 0:		
5		High-speed SPI communication mode is off		
		In high-speed SPI mode, whether in slave or master mode,		
		the chip select signal cannot be pulled high, which will		
		cause the data sent by SPI to be lost		
4	HALF_FUPLEX	Half-duplex mode selection:		

		1: select half-duplex mode; 0: select full-duplex mode			
		Half-duplex mode, transmission and reception direction			
3	BIDIR_SELECT	selection			
		1: send; 0: receive			
		SPI baud rate coefficient:			
		0: sys_clk/2; 1: sys_clk/4;			
2~0	SPR	2: sys_clk/6; 3: sys_clk/8;			
		4: sys_clk/10; 5: sys_clk/12;			
		6: sys_clk/14; 7: sys_clk/16			

IPL0 (B8H) Interrupt priority register 0

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	PT1	PX2	PT0	PX0
R/W	-	-	-	-	R/W	R/W	R/W	R/W
Reset value	-	-	-	-	0	0	0	0

Bit number	Bit symbol	Description		
7~4	_	Reserved		
2	PT1	TF1 (Timer1 interrupt) priority selection bit.		
3	PII	0: low priority; 1: high priority		
2	PX2	INT_EXT1 interrupt priority selection bit.		
2	ΓΛΖ	0: low priority; 1: high priority		
1	РТО	TF0 (Timer0 interrupt) priority selection bit.		
1	P10	0: low priority; 1: high priority		
0	DVO	INT_EXT0 interrupt priority selection bit.		
0	PX0	0: low priority; 1: high priority		

DP_CON1 (B9H) LCD contrast configuration register

Bit number	7	6	5	4		
Symbol	-	TRI_COM_INV	MATRIX_MOD	PD_LCD_POWER		
R/W	-	R/W	R/W	R/W		
Reset value	-	0	0	0		
Bit number	3	2	1	0		
Symbol		VOL				
R/W	R/W	R/W	R/W	R/W		
Reset value	0	0	0	0		

Bit number	Bit symbol	Description
	LED matrix 4*4 mode COM port reverse selection register	
6	TRI COM INV	In 4*4 mode,
0	6 TRI_COM_INV	1: Output high when COM is selected;
		0: Output low when COM is selected

		LED matrix 4*4 mode selection register
5	MATRIX MOD	1: Select 4*4 mode, COML0~ COML3 are common,
5		COML4~ COML7 are segment;
		0: Do not select 4*4 mode
		LCD contrast control enable bit
4	PD_LCD_POWER	0: Turn off LCD contrast control; 1: Turn on LCD contrast
		control
		LCD contrast control bit
	VOL	0000: VLCD = 0.53VDD; 0001: VLCD = 0.56VDD;
		0010: VLCD = 0.59VDD; 0011: VLCD = 0.63VDD;
		0100: VLCD = 0.66VDD; 0101: VLCD = 0.69VDD;
3~0		0110: VLCD = 0.72VDD; 0111: VLCD = 0.75VDD;
		1000: VLCD = 0.78VDD; 1001: VLCD = 0.81VDD;
		1010: VLCD = 0.84VDD; 1011: VLCD = 0.88VDD;
		1100: VLCD = 0.91VDD; 1101: VLCD = 0.94VDD;
		1110: VLCD = 0.97VDD; 1111: VLCD = 1.00VDD.

SCI_C2 (BAH) UART2 control register 2

Bit number	7	6	5	4
Symbol	tx_empty_ie	tx_finish_ie	rx_full_ie	idle_ie
R/W	R/W	R/W	R/W	R/W
Reset value	0	0	0	0
Bit number	3	2	1	0
Symbol	trans_enable	receive_enable	rwu	break_trans_start
R/W	R/W	R/W	R/W	R/W
Reset value	0	0	0	0

Bit number	Bit symbol	Description
7		Send buffer empty interrupt enable,
/	tx_empty_ie	1: interrupt enable; 0: interrupt disable
6	tx finish ie	Send completion interrupt enable,
6		1: interrupt enable; 0: interrupt disable
5	my full in	Receive full interrupt enable,
5	rx_full_ie	1: interrupt enable; 0: interrupt disable
4	: 11 - : -	Idle line interrupt enable,
4	idle_ie	1: interrupt enable; 0: interrupt disable
2	tura a a a la la	Transmitter enable,
3	trans_enable	1: Transmitter is turned on; 0: Transmitter is turned off
2		Receiver enable,
2	receive_enable	1: Receiver is on; 0: Receiver is off
1	rwu	Receiver wake-up control,

		1: the receiver is in the standby state, waiting for the
		wake-up condition;
		0: the receiver is operating normally
		Sending interval segment, write 1 and 0 into this bit
0	break_trans_start	successively, that is, an interval segment is placed in the
		sending data stream

SCI_C3(BBH) UART2 control register 3

Bit number	7	6	5	4
Symbol	r8	t8	txd_direct	txd_inv
R/W	R	R/W	R/W	R/W
Reset value	0	0	0	0
Bit number	3	2	1	0
Symbol	rxd_inv	rwu_idlesel	idle_sel	wake_sel
R/W	R/W	R/W	R/W	R/W
Reset value	0	0	0	0

Bit number	Bit symbol		Description		
7	r8	The ninth data of the receiver, read only			
6	t8	The ninth data of the	ne transmitter		
		Pin direction select	ion in single line mo	de	
5	txd_direct	1: TXD pin is the o	output in single-wire	mode;	
		0: TXD pin is the in	nput in single-wire m	node	
4	tyd iny	TXD data inversion	n selection		
4	txd_inv	1: Send data is inve	erted; 0: Send data is	not inverted	
3	ryd iny	RXD data inversion	n selection		
	rxd_inv	1: Received data is	inverted; 0: Receive	d data is not inverted	
		Receive wake-up idle detection			
		1: During the receiving standby state (RWU = 1), the idle_ie			
2	rwu_idlesel	bit is set when an idle character is detected;			
		0: During the receiving standby state, the idle_ie bit is not			
		set when an idle character is detected			
		Idle line type select	tion		
		1: The idle characte	er bit count starts afte	er the stop bit;	
1	idle_sel	0: The count of idle character bits after the start bit starts,			
		counting 10-bit time (if data_mode=1 or stop_mode =1, m			
	will increase by 1 bit time respe				
0	wake sel	Receiver wake-up	mode selection		
	_	1: Address mark wake up; 0: Idle route wake up			
SCI_S2(BCH) U	JART2 synchronizat	tion interval control r	register		
Bit number	7	6	5	4	

Symbol	break_check_if	rx_edge_if	rx_active_flag	-
R/W	R/W	R/W	R/W	-
Reset value	0	0	0	-
Bit number	3	2	1	0
Symbol	break_check_ie	rx_edge_ie	break_trans_size	break_check_en
R/W	R/W	R/W	R/W	R/W
Reset value	0	0	0	0

Bit number	Bit symbol	Description	
		Interval detection interrupt mark	
7	1 1 1 1 .0	1: Interval is detected;	
/	break_check_if	0: Interval segment is not detected, write 1 to this bit to clear,	
		write 0 to be invalid	
		RxD pin active edge interrupt flag	
6	rx_edge_if	1: An active edge appears on the receiving pin;	
0		0: There is no active edge on the receiving pin, this bit is	
		cleared by writing 1, and writing 0 is invalid	
5	rx_active_flag	Receiver activity flag, read only	
5		1: Receiver is active; 0: Receiver is idle	
4		Reserved	
3	break check ie	Interval detection interrupt enable	
		1: interrupt enable; 0: interrupt disable	
2	rx_edge_ie	RXD pin active edge interrupt enable	
		1: interrupt enable; 0: interrupt disable	
		Interval segment generation bit length	
		1: Send with 13 bit time (if data_mode=1 or stop_mode=1,	
1	break_trans_size	add 1 bit time respectively);	
		0: Send with 10-bit time (if data_mode=1 or stop_mode=1,	
		add 1 bit time respectively)	
		Interval detection enable	
0	break_check_en	1: Detect on the length of 11 bit time (if data_mode=1 or	
		<pre>stop_mode=1, add 1 bit time respectively);</pre>	
		0: No detection	

SCI_D(BDH) UART2 data register

Bit number	7	6	5	4	3	2	1	0
Symbol	-							
R/W		R/W						
Reset value	FF							

Bit number	Bit symbol	Description

7~0	-	UART2 data register Read returns the contents of the read-only receive data buffer,
		write into the write-only transmit data buffer

SPI_STATE(BEH) SPI status flag register

Bit number	7~3	2	1	0
Symbol		SPRF	OVERFLOW_RX	SPTEF
R/W		R/W	R/W	R/W
Reset value		0	0	1

Bit number	Bit symbol	Description		
2	SPRF	Read buffer full mark, software write 0 to clear		
1	OVERFLOW_RX	In the normal communication mode, when the receiving overflow is caused by not reading in time, OVERFLOW_RX=1, the signal does not generate an interrupt, only the mark In high-speed SPI communication mode, it is invalid (when the number of received data is equal to the configured {SPI_NUM_H,SPI_NUM_L}, the work will end, SPRF will be set, and a full interrupt will be generated).		
0	SPTEF	Send buffer empty mark, write into SPID hardware to clear automatically. In the SPI idle state, the first data written to SPID will be directly stored in the shift register, and the second data written will be loaded into the transmit buffer, and SPTEF will be automatically pulled low.		

S	SPI_SPID (BFH) SPI data register								
	Bit number	7	6	5	4	3	2	1	0
	Symbol		-						
	R/W		R/W						
	Reset value		0						

Bit number	Bit symbol	Description
		SPID reading this register will return the data read from the
		receive data buffer rx_reg. Writing to this register will write
		data into the transmit data buffer tx_reg.
		Data should not be written into the transmit data buffer, unless
7~0		the SPI transmit buffer empty flag (SPTEF) is set, indicating
		that there is a certain space in the transmit buffer to queue new
		transmit bytes.
		After setting the SPRF and before completing another
		transmission, you can read data from the SPID at any time. If

the data is not read from the receive data buffer before the end
of the new transmission, the receive overflow will result and
the newly transmitted data will be lost.

DATAF(C0H)PF data register

Bit number	7	6	5	4	3	2	1	0
Symbol	PF7	PF6	PF5	PF4	PF3	PF2	PF1	PF0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset value	1	1	1	1	1	1	1	1

Bit number	Bit symbol	Description
7~0		PF data register, you can configure the output level of the PF group IO port as a GPIO port, and the read value is the current level state of the IO port (input) or the configured output value (output)

ADC_SPT (C1H) ADC sample time configuration register

Bit number	7	6	5	4	3	2	1	0	
Symbol		ADC_SPT							
R/W		R/W							
Reset value		0							

Bit	number	Bit symbol	Description
	7.0	ADC SDT	ADC sampling time configuration register
7~0	ADC_SPT	Sampling time: t2= (ADC_SPT+1)*4* t _{ADCK}	

SCI_INT_CLR (C2H) UART2 module interrupt clear register

Bit number	7	6	5	4
Symbol	clr_tx_empty_if	clr_tx_finish_if	clr_rx_full_if	clr_idle_if
R/W	R/W	R/W	R/W	R/W
Reset value	0	0	0	0
Bit number	3	2	1	0
Symbol	clr_rx_overflow_if	clr_noise_err_if	clr_frame_err_if	clr_parity_err_if
R/W	R/W	R/W	R/W	R/W
Reset value 0		0	0	0

Bit number	Bit symbol	Description
		Send buffer empty interrupt clear bit
7	clr_tx_empty_if	Writing 1 to this bit clears the corresponding interrupt,
		writing 0 is invalid
		Send complete interrupt clear bit
6	clr_tx_finish_if	Writing 1 to this bit clears the corresponding interrupt,
		writing 0 is invalid

		Receive full interrupt clear bit
5	clr_rx_full_if	Writing 1 to this bit clears the corresponding interrupt,
		writing 0 is invalid
		Idle line interrupt clear bit
4	clr_idle_if	Writing 1 to this bit clears the corresponding interrupt,
		writing 0 is invalid
		Receive overflow flag clear bit
3	clr_rx_overflow_if	Writing 1 to this bit will clear the corresponding mark,
		writing 0 is invalid
		Noise Marker Clear Bit
2	clr_noise_err_if	Writing 1 to this bit will clear the corresponding mark,
		writing 0 is invalid
		Frame error flag clear bit
1	clr_frame_err_if	Writing 1 to this bit will clear the corresponding mark,
		writing 0 is invalid
		Parity error flag clear bit
0	clr_parity_err_if	Writing 1 to this bit will clear the corresponding mark,
		writing 0 is invalid

ADC_SCAN_CFG (C3H) ADC scan configuration register

Bit number	7	6	5	4	3	2	1	0	
Symbol	-		ADC_ADDR						
R/W	-		R/W						
Reset value	-		0						

Bit number	Bit symbol	Description
		ADC channel address selection register
		000000: corresponding to ADC0;
		000001: corresponding to ADC1;
6~1	ADC_ADDR	
		101010: corresponding to ADC42;
		101011: corresponding to ADC43;
		101100: ADC44_VREF.
		ADC scan open register,
		ADC_START= $0 \rightarrow 1(f)$ starts conversion, and
		ADC_START is not allowed to be configured during
0	ADC_START	scanning. ADC_START is set from 0 to 1, ADC starts to
		scan. After one scan, ADC_START is automatically set to 0
		by hardware, corresponding to the ADC interrupt flag bit.
		The ADC interrupt flag bit needs to be cleared by software.

ADCCKC (C4H) ADC clock and filter configuration register

Bit number	7	6	5	4	
Symbol	FILTER_SEL	SAMBG	SAN	MDEL	
R/W	R/W	R/W	R/W	R/W	
Reset value	0	0	0	0	
Bit number	3	3 2		0	
Symbol	ADC	CKV	ADCK		
R/W	R/W	R/W	R/W	R/W	
Reset value	0	0	0	0	

Bit number	Bit symbol	Description		
7	FILTER SEL	ADC filter selection		
/		0: No RC filter added; 1: RC filter added.		
6	SAMBG	Sampling timing and comparison timing interval selection		
6	SAMDU	0: interval of 0 t _{ADCK} ; 1: interval of 1 t _{ADCK}		
		Sampling delay time selection		
5~4	SAMDEL	00: 0*t _{ADCK} ; 01: 2* t _{ADCK} ;		
		10: 4* t _{ADCK} ; 11: 8* t _{ADCK}		
2.2	ADCCKU	ADC comparator offset cancellation analog input clock		
3~2	ADCCKV	0: 12MHz 1: 8MHz 2: 4MHz 3: 2MHz		
1.0	ADCK	ADC clock selection		
1~0	ADCK	0: 8MHz 1: 6MHz 2: 4MHz 3: 3MHz		

ADC RDATAH (C5H) ADC scan result register high 4 bits

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	ADC_RDATAH[3:0]			
R/W	-	-	-	-	R			
Reset value	-	-	-	-			0	

ADC_RDATAL(C6H) ADC scan result register low 8 bits

Bit number	7	6	5	4	3	2	1	0
Symbol		ADC_RDATAL[7:0]						
R/W		R						
Reset value	0							

Bit number	Bit symbol	Description
3~0	ADC_RDATAH[3:0]	ADC scan result register
7~0	ADC_RDATAL[7:0]	ADC scan result register

EXINT_STAT (C7H) External interrupt status register

Bit number	7	6	5	4
Symbol	INT07_STAT	INT06_STAT	INT05_STAT	INT04_STAT
R/W	R/W	R/W	R/W	R/W
Reset value	0	0	0	0

Bit number	3	2	1	0	
Symbol	INT03_STAT	INT02_STAT	INT01_STAT	INT00_STAT	
R/W	R/W	R/W	R/W	R/W	
Reset value	0	0	0	0	

Bit number	Bit symbol	Description
		INT0x port interrupt status, this bit is cleared by writing 0,
7~0	INT0x_STAT	and it can also be cleared by writing INT0x_IO_SEL=0,
/~0	x=7~0	1: interrupt is valid;
		0: interrupt is invalid

DATAG(C8H)PG data register

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	PG3	PG2	PG1	PG0
R/W	-	-	-	-	R/W	R/W	R/W	R/W
Reset value	-	-	-	-	1	1	1	1

Bit number	Bit symbol	Description
3~0		PG data register, you can configure the output level when the IO port of the PG group is used as a GPIO port, and the read value is the current level state of the IO port (input) or the configured output value (output).

SPROG_ADDR_H (CEH) Address control register

		,	8					
Bit number	7	6	5	4	3	2	1	0
Symbol		_						
R/W		R/W						
Reset value					0			

Bit number	Bit symbol	Description
7~0		In non-Flash_Boot upgrade mode: Bit[7:6]: block selection when reading data indirectly 10: Select system block, multiplex to read data indirectly (SPROG_CMD=0x88) 01: Select information block, multiplexed to read data indirectly (SPROG_CMD=0x88); other: invalid; Bit[6:2]: DATA area (0xFC00~0xFFFF) selection enable 00000: select DATA area enable; other: invalid; 1. DATA area (0xFC00~0xFFFF): config {SPROG_ADDR_H[1:0], SPROG_ADDR_L[7:0]}

2. When SPROG_ADDR_H[2]=1, select NVR4:
config {SPROG_ADDR_H[0], SPROG_ADDR_L[7:0]}
3. When SPROG_ADDR_H[2]=0, select NVR3:
config {SPROG_ADDR_H[0], SPROG_ADDR_L[7:0]}
In Flash_Boot upgrade mode:
{SPROG_ADDR_H, SPROG_ADDR_L} are multiplexed into all
space addresses in the CODE area.

SPROG ADDR L(CFH) Address control register low 8 bits

Bit number	7	6	5	4	3	2	1	0				
Symbol		-										
R/W		R/W										
Reset value				()							

	Bit number	Bit symbol	Description						
	7~0		lower 8 bits of address						
I	PSW(D0H) Program status word register								

Bit number	7	6	5	4	3	2	1	0
Symbol	CY	AC	F0	RS[1:0]		OV	F1	Р
R/W	R/W	R/W	R/W	R/W		R/W	R/W	R/W
Reset value	0	0	0	0	0	0	0	0

Bit number	Bit symbol	Description
		Carry flag
7	CY	0: In arithmetic or logic operation, no carry or borrow occurs
		1: In arithmetic or logic operation, a carry or borrow occurs
		Auxiliary carry flag
6	AC	0: In arithmetic logic operation, no auxiliary carry or borrow occurs
		1: In arithmetic logic operation, an auxiliary carry or borrow occurs
5	F0	0 flag bit. Generic labels available to users.
		Working register group selection:
		Select a valid working register group:
		RS[1:0] Bank IRAM Area
4~3	RS[1:0]	00 0 0x00-0x07;
		01 1 0x08-0x0F;
		10 2 0x10-0x17;
		11 3 0x18-0x1F.
2	OV	Overflow flag
Ζ	01	0: no overflow occurred; 1: overflow occurred
1	F1	1 flag. Generic labels available to users.

odd number.	0	Р	Parity bit0: The number of digits with value 1 in accumulator A is even;1: The number of digits with a value of 1 in the accumulator A is an odd number.
-------------	---	---	--

SPROG_DATA(D1H) Write data register

Bit number	7	6	5	4	3	2	1	0			
Symbol		_									
R/W		R/W									
Reset value		0									

Bit number	Bit sy	mbol		Description						
7~0			data to be	data to be written						
SPROG_CMD()	ROG_CMD(D2H) Command register									
Bit number	7	7 6 5 4 3 2 1 0					0			
Symbol		-								
R/W		R/W								
Reset value		0								

Bit number	Bit symbol	Description				
		Write 0x96: page erase				
		Write 0x69: byte burn				
	Write 0x88: read data indirectly;					
		When continuously writing data 0x12, 0x34, 0x56, 0x78, 0x9A,				
7~0		enter the Flash Boot upgrade mode;				
		When continuously writing data 0xFE, 0xDC, 0xBA, 0x98,				
		0x76, exit the Flash Boot upgrade mode				
		When CFG_BOOT_SEL = 3 or the program is running in a				
		non-BOOT space, the BOOT upgrade mode cannot be entered.				

SPROG_TIM(D3H) Erase time control register

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	-	-	-	-
R/W	-	-	-	R/W	R/W	R/W	R/W	R/W
Reset value	-	-	-	1	1	1	0	1

Bit number	Bit symbol	Description
7~5		Byte write fixed time is 23.5us
		4~9: Erase time=5~10ms (step 1ms) +0.13ms;
1.0		Other: Reserved.
4~0		Note: When EEP_SELECT = 1 or FLASH_BOOT_EN = 1,
		9: Erase time=4.63ms;

		Other: Reserved.									
SPROG_RDATA (D4H) information block/system block data read register											
Bit number	7	6	5	4	3	2	1	0			
Symbol		-									
R/W		R									
Reset value		0									

Bit number	Bit symbol	Description
7~0		Indirectly read the data in the information block/system block

INT_POBO_STAT(D5H) Boost/buck interrupt status register

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	-	-	INT_PO_STAT	INT_BO_STAT
R/W	-	-	-	-	-	-	R/W	R/W
Reset value	-	-	-	-	-	-	0	0

Bit number	Bit symbol	Description		
1	1 INT_PO_STAT	LVDT boost interrupt status.		
1		1: boost interrupt is valid; 0: boost interrupt is invalid.		
0		LVDT buck interrupt status.		
0 INT_BO_STAT	INT_BO_STAT	1: the buck interrupt is valid; 0: the buck interrupt is invalid		
UART1 BDL(D6H) UART1 baudrate control register				

Bit number	7	6	5	4	3	2	1	0	
Symbol		-							
R/W		R/W							
Reset value		0							

Bit number	Bit symbol	Description
		Baud rate control register
		The lower 8 bits of the baud rate modulus divisor register,
7.0	~0	Baud_Mod={UART1_BDH[1:0], UART1_BDL},
/~0		When Baud_Mod=0, the baud rate clock will not be
		generated. When Baud_Mod=1~1023, the baud rate =
		BUSCLK/(16xBaud_Mod)

UART1_CON1(D7H) UART1 mode control register 1

Bit number	7	6	5	4
Symbol	-	uart_enable	receive_enable	multi_mode
R/W	-	R/W	R/W	R/W
Reset value	-	0	0	0
Bit number	3	2	1	0

Symbol	stop_mode	data_mode	parity_en	parity_sel
R/W	R/W	R/W	R/W	R/W
Reset value	0	0	0	0

Bit number	Bit symbol	Description
6	6 uart_enable	Module enable
0		1: module enable; 0: module close
5	maaaiya amahla	Receiver enable
5	receive_enable	1: receiver is on; 0: receiver is off
4	multi mada	Multi-processor communication mode,
4	multi_mode	1: mode enable; 0: mode disable
3	. 1	Stop bit width selection,
3	stop_mode	1: 2 bits; 0: 1 bit
2	data mada	Data mode selection
Ζ	data_mode	1: 9-bit mode; 0: 8-bit mode
1	nonity on	Parity check enable
1	parity_en	1: parity check is enabled; 0: parity check is disabled
0	nomity col	Parity check selection
0	parity_sel	1: odd check; 0: even check

DATAH(D8H)PH data register

Bit number	7	6	5	4	3	2	1	0
Symbol	PH7	PH6	PH5	PH4	PH3	PH2	PH1	PH0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset value	1	1	1	1	1	1	1	1

Bit number	Bit symbol	Description
		PH data register, can configure the output level of PH group
7~0		IO port as GPIO port, the read value is the current level state
		of IO port (input) or configure output value (output)

UART1_CON2 (D9H) UART1 mode control register 2

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	tx_empty_ie	rx_full_ie	UART	1_BDH
R/W	-	-	-	-	-	-	R/	′W
Reset value	-	-	-	-	1	1	0	0

Bit number	Bit symbol	Description
		Send interrupt enable
3	tx_empty_ie	1: interrupt enable;
		0: interrupt disable (used in polling mode)
2	rx_full_ie	Receive interrupt enable

		1: interrupt enable;0: interrupt disable (used in polling mode)
1~0	UART1_BDH	UART1_BDH, the upper 2 bits of the baud rate modulus divisor register

UART1 STATE (DAH) UART1 status flag register

Bit number	7	6	5	4			
Symbol	-	r8	t8	tx_empty_if			
R/W	-	R	R	R/W			
Reset value	-	0	0	0			
Bit number	3	2	1	0			
Symbol	rx_full_if	rx_overflow_if	frame_err_if	parity_err_if			
R/W	R/W	R/W	R/W	R/W			
Reset value	0	0	0	0			

Bit number	Bit sy	mbol			Descri	ption		
6	r	3	The 9th data of the receiver, read only					
5)	The 9th da	ta of the tr	ansmitter,	read only	when parit	y check
5	t	8	is enabled					
			Send inter	rupt mark				
4	ty on	ntu if	1: The sen	ding buffer	is empty;			
4	tx_em	pty_11	0: Send bu	ffer is full,	software	write 0 to a	elear, write	1 is
			invalid					
			Receive in	terrupt ma	rk			
3	ry fu	rx_full_if	1: The rec	eive buffer	is full;			
5			0: The receive buffer is empty, software writes 0 to clear,					
			writes 1 is invalid					
			Receive overflow flag					
2	rx_over	flow_if	1: Receive overflow (new data is lost);					
			0: no overflow, software write 0 to clear, write 1 is invalid					
			Frame error flag					
1	frame	err if	1: Frame e	error detect	ed;			
1	iname_		0: No fram	ne error is c	letected, so	oftware wr	ites 0 to cl	ear, write
			1 is invalie	1				
			Parity error flag					
0	parity_err_if		1: Receiver parity error;					
v	Purity_			0: The parity check is correct, the software writes 0 to clear,				to clear,
	and writes 1 is invalid							
UART1_BUF(I	DBH)UAR	T1 data re	gister					
Bit number	7	6	5	4	3	2	1	0

Bit number	7	6	5	4	3	2	1	0
Symbol				-	-			

R/W		R/W						
Reset value	1	1	1	1	1	1	1	1

Bit number	Bit sy	mbol	Description					
7~0			Read returns the contents of the read-only receive data buffer, write into the write-only transmit data buffer					
UART0_BDL ()	UART0_BDL (DCH) UART0 baudrate control register							
Bit number	7	6	5	4	3	2	1	0
Symbol								
R/W		R/W						
Reset value		0						

Bit number	Bit symbol	Description
		Baud rate control register
		The lower 8 bits of the baud rate modulus divisor register,
7~0		Baud_Mod={UART0_BDH[1:0], UART0_BDL},
/~0		When Baud_Mod=0, the baud rate clock is not generated,
		when Baud_Mod= $1 \sim 1023$, the baud rate =
		BUSCLK/(16xBaud_Mod)

UART0 CON1 (DDH) UART0 control register 1

		0		
Bit number	7	6	5	4
Symbol	-	uart0_enable	receive_enable	multi_mode
R/W	-	R/W	R/W	R/W
Reset value	-	0	0	0
Bit number	3	2	1	0
Symbol	stop_mode	data_mode	parity_en	parity_sel
R/W	R/W	R/W	R/W	R/W
Reset value	0	0	0	0

Bit number	Bit symbol	Description
6	want on a ha	Module enable
6	uart0_enable	1: module enable; 0: module close
5	magaine anglela	Receiver enable
5	receive_enable	1: receiver is on; 0: receiver is off
4	1 1	Multi-processor communication mode
4	multi_mode	1: mode enable; 0: mode disable
2	ston modo	Stop bit width selection
3	3 stop_mode	1: 2 bits; 0: 1 bit
2	data modo	Data mode selection
Ζ	data_mode	1: 9-bit mode; 0: 8-bit mode

		Parity check enable			
1	parity_en	1: parity check is enabled;			
		0: parity check is disabled			
0	0	Parity check selection			
0 parity_sel	parity_set	1: odd check; 0: even check			

UART0_CON2 (DEH) UART0 control register 2

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	tx_empty_ie	rx_full_ie	UAR	Г0_BDH
R/W	-	-	-	-	R/W R/W		R/W	
Reset value	-	-	-	-	1	1	0	0

Bit number	Bit symbol Description		
2	3 tx_empty_ie	Transmit interrupt enable	
3		1: interrupt enable; 0: interrupt disable (used in polling mode)	
2	m full is	Receive interrupt enable	
2	rx_full_ie	1: interrupt enable; 0: interrupt disable (used in polling mode)	
1~0	UART0_BDH	The upper 2 bits of the baud rate modulus divisor register	

UART0_STATE (DFH) UART0 status flag register

	· · · · ·	00		
Bit number	7	6	5	4
Symbol	-	r8	t8	tx_empty_if
R/W	-	R R/W		R/W
Reset value	-	0	0 0	
Bit number	3	2	1	0
Symbol	frx_full_i	rx_overflow_if	frame_err_if	parity_err_if
R/W	R/W	R/W	R/W	R/W
Reset value	0	0	0	0

Bit number	Bit symbol	Description
6	r8	The 9th data of the receiver, read only
5	t8	The 9th data of the transmitter, read only when parity check
5	10	is enabled
		Send interrupt mark:
4	tx_empty_if	1: The sending buffer is empty
4		0: Send buffer is full, software write 0 to clear, write 1 is
		invalid
		Receive interrupt mark:
3	for full :	1: The receive buffer is full
5	frx_full_i	0: The receive buffer is empty, software writes 0 to clear,
		writes 1 is invalid
2	rx_overflow_if	Receive overflow flag:

		1: Receive overflow (new data is lost)
		0: no overflow, software write 0 to clear, write 1 is invalid
		Frame error flag:
1	£	1: Frame error detected
1	frame_err_if	0: No frame error is detected, software writes 0 to clear,
		write 1 is invalid
		Parity error flag:
0	in a mitter and if	1: Receiver parity error
0	parity_err_if	0: The parity check is correct, the software writes 0 to clear,
		and writes 1 is invalid

ACC(E0H) Accumulator

Bit number	7	6	5	4	3	2	1	0		
Symbol		ACC								
R/W		R/W								
Reset value				()					

Bit number	Bit symbol	Description
7~0	ACC	Accumulator: The destination register is suitable for all
		arithmetic and logic operations.

IRCON2 (E1H) Interrupt flag register 2

Bit number	7	6	5	4	3	2	1	0
Symbol	IE15	IE14	IE13	IE12	IE11	IE10	IE9	IE8
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset value	0	0	0	0	0	0	0	0

Bit number	Bit symbol	Description
7	IE15	External interrupt 4 interrupt flag bit
6	IE14	External interrupt 3 interrupt flag bit
5	IE13	SPI interrupt flag bit
4	IE12	Timer3 interrupt flag bit
3	IE11	UART1 interrupt flag bit
2	IE10	UART0 interrupt flag bit
1	IE9	LVDT interrupt flag bit
0	IE8	SCI interrupt flag bit

UART0_BUF (E2H) UART0 data register

Bit number	7	6	5	4	3	2	1	0	
Symbol		-							
R/W		R/W							
Reset value	1	1	1	1	1	1	1	1	

BF7515BM44-LJTX

Bit number	Bit symbol	Description
7~0		Read returns the contents of the read-only receive data buffer, write into the write-only transmit data buffer

L	IICADD (E3H) IIC address register										
	Bit number	7	7 6 5 4 3 2 1								
	Symbol		IICADD[7:1]								
	R/W		R/W								
	Reset value				0				-		

Bit number	Bit symbol Description								
7~1	IICAD	D[7:1]	Configure the IIC communication address						
0	-	-	Reserved						
IICBUF (E4H)	IICBUF (E4H) IIC send and receive data register								
Bit number	7	6	5	4	3	2	1	0	
Symbol				IICE	BUF				
R/W		R/W							
Reset value				()				

Bit number	Bit symbol	Description								
7~0	IICBUF	IIC transmit and receive data buffer								
IICCON (E5H)	ICCON (E5H) IIC configuration register									
Bit number	7	6	5	4						
Symbol	-	-	IIC_RST	RD_SCL_EN						
R/W	-	-	R/W							
Reset value	-	-	- 0							
Bit number	3	2	1	0						
Symbol	WR_SCL_EN	SCLEN	SCLEN SR							
R/W	R/W	R/W R/W R/W								
Reset value	0	0	0	0						

Bit number	Bit symbol	Description
7~6		Reserved
		IIC module reset signal
5	IIC_RST	1: IIC module reset operation,
		0: IIC module works normally
		The host reads the low clock line control bit
4	RD_SCL_EN	1: Enable the host to read and pull down the clock line
4		function,
		0: Disable the host read and pull down clock line function
3	WR_SCL_EN	The host writes the low clock line control bit,

		1: Enable the function of writing and pulling down the clock
		line,
		0: Disable the function of writing and pulling down the clock
		line
		IIC clock enable bit
2	SCLEN	1=clock works normally;
		0=lows the clock line
		IIC conversion rate control bit
		1: The conversion rate control is turned off to adapt to the
1	SR	standard speed mode (100K);
		0: Conversion rate control is enabled to adapt to fast speed
		mode (400K)
		IIC work enable bit
0	IIC_EN	1: IIC works normally;
		0: IIC does not work

IEN1 (E6H) Interrupt enable register 1

Bit number	7	6	5	4	3	2	1	0
Symbol	EX7	EX6	-	EX4	EX3	EX2	-	-
R/W	R/W	R/W	-	R/W	R/W	R/W	-	-
Reset value	0	0	-	0	0	0	-	-

Bit number	Bit symbol	Description
7	EX7	WDT/Timer2 interrupt enable
7	EA/	1: enable; 0: disable
C	EX6	LED/LCD interrupt enable
6	EA0	1: enable; 0: disable
4	EX4	ADC interrupt enable
4	LA4	1: enable; 0: disable
2	EV2	IIC interrupt enable
3	EX3	1: enable; 0: disable
2	EX2	External interrupt 2 interrupt enable
2	EAZ	1: enable; 0: disable
5, 1~0	-	Reserved

IEN2(E7H) Interrupt enable register 2

Bit number	7	6	5	4	3	2	1	0
Symbol	EX15	EX14	EX13	EX12	EX11	EX10	EX9	EX8
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset value	0	0	0	0	0	0	0	0

Bit number Bit symbol Description

7	EX15	External interrupt 4 interrupt enable			
,		1: enable; 0: disable			
6	EX14	External interrupt 3 interrupt enable			
0	LA14	1: enable; 0: disable			
5	EX13	SPI interrupt enable			
5	LAIS	1: enable; 0: disable			
4	EX12	Timer3 interrupt enable			
4		1: enable; 0: disable			
3	EX11	UART1 interrupt enable			
5	LAII	1: enable; 0: disable			
2	EX10	UART0 interrupt enable			
2	EAIU	1: enable; 0: disable			
1	EX9	LVDT interrupt enable			
1		1: enable; 0: disable			
0	EX8	SCI interrupt enable			
0	EX8	1: enable; 0: disable			

IICSTAT (E8H) IIC status register

Bit number	7	6	5	4
Symbol	IIC_START	IIC_STOP	IIC_RW	IIC_AD
R/W	R	R	R	R
Reset value	0	1	0	0
Bit number	3	2	1	0
Symbol	IIC_BF	IIC_ACK	IIC_WCOL	IIC_RECOV
R/W	R	R	R/W	R/W
Reset value	0	1	0	0

Bit number	Bit symbol	Description
		Start signal flag
7	IIC_START	1: indicates that the start bit is detected;
		0: indicates that the start bit is not detected.
		Stop signal flag
6	IIC_STOP	1: Means in the stop state;
		0: Means that the stop bit is not detected.
		Read and write flag
		Record the read/write information obtained from the address byte
5	IIC_RW	after the last address match,
		1: Indicates read operation;
		0: means write operation.
4		Address data flag
4	IIC_AD	1: Indicates that the most recently received or sent byte is data;

		0: Indicates that the most recently received or sent byte is an
		address.
		IICBUF full flag bit: when receiving in IIC bus mode
		1: Indicates that the reception is successful and the buffer is full;
		0: indicates that the reception is not completed and the buffer is
		still empty
3	IIC_BF	When sending in IIC bus mode:
		1: Indicates that data transmission is in progress (not including
		the response bit and stop bit), and the buffer is still full;
		0: Indicates that the data transmission has been completed (not
		including the response bit and stop bit), and the buffer is empty.
		Reply flag
2	IIC_ACK	1: indicates an invalid response signal;
		0: indicates an effective response signal.
		Write conflict flag
		1: Indicates that when the IIC is sending the current data, new
1	IIC_WCOL	data is trying to be written into the sending buffer; the new data
		cannot be written into the buffer;
		0: No write conflict occurred.
		Receive overflow flag
		1: Indicates that new data is received when the previous data
0	IIC_RECOV	received by IIC has not been taken away, and the new data
		cannot be received by the buffer;
		0: Indicates that no receive overflow has occurred.

IICBUFFER (E9H) IIC transmit and receive data buffer register

Bit number	7	6	5	4	3	2	1	0	
Symbol		IICBUFFER							
R/W		R/W							
Reset value				()				

TRISA (EAH) PA direction register

Bit number	7	6	5	4	3	2	1	0	
Symbol	-	-	-	-	-				
R/W	-	-	-	-	R/W				
Reset value	-	-	-	-	1	1	1	1	

Bit number	Bit symbol	Description
3~0		PA direction register 0: output; 1: input
TRISB(EBH) P	B direction register	

Bit number 7 6 5 4 3 2 1 0

Symbol					-			
R/W				R	/W			
Reset value	1	1	1	1	1	1	1	1

Bit number	Bit sy	ymbol			Des	cription				
7~0				PB direction register						
/~0	-			ut; 1: input						
TRISC(ECH) P	C direction	n register								
Bit number	7	6	5	4	3	2	1	0		
Symbol					_					

Symbol					-			
R/W				R	₹/W			
Reset value	1	1	1	1	1	1	1	1

Bit number	Bit symbol	Description
7~0		PC direction register
		0: output; 1: input

SCI_C1 (EDH) UART2 control register 1

Bit number	7	6	5	4
Symbol	cycle_mode	stop_mode	single_txd	data_mode
R/W	R/W	R/W	R/W	R/W
Reset value	0	0	0	0
Bit number	3	2	1	0
Symbol	parity_en	parity_sel	rate_match_en	sci_enable
R/W	R/W	R/W	R/W	R/W
Reset value	0	0	0	0

Bit number	Bit symbol	Description
		Cycle mode enable
7	cycle_mode	1: Cyclic mode or single-line mode, txd connects to rxd;
		0: Normal two-wire mode
6	stop_mode	Stop bit selection: 1: 2bits, 0: 1bit
		Single wire mode enable
5	ain als trud	1: Single-wire mode is selected when cycle_mode=1, txd pin
5	single_txd	is valid;
		0: Internal circulation mode, txd pin is invalid
4	data mada	Transmission data mode selection
4	data_mode	1: 9-bit mode (the 9th bit is the parity bit); 0: 8-bit mode
2	monity on	Parity check enable
3	parity_en	1: Parity check is enabled; 0: Parity check is disabled
2	parity_sel	Parity selection

		1: odd parity, 0: even parity
		Synchronization segment (0x55) baud rate automatic
1	rate_match_en	matching enable
		1: adaptive baud rate update; 0: fixed baud rate configuration
		Module working clock gating enable, 1: Enable to turn on
0	sci_enable	the module working clock, 0: Disable to turn off the module
		working clock

TRISE(EEH) PE direction register

Bit number	7	6	5	4	3	2	1	0
Symbol					-			
R/W				R	/W			
Reset value	1	1	1	1	1	1	1	1

Bit number	Bit sy	Bit symbol Description						
7~0	-	PE direction register, 0: output, 1: input						
TRISF(EFH) PI	F direction	register						
Bit number	7	6	5	4	3	2	1	0
Symbol		_						
R/W				R	/W			
Reset value	1	1	1	1	1	1	1	1

Bit number	Bit sy	Bit symbol Description						
7~0	-	-	PF direct	tion registe	er, 0: outpu	ıt, 1: input		
B (F0H) B regis	ter							
Bit number	7	7 6 5 4 3 2 1 0						
Symbol		В						
R/W		R/W						
Reset value		0						

Bit number	Bit symbol	Description
7~0	В	B register: the source and destination registers of multiplication and division operations.

IRCON1 (F1H) Interrupt flag register 1

Bit number	7	6	5	4	3	2	1	0
Symbol	IE7	IE6	IE5	IE4	IE3	IE2	-	-
R/W	R/W	R/W	R/W	R/W	R/W	R/W	-	-
Reset value	0	0	0	0	0	0	-	-

Bit number	Bit symbol	Description
7	IE7	WDT/Timer2 interrupt flag

6	IE6	LED/LCD interrupt flag
4	IE4	ADC interrupt flag
3	IE3	IIC interrupt flag
2	IE2	External interrupt 2 interrupt flag
5, 1~0	-	Reserved

TRISG(F2H) PG direction register

()		8						
Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	-	-	-	-
R/W	-	-	-	-	R/W	R/W	R/W	R/W
Reset value	-	-	-	-	1	1	1	1

Bit number	Bit symbol	Description
3~0		PG direction register
5.40		0: output; 1: input

IPL2 (F4H) Interrupt priority register 2

Bit number	7	6	5	4	3	2	1	0
Symbol	IPL2.7	IPL2.6	IPL2.5	IPL2.4	IPL2.3	IPL2.2	IPL2.1	IPL2.0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset value	0	0	0	0	0	0	0	0

Bit number	Bit symb	ool	Description				
7	IPL2.7	, Ex	External interrupt 4 priority selection bit.				
	IF L2.7	1:	l: high; 0: low				
6	IPL2.6	Ех	External interrupt 3 priority selection bit.				
0	IPL2.0	1:	l: high; 0: low				
5		SF	SPI priority selection bit.				
5	IPL2.5	1:	l: high; 0: low				
4		Ti	Timer3 priority selection bit.				
4	4 IPL2.4	1:	l: high; 0: low				
3		U	UART1 priority selection bit.				
5	IPL2.3	1:	1: high; 0: low				
2		U	UART0 priority selection bit.				
Ζ	IPL2.2	1:	1: high; 0: low				
1		L	LVDT priority selection bit.				
1	IPL2.1	1:	1: high; 0: low				
		U	UART2 priority selection bit.				
0	IPL2.0	1:	1: high; 0: low				
IPL1 (F6H) Inte	rrupt priority	register 1					

Bit number	7	6	5	4	3	2	1	0
Symbol	IPL1.7	IPL1.6	IPL1.5	IPL1.4	IPL1.3	IPL1.2	-	-

R/W	R/W	R/W	R/W	R/W	R/W	R/W	-	-
Reset value	0	0	0	0	0	0	-	-

Bit number	Bit symbol	Description
7	IPL1.7	WDT/Timer 2 interrupt priority bit
/	IPL1./	1: high; 0: low
6	IDI 1 C	LED interrupt priority bit
0	6 IPL1.6	1: high; 0: low
4	IDI 1 4	ADC interrupt priority bit
4	IPL1.4	1: high; 0: low
2	IDI 1 2	IIC interrupt priority bit
3	IPL1.3	1: high; 0: low
		External interrupt 2 interrupt priority bit
2	IPL1.2	1: high; 0: low
5, 1~0		Reserved

TRISH(F7H) PH direction register

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	-	-		-
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset value	1	1	1	1	1	1	1	1

Bit number	Bit sy	ymbol	Description						
7~0	-			PH direction register 0: output; 1: input					
DATAA (F8H) PA data register									
Bit number	7	6	5	4	3	2	1	0	
Symbol	-	-	-	-	PA3	PA2	PA1	PA0	
R/W	-	R/W R/W R/W R/W							
Reset value	-	-	-	-	1	1	1	1	

Bit number	Bit symbol	Description
3~0		PA data register, you can configure the output level of the PA group IO port as GPIO port, the read value is the current level state of the IO port (input) or the configured output value (output)

4.2. Secondary Bus Registers Details

<u>CFG0_REG (00</u>)H) Config	guration wo	ord register	•				
Bit number	7	6	5	4	3	2	1	0
Symbol	-							
R/W		R						
Reset value					FF			
CFG1_REG (01	H) Config	guration wo	ord register	•				
Bit number	7	6	5	4	3	2	1	0
Symbol					-			
R/W					R			
Reset value					FF			
CFG2_REG (02	2H) Config	guration wo	ord register	•				
Bit number	7	6	5	4	3	2	1	0
Symbol					-			
R/W					R			
Reset value					FF			
CFG3_REG (03	H) Config	guration wo	ord register	•				
Bit number	7	6	5	4	3	2	1	0
Symbol								
R/W					R			
Reset value					FF			
CFG4_REG (04	H) Config	guration wo	ord register	•				
Bit number	7	6	5	4	3	2	1	0
Symbol					-			
R/W	R							
Reset value	FF							
CFG5_REG (05	H) Config	guration wo	ord register	•				
Bit number	7	6	5	4	3	2	1	0
Symbol					-			
R/W					R			
Reset value	FF							
CFG6_REG (06	H) Config	guration wo	ord register	•				
Bit number	7	6	5	4	3	2	1	0
Symbol					-			
R/W					R			
Reset value		FF						
CFG7_REG (07	'H) Config	guration wo	ord register	•				
Bit number	7	6	5	4	3	2	1	0

CFG0_REG (00H) Configuration word register

Semiconductor

Symbol					-				
R/W	R								
Reset value	FF								
CFG8_REG (08)	H) Config	H) Configuration word register							
Bit number	7	6	5	4	3	2	1	0	
Symbol					-				
R/W					R				
Reset value					FF				
CFG9_REG (09)	H) Config	guration wo	ord regis	ster	_				
Bit number	7	6	5	4	3	2	1	0	
Symbol					-				
R/W					R				
Reset value					FF				
CFG10_REG (0.	AH) Con	figuration	word reg	gister					
Bit number	7	6	5	4	3	2	1	0	
Symbol					-				
R/W	R								
Reset value	FF								
CFG11_REG (0)	BH) Con	figuration v	word reg	gister					
Bit number	7	6	5	4	3	2	1	0	
Symbol	-								
R/W					R				
Reset value	FF								
CFG12_REG (0	CH) Configuration word register								
Bit number	7	6	5	4	3	2	1	0	
Symbol					-				
R/W					R				
Reset value					FF				
CFG13_REG (0)	DH) Con	figuration	word reg	gister					
Bit number	7	6	5	4	3	2	1	0	
Symbol					-				
R/W	R								
Reset value	FF								
RST_STAT (0F)	H) Reset	flag registe	r						
Bit number	·	7		6		5		4	
Symbol		BOOT	F	DEBUG	F	SOFT_F	Р	PROG_F	
R/W		R/W		R/W		R/W		R/W	
Reset value		rst_stat	e	rst_state	rst_state		r	rst_state	
Bit number	•	3		2		1 0			

Symbol	ADDROF_F	BO_F	PO_F	WDTRST_F
R/W	R/W	R/W	R/W	R/W
Reset value	rst_state	rst_state	rst_state	rst_state

Bit number	Bit symbol	Description
7	BOOT F	0: no effect;
/	BOO1_F	1: A reset occurs when the configuration program space jumps
6	DEDLIC E	0: no effect;
0	DEBUG_F	1: trim configuration reset occurred.
5	SOFT F	0: no effect;
	SOFT_F	1: software reset occurred.
4		0: no effect;
4	PROG_F	1: program reset occurred.
3	ADDROF_F	0: no effect;
		1: PC pointer overflow reset occurred.
2	BO F	0: no effect;
	BO_I	1: Power_down reset occurred.
1	DO F	0: no effect;
1	PO_F	1: Power_on reset occurred.
0	WDTPST F	0: no effect;
0	WDTRST_F	1: watchdog timer overflow reset occurred.

PU PA (17H) PA pull-up resistor control register

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	-	-	-	
R/W	-	-	-	-	R/W	R/W	R/W	R/W
Reset value	-	-	-	-	0	0	0	0

Bit number	Bit symbol	Description
		Port PA pull-up resistor control register
3~0		1: The pull-up resistor is enabled;
		0: The pull-up resistor is not enabled

PU_PB(18H) PB pull-up resistor control register

	. 1 1		. 0					
Bit number	7	6	5	4	3	2	1	0
Symbol		-						
R/W		R/W						
Reset value		0						

Bit number	Bit symbol	Description
7~0		Port PB pull-up resistor control register
		1: The pull-up resistor is enabled;

		0: The pull-up resistor is not enabled								
PU_PC(19H) PC pull-up resistor control register										
Bit number	7	7 6 5 4 3 2 1 0								
Symbol				-	-					
R/W		R/W								
Reset value		0								

Bit number	Bit symbol	Description
		Port PC pull-up resistor control register
7~0		1: The pull-up resistor is enabled;
		0: The pull-up resistor is not enabled

PU_PE (1BH) PE pull-up resistor control register

Bit number	7	6	5	4	3	2	1	0		
Symbol		_								
R/W		R/W								
Reset value		0								

Bit number	Bit symbol	Description
		Port PE pull-up resistor control register
7~0		1: The pull-up resistor is enabled;
		0: The pull-up resistor is not enabled

PU_PF (1CH) PF pull-up resistor control register

Bit number	7	6	5	4	3	2	1	0		
Symbol		-								
R/W		R/W								
Reset value		0								

Bit number	Bit symbol	Description		
		Port PF pull-up resistor control register		
7~0		1: The pull-up resistor is enabled;		
		0: The pull-up resistor is not enabled		

PU_PG(1DH) PG pull-up resistor control register

Bit number	7	6	5	4	3	2	1	0		
Symbol		-								
R/W		R/W								
Reset value		0								

Bit number	Bit symbol	Description
7~0		Port PG pull-up resistor control register
		1: The pull-up resistor is enabled;

BF7515BM44-LJTX

		0: The pull-up resistor is not enabled								
PU_PH (1EH) PH pull-up resistor control register										
Bit number	7	7 6 5 4 3 2 1 0								
Symbol				-	-					
R/W		R/W								
Reset value		0								

Bit number	Bit sy	Bit symbol Description								
			Port PH pull-up resistor control register							
7~0	-	-	1: The pull-up resistor is enabled;							
			0: The pull-up resistor is not enabled							
LCD_IO_SEL_1 (1FH) LCD_SEG0-7 port selection configuration register										
Bit number	7	6	5	4	3	2	1	0		
Symbol				-						
R/W		R/W								
Reset value		0								

Bit number	Bit sy	mbol	Description							
7~0			LCD_SEG0-7 port selection configuration register							
/~0	-	-	1: select SEGMENT port mode; 0: select IO port mode							
LCD_IO_SEL_3 (21H) LCD_SEG16-23 port selection configuration register										
Bit number	7	6	5	4	3	2	1	0		
Symbol				-	-					
R/W		R/W								
Reset value		0								

Bit number	Bit sy	'mbol	Description							
7~0			LCD_SEG16-23 port selection configuration register							
/~0	-	-	1: select SEGMENT port mode; 0: select IO port mode							
LCD_IO_SEL_4 (22H) LCD_SEG24-27 port selection configuration register										
Bit number	7	6	5	4	3	2	1	0		
Symbol	-	-	-	-	-	-	-	-		
R/W	-	-	- R/W R/W R/W R/W R/W							
Reset value	-	-	-	- 0 0 0 0 0 0						

Bit number	Bit symbol	Description
	LCD_SEG24-27 port selection configuration register,	
4~0		reserved in non-sharing mode, shared mode COM4~COM7
H H H		is LCD_SEG24-27
		1: Select SEG24~SEG27 port/COM3~COM7;

Semiconductor

		0: Select IO port mode.							
COM_IO_SEL (23H) COML select configuration register									
Bit number	Bit number 7 6 5 4 3 2 1 0							0	
Symbol	COML7	COML6	COML5	COML4	COML3	COML2	COML1	COML0	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset value	0	0	0	0	0	0	0	0	

Bit number	Bit symbol	Description
		In LED matrix drive mode, 4*4 mode is not selected:
		COM port select configuration register, the corresponding
		bit is 1, COMLx is common
		1: Select the COM port function.
		0: Select the I/O port mode
		In LED matrix drive mode, select 4*4 mode:
7~0	COMLx	COML0~ COML3 is common, and COML4~ COML7 is
		segment
		1: Select COM port function or SEG port function;
		0: Select the I/O port mode
		When the high current IO port drive is enabled:
		1: Select the high-current I/O port
		0: Select the I/O port mode

SEG IO SEL (24H) LED SEG0-7 port selection configuration register

Bit number	7	6	5	4	3	2	1	0			
Symbol		-									
R/W		R/W									
Reset value					0						

Bit number	Bit symbol	Description
	LED_SEG0-7 port selection configuration register 1: select SEGMENT port mode; 0: select IO port mode	
7~0		Note: This register is only valid when the LED matrix is not
		4*4 mode.

ODRAIN_EN(25H) PC4/5/PE4/5 port open drain output enable register

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	-	-	-	-
R/W	-	-	-	-	R/W	R/W	R/W	R/W
Reset value	-	_	-	-	0	0	0	0

Bit number	Bit symbol	Description
3~0		PC4/5/PE4/5 port open drain output enable register

		1:0	1: Open drain output						
		0: C	0: CMOS output						
ADC_IO_SEL0 (2AH) ADC function selection register									
Bit number	7	6	6 5 4 3 2 1 0						
Symbol	-		ADC IO SEL0 [6:0]						
R/W	-		 R/W						
Reset value	-				0				

Bit number	Bit symbol	Description
6~0	ADC_IO_SEL0 [6:0]	Enable the ADC control function that disables analog input pins 1: Select ADC function; 0: Do not select ADC function 0000001=ADC00; 0000010=ADC01; 0000100=ADC02; 0001000=ADC03; 0010000=ADC04; 0100000=ADC05; 1000000=ADC06

SEL_LVDT_VTH (2CH) LVDT threshold selection register

Bit number	7	6	5	4	3	2	1	0	
Symbol	-	-	-	-	-	-	-		
R/W	-	-	-	-	-	-	R/W		
Reset value	-	-	-	-	-	-	0	0	

Bit number	Bit symbol	Description
1.0		LVDT threshold selection
1~0		00: 2.7V; 01: 3V; 10: 3.8V; 11: Reserved

PD_ANA (2DH) Module switch control register

Bit number	7	6	5	4	3	2	1	0
Symbol	-	PD_LVDT	PD_BOR	PD_XTAL_32K	-	-	-	PD_ADC
R/W	-	R/W	R/W	R/W	-	-	-	R/W
Reset value	-	1	1	1	-	-	-	1

Bit number	Bit symbol	Description
6		LVDT control register
6	PD_LVDT	1: closed; 0: open, closed by default
		BOR control register
5		1: closed; 0: open, closed by default
5	PD_BOR	Note: The power-on reset value is 1, and other resets keep the
		original state.
4		PA port crystal oscillator circuit (32768Hz) control register
4	PD_XTAL_32K	1: closed; 0: open, closed by default

3~1		Reserved
		Analog ADC shutdown control register
0	PD_ADC	0: ADC module works normally;
		1: ADC module does not work
DLE WAKE CFG(30H) System wakeup configuration register		

		2	1	0	0			
Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	-	PLI		TIM
R/W	-	-	-	-	-	R/W		
Reset value	-	-	-	-	-	1	1	1

Bit number	Bit symbol	Description				
		Wake-up PLL timing time				
2~0	PLL_WAKE_TIM	000: 0.2ms;	001: 0.3ms;	010: 0.4ms;	011: 0.5ms;	
		100: 0.6ms;	101: 0.7ms;	110: 0.9ms;	111: 1ms	

LED_DRIVE(31H) LED port drive capability configuration register

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-			-	
R/W	-	-	-	-	R/W	R/W	R/W	R/W
Reset value	-	-	-	-	0	0	0	0

ADC_CFG_SEL(32H) ADC configuration register

Bit number	7	6	5	4	3	2	1	0
Symbol	-	ADCWNUM					ADC_I_SEL[1]	ADC_I_SEL[0]
R/W	-	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset value	-	0	0	0	0	0	0	0

Bit symbol	Description
6~2 ADCWNUM	Selection of distance conversion interval time after
	sampling: (3+ADCWNUM)* t _{ADCK}
ADC_I_SEL[1]	ADC select comparator bias current, 1: 4uA; 0: 5uA
ADC_I_SEL[0]	ADC select buffer bias current, 1: 4uA; 0: 5uA
	ADCWNUM ADC_I_SEL[1]

PWM_IO_SEL(33H) PWM port selection register

Bit number	7	6	5	4	3	2	1	0
Symbol		-						
R/W		R/W						
Reset value	0							

Bit number	Bit symbol	Description
		PWM port selection enable
7~0		PWM_IO_SEL[0] corresponds to PWM0_A,
		PWM_IO_SEL[1] corresponds to PWM0_B,

PWM_IO_SEL[2] corresponds to PWM0_C,
PWM_IO_SEL[3] corresponds to PWM1_A,
PWM_IO_SEL[4] corresponds to PWM1_B,
PWM_IO_SEL[5] corresponds to PWM1_C,
PWM_IO_SEL[6] corresponds to PWM2, PWM_IO_SEL[7]
corresponds to PWM3
1: select PWM function; 0: not select PWM function

PERIPH_IO_SEL1(34H) External port function selection register 1

Bit number	7	6	5	4
Symbol	UART1_IO_SEL	UART0_	IIC_IO_SEL	
R/W	R/W	R/W	R/W	R/W
Reset value	0	0	0	1
Bit number	3	2	1	0
Symbol	INT3_IO_SEL	INT2_IO_SEL	INT1_IO_SEL	INT0_8_IO_SEL
R/W	R/W	R/W	R/W	R/W
Reset value	0	0	0	0

Bit number	Bit symbol	Description
		UART1 port selection enable
7	7 UART1_IO_SEL	0: Select UART1 (RXD1B/TXD1B) function;
		1: Select UART1 (RXD1A/TXD1A) function
		UART0 port selection enable
6~5	LIADTO IO SEI	00: select UART0 (RXD0C/TXD0C) function;
0~3	UART0_IO_SEL	01: Select UART0 (RXD0A/TXD0A) function;
		1x: select UART0 (RXD0B/TXD0B) function
		IIC port selection enable
4	IIC_IO_SEL	0: Select IIC (SCL0B/SDA0B) function;
		1: Select IIC (SCL0A/SDA0A) function
3	INT3 IO SEL	INT3 port selection enable
5		1: Select INT3 function; 0: Not select INT3 function
2	DIT2 IO CEI	INT2 port selection enable
2	INT2_IO_SEL	1: Select INT2 function; 0: Not select INT2 function
1	DIT1 IO OFI	INT1 port selection enable
1	INT1_IO_SEL	1: Select INT1 function; 0: Not select INT1 function
0		INT0_8 port selection enable
0	INT0_8_IO_SEL	1: select INT function; 0:Not select INT function

PERIPH_IO_SEL2(35H) External port function selection register 2

Bit number	7	6	5	4
Symbol	INT0_7_IO_SEL	INT0_6_IO_SEL	INT0_5_IO_SEL	INT0_4_IO_SEL
R/W	R/W	R/W	R/W	R/W

BF7515BM44-LJTX

Reset value	0	0	0	0
Bit number	3	2	1	0
Symbol	INT0_3_IO_SEL	INT0_2_IO_SEL	INT0_1_IO_SEL	INT0_0_IO_SEL
R/W	R/W	R/W	R/W	R/W
Reset value	0	0	0	0

Bit number	Bit symbol	Description
	INT0 x IO SEL	INT0_x port selection enable
$7 \sim 0$ $$	1: Select INT function	
	0: Not select INT function	

PERIPH_IO_SEL3 (36H) External port function selection register 3

Bit number	7	6	5	4	3	2	1	0
Symbol	INT4_7_IO_SEL	-	-	-	-	-	-	-
R/W	R/W	-	-	-	-	-	-	-
Reset value	0	-	-	-	-	-	-	-

Bit number	Bit symbol	Description		
7	NITA 7 IO SEI	INT4_7 port selection enable		
/	INT4_7_IO_SEL	1: Select INT function; 0: Not select INT function		
6~0		Reserved		
DEDIDIT TO GE				

PERIPH_IO_SEL4(37H) External port function selection register 4

			0		
Bit number	7	6	5	4	
Symbol	INT4_15_IO_SEL	INT4_14_IO_SEL	INT4_13_IO_SEL	INT4_12_IO_SEL	
R/W	R/W	R/W	R/W	R/W	
Reset value	0	0	0	0	
Bit number	3	2	1	0	
Symbol	INT4_11_IO_SEL	INT4_10_IO_SEL	INT4_9_IO_SEL	INT4_8_IO_SEL	
R/W	R/W	R/W	R/W	R/W	
Reset value	0	0	0	0	

Bit number	Bit symbol	Description
	NITA - IO CEI	INT4x port selection enable
$7\sim0 \qquad \begin{bmatrix} INT4_x_IO_SEL\\ x=15\sim8 \end{bmatrix}$		1: Select INT function
	x=13~8	0: Not select INT function

PERIPH_IO_SEL5 (38H) External port function selection register 5

Bit number	7	6	5	4
Symbol	-	INT4_22_IO_SEL	INT4_21_IO_SEL	INT4_20_IO_SEL
R/W	-	R/W	R/W	R/W
Reset value	-	0	0	0
Bit number	3	2	1	0

Symbol	INT4_19_IO_SEL	INT4_18_IO_SEL	INT4_17_IO_SEL	INT4_16_IO_SEL
R/W	R/W	R/W	R/W	R/W
Reset value	0	0	0	0

Bit number	Bit symbol	Description
7	-	Reserved
6~0	INT4_x_IO_SEL x=22~16	INT4x port selection enable (x=22~16) 1: Select INT function 0: Not select INT function

EXT_INT_CON1 (39H) External interrupt configuration register 1

					0			
Bit number	7	6	5	4	3	2	1	0
Symbol	INT3_PC	LARITY	INT2_PC	LARITY	INT1_PC	LARITY	INT08_P	OLARITY
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset value	0	1	0	1	0	1	0	1

Bit number	Bit symbol	Description
		External interrupt 3 trigger polarity selection
7~6	INT3 POLARITY	01: Falling edge;
/~0	INTS_FOLARTI	10: rising edge;
		00/11: Double edge
		External interrupt 2 trigger polarity selection
5~4	INT2_POLARITY	01: Falling edge;
5~4		10: rising edge;
		00/11: Double edge
		External interrupt 1 trigger polarity selection
3~2	INT1 DOI ADITY	01: Falling edge;
5~2	INT1_POLARITY	10: rising edge;
		00/11: Double edge
		External interrupt 0-8 trigger polarity selection
1~0	INT08 POLARITY	01: Falling edge;
1~0	INTUO_FOLANITI	10: rising edge;
		00/11: Double edge

EXT INT CON2 (3AH) External interrupt configuration register 2

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	-	INT4_POLARITY	INT0_PC	DLARITY
R/W	-	-	-	-	-	R/W	R/W	R/W
Reset value	-	-	-	-	-	0	0	1

Bit number	Bit symbol	Description
2	INT4_POLARITY	External interrupt 4_x trigger polarity selection:

		1: Rising edge; 0: Falling edge
1~0	INT0_POLARITY	External interrupt 0_0~0_7 trigger polarity selection: 01: Falling edge; 10: rising edge; 00/11: Double edge

SPI_TX_START_ADDR(3EH) SPI high speed mode transmit buffer first address

Bit number	7	6	5	4	3	2	1	0
Symbol				-	-			
R/W				R/	W			
Reset value				()			

Bit number	Bit symbol	Description
7~0		In SPI high-speed mode, the first address of the transmit data
/~0		buffer, SPI_TX_START_ADDR*16

SPI_RX_START_ADDR (3FH) SPI high-speed mode receive buffer first address

Bit number	7	6	5	4	3	2	1	0
Symbol				-	-			
R/W				R/	W			
Reset value				()			

Bit number	Bit sy	rmbol	Description							
7~0			In SPI high-speed mode, the first address of the receive data							
/~0	-	-	buffer, SPI_RX_START_ADDR*16							
SPI_NUM_L (4	SPI NUM L (40H) SPI high speed mode data cache address number low 8 bits									
Bit number	7	6	5	4	3	2	1	0		
Symbol				-	-					
R/W		R/W								
Reset value				()					

Bit number	Bit sy	ymbol		Description						
7~0	-		SPI high speed mode data cache address number low 8 b							
SPI_NUM_H (41H) SPI high-speed mode data cache address number high 4 bits										
Bit number	7	6	5	4	3	2	1	0		
Symbol	-	-	-	-	-	-	-	-		
R/W	-	-	-	-	R/W	R/W	R/W	R/W		
Reset value	-	-	-	-	0	0	0	0		

Bit number	Bit symbol	Description
3~0		SPI high-speed mode data cache address number high 4 bits

				0
Bit number	7	6	5	4
Symbol	-	-	ADC_VREF_SEL	ADC_VREF_VOL_SEL
R/W	-	-	R/W	R/W
Reset value	-	-	0	0
Bit number	3	2	1	0
Symbol	VREF_IN_	ADC_SEL	СТ	RL_SEL
R/W	R/W	R/W	R/W	R/W
Reset value	0	0	1	0

ADC_CFG_SEL1 (42H) ADC comparator offset cancellation selection register

Bit number	Bit symbol	Description
		ADC reference voltage selection:
5	ADC VREF SEL	0: Select VCC as the output signal;
5	ADC_VKEF_SEL	1: Select the voltage output by the ADC_VREF
		module as the reference voltage.
		ADC_VREF output mode selection:
		0: reserved
4	ADC_VREF_VOL_SEL	1: 4V as ADC reference voltage.
4		When the ADC_VREF output mode selects 4V as the
		ADC reference voltage, it is recommended to select
		3MHz for the ADC frequency division clock
		Voltage selection input to the internal ADC channel of
3~2	VDEE IN ADC SEI	the chip
3~2	VREF_IN_ADC_SEL	00: 1.362V; 01: 2.253V;
		10: 3.111V; 11: 4.082V.
1~0	CTDI SEI	ADC offset cancellation timing selection:
1~0	CTRL_SEL	0: Reserved; 1: Reserved; 2: Sequence 2.

IIC_FIL_MODE(50H) IIC filter selection register

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	-	-	IIC_AFIL_SEL	IIC_DFIL_SEL
R/W	-	-	-	-	-	-	R/W	R/W
Reset value	-	-	-	-	-	-	1	0

Bit number	Bit symbol	Description
		IIC port analog filter selection enable
1	IIC_AFIL_SEL	1: Select analog filter function; 0: Do not select analog filter
		function.
		IIC port digital filter selection enable
0	IIC_DFIL_SEL	1: Select digital filter function; 0: Do not select digital filter
		function.

ADC_IO_SEL1 (53H) ADC select enable register

Bit number	7	6	5	4	3	2	1	0
Symbol		ADC_IO_SEL1 [7:0]						
R/W		R/W						
Reset value	0							

Bit number	Bit symbol	Description				
		Enable the ADC control function that disables analog input				
		pins				
		1: Select ADC function;				
7~0	ADC_IO_SEL1	0: Do not select ADC function				
/~0	[7:0]	00000001=ADC7; 00000010=ADC8;				
		00000100=ADC9; 00001000=ADC10;				
		00010000=ADC11; 00100000=ADC12;				
		01000000=ADC13; 10000000=ADC14				

ADC_IO_SEL2(54H) ADC select enable register

Bit number	7	6	5	4	3	2	1	0
Symbol		ADC_IO_SEL2 [7:0]						
R/W		R/W						
Reset value		0						

Bit number	Bit symbol	Description
		Enable the ADC control function that disables analog input
		pins
		1: Select ADC function;
7~0	ADC_IO_SEL2	0: Do not select ADC function
/~0	[7:0]	00000001=ADC15; 00000010=ADC16;
		00000100=ADC17; 00001000=ADC18;
		00010000=ADC19; 00100000=ADC20;
		01000000=ADC21; 10000000=ADC22

ADC_IO_SEL3(55H) ADC select enable register

Bit number	7	6	5	4	3	2	1	0
Symbol		ADC_IO_SEL3[7:0]						
R/W		R/W						
Reset value				()			

Bit number	Bit symbol	Description
7~0	ADC_IO_SEL3 [7:0]	Enable the ADC control function that disables analog input pins 1: Select ADC function;

	0: Do not select ADC function			
	00000001=ADC23;	00000010=ADC24;		
	00000100=ADC25;	00001000=ADC26;		
	00010000=ADC27;	00100000=ADC28;		
	01000000=ADC29;	10000000=ADC30		

ADC_IO_SEL4(56H) ADC select enable register

	<u> </u>		<u>U</u>					
Bit number	7	6	5	4	3	2	1	0
Symbol		ADC_IO_SEL4 [7:0]						
R/W		R/W						
Reset value				()			

Bit number	Bit symbol	Description				
		Enable the ADC control function that disables analog input				
	ADC IO SEL4	pins				
		1: Select ADC function; 0: Do not select ADC function				
7~0	[7:0]	00000001=ADC31; 00000010=ADC32;				
	[7:0]	00000100=ADC33; 0000100=ADC34;				
		00010000=ADC35; 00100000=ADC36;				
		01000000=ADC37; 10000000=ADC38				

ADC IO SEL5(57H) ADC select enable register 5

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	ADC_IO_SEL5 [4:0]				
R/W	-	-	-	R/W				
Reset value	-	-	-	0				

Bit number	Bit symbol	Description
7~5		Reserve
	4~0 ADC_IO_SEL5 [4:0]	Enable the ADC control function that disables analog input
		pins
		1: Select ADC function;
4~0		0: Do not select ADC function
		00001=ADC39; 00010=ADC40;
		00100=ADC41; 01000=ADC42;
		10000=ADC43;

FLASH_BOOT_EN (5AH) BOOT mode status register

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	-	-	-	FLASH_BOOT_EN
R/W	-	-	-	-	-	-	-	R
Reset value	-	-	-	-	-	-	-	0

Bit number	Bit symbol	Description
		1: Indicates that the Flash BOOT upgrade mode has been
		entered,
		0: indicates that the Flash BOOT upgrade mode has been
		exited.
0	FLASH_BOOT_EN	Note: In Flash BOOT upgrade mode, SPROG_ADDR_H,
		SPROG_ADDR_L, SPROG_DATA, SPROG_CMD,
		SPROG_TIM are reused as BOOT upgrade function.
		{SPROG_ADDR_H, SPROG_ADDR_L} are multiplexed
		into all Flash space addresses from 0x0000 to 0xFFFF.

EEP SELECT (5BH) DATA area selection register

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	-	-		-
R/W	-	-	-	-	-	-		R/W
Reset value	-	_	-	-	-	-		0

Bit number	Bit symbol	Description
		1: Select NVR3 and NVR4 as DATA area
0		When SPROG_ADDR_H[2]=1, select NVR4;
0		When SPROG_ADDR_H[2]=0, select NVR3
		0: Select address (0xFC00~0xFFFF) as DATA area, 1 page

SCI_BDH (60H) SCI baud rate control register, high 5 bits

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	-	-	-	-
R/W	-	-	-	R/W	R/W	R/W	R/W	R/W
Reset value	-	-	-	0	0	0	0	0

Bit number	Bit symbol	Description			
4~0		SCI baud rate control register			
4~0		Baud rate modulus divisor register, high 5 bits			

SCI_BDL (61H) SCI baud rate control register, low 8 bits

Bit number	7	6	5	4	3	2	1	0		
Symbol		-								
R/W		R/W								
Reset value				()					

Bit number	Bit symbol	Description
7~0		SCI baud rate control register
/~0		The lower 8 bits of the baud rate modulus divisor register,

	Baud_Mod={ SCI_BDH[4:0], SCI_BDL}, when Baud_Mod
	= 0, no baud rate clock is generated, when Baud_Mod =
	1~8191, SCI baud rate = BUSCLK/(16* Baud_Mod).

BOOT CMD (6AH) Program space jump instruction register

Bit number	7	6	5	4	3	2	1	0		
Symbol		-								
R/W		R/W								
Reset value				()					

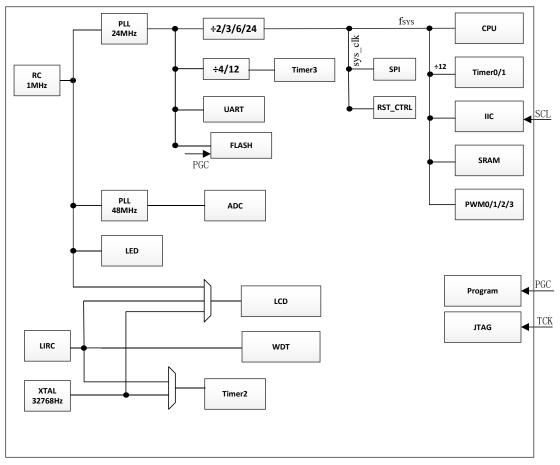
Bit number	Bit symbol	Description
	7~0	Configure the space jump instruction of the program, write 5 groups of data (0xFF, 0x00, 0x88, 0x55, 0xAA)
7~0		continuously, and jump into the main program space; Continuously write 5 sets of data (0x37, 0xC8, 0x42, 0x9A,
		0x65), jump into the Boot program space; the value read out
		is the most recently written byte.

ROM OFFSET L (6BH) Address offset of CODE area (low 8 bits)

Bit number	7	6	5	4	3	2	1	0	
Symbol		-							
R/W		R							
Reset value				()				

Bit number	Bit sy	mbol	Description							
7~0			Address offset of CODE area (low 8 bits)							
ROM_OFFSET_H (6CH) Address offset of CODE area (high 8 bits)										
Bit number	7	6	5	4	3	2	1	0		
Symbol		_								
R/W		R								
Reset value		0								

Bit number	Bit symbol	Description
7~0		Address offset of CODE area (high 8 bits)


5. Clock, Reset, Working Mode and Watchdog

5.1. Clock

5.1.1. Clock Definition

Clock source:

- Internal high-speed RC oscillator: RC1M
- Internal low-speed RC oscillator: LIRC32k
- External crystal oscillator: 32768 Hz/4 MHz
- RC1M multiplication to get PLL clock: PLL48M/ PLL24M

Clock Diagram

BF7515BM44-LJTX series clock is defined as follows:

RC1MHz: Built-in RC oscillator, frequency 1MHz, LCD Driver clock.

LIRC: Internal low-speed clock, watchdog clock, Timer2 clock and LCD Driver clock.

PLL_24MHz: The 24MHz clock generated by the phase-locked loop is used as the main system clock after frequency division.

PLL_48MHz: The 48MHz clock generated by the phase-locked loop is used as the clock source of

the ADC.

 f_{SYS} : PLL_24MHz clock divided by frequency, the frequency is 12MHz/8MHz/4MHz/1MHz. sys_clk : SPI clock.

XTAL32768Hz: External 32768 Hz precision clock, Timer2 or LCD Driver clock.

SCL: IIC master clock, sent by the IIC Master master, as the IIC communication clock.

PGC: Programming clock, download clock when programming and burning programs. **TCK:** Debug clock.

5.1.2. System Clock Register

Bit number	(84H) TIMERS COL 7~3	2	1	0	
Symbol	-	TIMER3_CLK_SEL	TIMER3_RLD	TIMER3_EN	
R/W	-	R/W	R/W	R/W	
Reset value	_	0	0	0	

TIMER3 CFG (84H) TIMER3 configuration register

Bit number	Bit symbol	Description
		TIMER3 timing clock selection register.
2	TIMER3_CLK_SEL	1: select clk_24m/4;
		0: select clk_24m/12.

TIMER2_CFG (93H) TIMER2 configuration register

Bit number	7~4	3	2	1	0
Symbol	-	TIMER2_CNT_MOD	TIMER2_CLK_SEL	TIMER2_RLD	TIMER2_EN
R/W	-	R/W	R/W	R/W	R/W
Reset value	-	0	0	0	0

Bit number	Bit symbol	Description
		TIMER2 counting step mode selection register
3	TIMER2_CNT_MOD	1: The counting step is 65536 clocks
		0: The counting step is one clock
		TIMER2 clock selection register
2	TIMER2_CLK_SEL	1: select XTAL32768Hz
		0: select LIRC 32kHz

SYS CLK CFG(ADH) System clock configuration register

					<u> </u>					
Bit number	7	6	5	4	3	2	1	0		
Symbol	-	-	-	IM0_EN	PLL_CLK_SEL		SEL	PD_SYS_CLK		
R/W	-	-	-	R/W	R/W R/W R/W		R/W			
Reset value	-	-	-	0	1	0	0	1		

Bit number Bit symbol Description

3~1	PLL_CLK_SEL	 PLL clock divider selection register: 000~011: reserved; 100: 12MHz; 101: 8MHz; 110: 4MHz; 111: 1MHz 			
0 PD SYS	PD SYS CLK	Core clock enable			
-		0: turn on the core clock; 1: turn off the core clock.			

Secondary bus register:

IDLE_WAKE_CFG(30H) System wakeup configuration register

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	-	PLL_WAKE_TIM		
R/W	-	-	-	-	-	R/W		
Reset value	-	-	-	-	-	1	1	1

Bit number	Bit symbol	Description
		Wake-up PLL timing time
		000: 0.2ms;
		001: 0.3ms;
		010: 0.4ms;
2~0	PLL_WAKE_TIM	011: 0.5ms;
		100: 0.6ms;
		101: 0.7ms;
		110: 0.9ms;
		111: 1ms

5.2. Reset

There are eight reset mode in BF7515BM44-LJTX: ROM address jump reset, WDT overflow reset, power on reset(POR), brown-out reset (BOR), debug reset, pointer overflow reset, flash program reset, software reset. Any one of above reset, global will make chip reset. We can judge the reset flag register which reset happen, the reset must be cleared by software.

Reset block diagram

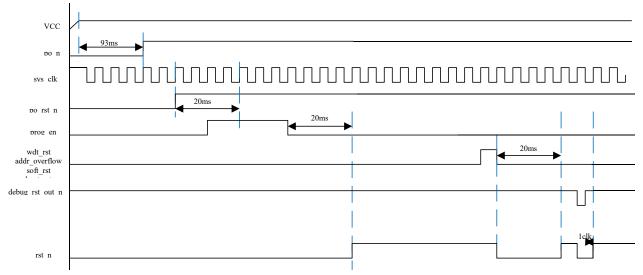
5.2.1. Reset sequence

po_n: Power-on reset. After the system is powered on, the analog module generates a low-level signal and lasts for 93ms. When the power-on reset is low, the entire chip is in the reset state, and after the global reset signal continues to be effective 20ms after the power-on reset is high, the system exits the reset mode.

bo_n: brown-out reset, the analog module generates a low-level signal after the system has a power-down reset. When the power-down reset signal is low, the entire chip is in the reset state.

After the global reset signal becomes high, the system exits the reset mode after the global reset signal continues to be valid for 20ms.

prog_en: programming reset. When prog_en is high, it is the programming mode of FLASH. At this time, the global reset signal is valid. After it goes low, the global reset signal continues to be valid for 20ms.


soft_rst: software reset, the soft reset signal is valid by writing SFR, and the global reset signal is valid for 20ms. After 20ms, the system exits the reset mode.

wdt_rst: The watchdog timer overflows and resets. After the watchdog timer overflows, the global reset is 20ms. After 20ms, the system exits the reset mode.

addr_overflow: PC pointer overflow reset. If the PC pointer exceeds the valid address range of the flash when the MCU addresses the program memory, the addr_overflow signal becomes high, and the sys_clk clock rising edge detects the high level of addr_overflow (requires 1 clock cycle) and resets the global 20ms, the reset signal will clear the addr_overflow signal to zero. After 20ms, the system exits the reset mode.

debug_rst_out_n: trim configuration reset, output a reset signal for the core trim module, low means reset is effective, chip global reset, but there will not be a 20ms initialization process, only delay 1 system clock reset low level.

boot_rst: ROM address jump reset, the boot_rst signal becomes high after the complete ROM space jump instruction is configured, and the sys_clk clock checks the boot_rst high level (valid for one clock cycle) to reset the global 20ms.

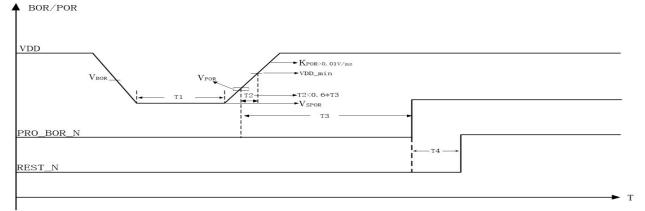
Reset timing diagram

Reset sequence description:

1. The chip has a power-on reset, and the analog POR module delays for 93ms, and po_n is pulled high.

2. The programmer sends instructions to make the chip enter the programming mode (prog_en is pulled high). In the programming mode, the system is in a global reset state. After the programming is completed, the programming mode is exited. After a delay of 20ms, rst_n is pulled high and the chip enters normal operation.

3. During normal operation, any one of watchdog reset, address overflow reset, soft reset, ROM


address jump reset occurs, rst_n is pulled low, after a delay of 20ms, rst_n is pulled high, and the chip enters normal operation.

4. After normal work, you cannot enter the programming mode.

5. In debug mode, configure debug reset, pull down rst_n, pull up 1 system clock in

debug_rst_out_n, pull up rst_n, and the chip enters normal operation.

BOR/POR Chart:

BOR/POR Chart diagram

Chl	D	Test	Conditions	N/:	Trm	М	Unit
Symbol	Parameter	VCC	temperature	Min	Тур	Max	
V _{SPOR}	Power on reset start voltage	-	25°C	-	-	300	mV
Kpor	Power on reset voltage rate	-	25°C	0.01	-	-	V/ms
V _{POR}	Power on reset voltage	-	25°C	1.1	1.5	2.2	V
V _{BOR}	Brownout reset voltage (±10%), hysteresis 0.2V	-	25°C	-	1.9	-	V
VDD_min	Minimum operating voltage	-	25°C	2.7	-	-	V
T1	VDD keep VSPOR time	-	25°C	0.1	-	-	ms
T2	VPOR from VDD_min time	-	25°C	-	-	0.6*T3	ms
Т3	Reset POR_BOR_N duration	-	25°C	55	93	131	ms
T4	Global reset effective time	-	25°C	-	20	-	ms

BOR/POR reset parameters:

Power on reset parameter characteristic table

When VDD is affected by the load or severely disturbed, if the voltage drops into the voltage dead zone and the chip is not within the working voltage range, it may cause the system to work abnormally, such as DATA area data loss. The function of power-down reset (BOR) is to monitor when VDD drops to the BOR voltage, the MCU can generate a power-down reset in advance to avoid system errors.

Suggestions to prevent entering the voltage dead zone and reduce the probability of system error:

- BOR is turned on when the program is first initialized, and BOR is turned on without delay
- Increase the voltage drop slope

5.2.2. Reset Register

	SFR							
Address	Name	RW	Reset value	Description				
0x8E	SOFT_RST	RW	0x00	Soft reset register				

Secondary bus register							
AddressNameRWReset valueDescription							
0x0F	RST_STAT	RW	rst_state	Reset flag register			
0x2D	PD_ANA	RW	0xFF	Module switch control register			

rst_state power-on reset: 0x02;

Reset in other modes: the reset flag bit corresponding to rst_state is 1, other reset flags remain in their original state

SOFT_RST(8EH) Soft reset register

Bit number	7	6	5	4	3	2	1	0	
Symbol		_							
R/W		R/W							
Reset value	0								

Bit number	Bit symbol	Description				
7~0		Soft reset register, only when the register value is 0x55, the				
		software reset is generated				

Secondary bus register:

RST_STAT (0FH) Reset flag register

Bit number	7	6	5	4
Symbol	BOOT_F	DEBUG_F	SOFT_F	PROG_F
R/W	R/W	R/W	R/W	R/W
Reset value	rst_state	rst_state	rst_state	rst_state
Bit number	3	2	1	0
Symbol	ADDROF_F	BO_F	PO_F	WDTRST_F
R/W	R/W	R/W	R/W	R/W
Reset value	rst_state	rst_state	rst_state	rst_state

Bit number	Bit symbol	Description
		0: no effect;
7	BOOT_F	1: A reset occurs when the configuration program space
		jumps.
6	DEBUG_F	0: no effect;
6		1: trim configuration reset occurred.
5	SOFT_F	0: no effect;

		1: software reset occurred.
4	PROG F	0: no effect;
	_	1: program reset occurred.
3	ADDROF F	0: no effect;
		1: PC pointer overflow reset occurred.
2	BO_F	0: no effect;
Z		1: Power_down reset occurred.
1		0: no effect;
1	PO_F	1: Power_on reset occurred.
0	WDTDST F	0: no effect;
0	WDTRST_F	1: watchdog timer overflow reset occurred.

PD_ANA (2DH) Module switch control register

Bit number	7	6	5	4	3	2	1	0
Symbol	-	PD_LVDT	PD_BOR	PD_XTAL_32K	-	-	-	PD_ADC
R/W	-	R/W	R/W	R/W	-	-	-	R/W
Reset value	-	1	1	1	-	-	-	1

Bit number	Bit symbol	Description
5	PD_BOR	 close; open, close by default BOR is turned on when the program is first initialized, and BOR is turned on without delay

5.3. Working Mode

5.3.1. Introduction

BF7515BM44-LJTX series working mode: active mode, standby mode.

BF7515BM44-LJTX provides SYS_CLK_CFG register, configure Bit4 of this register to control MCU to enter idle mode 0. BF7515BM44-LJTX provides PCON register, configure Bit0 of this register to control MCU to enter idle mode 1.

• Active Mode

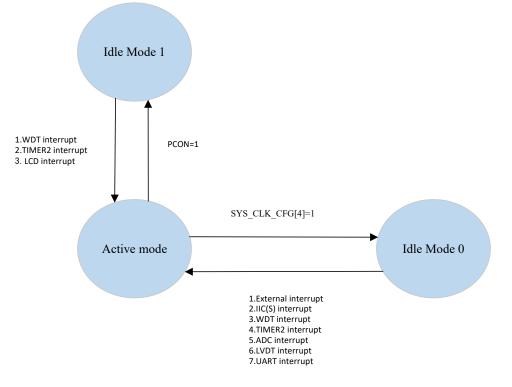
RC1M, PLL, LIRC work, XTAL depends on software configuration. The core runs, the peripherals keep working normally, and the functions of each peripheral are controlled by software configuration.

- Standby mode is divided into idle mode 0 and idle mode 1
- Idle Mode 0

RC1M, PLL, LIRC work, XTAL depends on software configuration. The core stops running, the UART, PWM, SPI peripherals do not work, and the rest of the peripherals can work.

• Idle Mode 1

RC1M and PLL are off, LIRC works, XTAL depends on software configuration. The core is stopped and the peripherals work fine using the LIRC clock.


Note: When idle mode 1 is used, all modules and their interrupts must be shut down. Only the modules and WDT modules that are used to wake up are reserved. After waking up, the modules can be recovered according to the actual application situation.Do not close the WDT module to ensure that the driver's cab can reset normally when MCU occurs.

Mode	Conditions	E	ffect on clock results
		RC1M	Work
A	Wake-up from power-on	PLL	Work
Active mode	reset/standby mode	LIRC	Work
		XTAL 32768Hz	Depends on software configuration
		RC1M	Work
Idle mode 0	SYS_CLK_CFG[4] =1	PLL	Work
Idle mode 0		LIRC	Work
		XTAL 32768Hz	Depends on software configuration
		RC1M	Close
Idla mada 1	PCON=1	PLL	Close
Idle mode 1	PCON-I	LIRC	Work
		XTAL 32768Hz	Depends on software configuration

The working state of the clock source in each mode

Working mode conversion diagram

5.3.2. Low power management

All CPU states are saved before entering standby mode, SRAM and register contents are preserved, and GPIOs remain in run-time state. In addition, all modules can be individually configured to close the gate, thereby reducing power consumption.

NO	Module Name	Clock source	Active Mode	Idle Mode 0	Idle Mode 1
1	s8051	f _{SYS}	\checkmark	×	×
2	UART0~1	PLL_24M	0	×	×
3	PWM0~3	f_{SYS}	0	×	×
4	Timer0	f _{SYS}	0	×	×
5	Timer1	f_{SYS}	0	×	×
6	Timer2	LIRC/ XTAL	0	0	0
7	Timer3	PLL_24M	0	0	×
8	LED	RC1M	0	0	×
9	LCD	LIRC/XTAL/RC1M	0	0	0
10	WDT	LIRC	0	0	0
11	ADC_CTRL	PLL_48M	0	0	×
12	IIC(S)	f _{SYS}	0	0	×
13	SPI	sys_clk	0	×	×

The working status of BF7515BM44-LJTX series is shown in the following table

Note: 'O': According Configuration

Ways to exit the Idle Mode 0:

Enabling any one of IIC, External Interrupt0/1/2/3/4, WDT, Timer3, Timer2, LCD, LED, ADC, LVDT to wake up the chip; Exit the Idle Mode 0, and the CPU executes the interrupt service routine.

Ways to exit Idle Mode 1:

Enabling WDT, Timer2, LCD interrupt generation can wake up the chip; Exit Idle Mode 1, after the interrupt response is generated. The CPU executes the interrupt service program related to the interrupt vector, and returns to the next instruction after the execution of the RETI return instruction to make the CPU enter the Idle Mode 1 to continue running the program.

5.3.3. Register

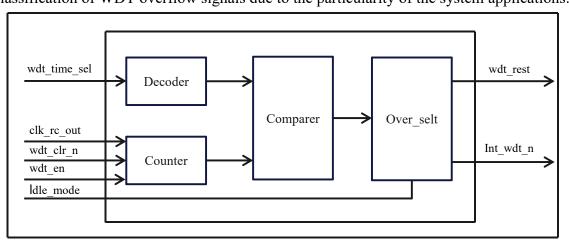
Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	IM0_EN	PLL	CLK	SEL	PD_SYS_CLK
R/W	-	-	-	R/W	R/W	R/W	R/W	R/W
Reset value	-	-	-	0	1	0	0	0

SYS_CLK_CFG (ADH) System clock configuration register

Bit number	Bit symbol	Description
		Idle Mode 0 enable
4	IM0_EN	1: Enter Idle Mode 0;
		0: Exit Idle Mode 0

PCON(87H) Idle Mode 1 select register

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	-	-	-	IM1_EN
R/W	-	-	-	-	-	-	-	R/W
Reset value	-	-	-	-	-	-	-	0


Bit number	Bit symbol	Description
7~1		Reserve
		Idle Mode 1 Enable
		1: Idle mode 1;
0	IM1_EN	0: Active mode, automatically cleared after wake-up
		Note: The software delay must be $\geq 100 \mu s$ after wake-up,
		otherwise the wake-up function is abnormal

5.4. WDT

WDT counting circuit uses LIRC for timing, and the R configuration timing is 2ⁿ*18ms (n=0, 1, 2, 3, 4, 5, 6, 7)----- where n is the configuration value of the timing configuration register. Classification of WDT overflow signals due to the particularity of the system applications:

In normal mode, if the WDT overflow occurs, the overflow signal is the WDT overflow reset signal, the WDT overflow reset affects the global reset. At this point, the system implements a global reset action and reloads the configuration information.

In Idle Mode 1, if the WDT overflow, the overflow signal is the WDT interrupt signal. Interrupt wake-up chip exits Idle Mode 1 and executes WDT interrupt service function.

The watchdog module is a timing counting module. Its count clock is the internal low-speed clock LIRC. Its timing clear signal is composed of global reset and configuration clear. This signal is synchronously released by the watchdog timing clock in the reset module; The clearing action is generated every time the CPU configures the watchdog timer configuration register (WDT_CTRL), and the watchdog restarts timing; at the same time, the watchdog counter has the watchdog count enable control, when the count enable is valid, After the watchdog generates a timing overflow (reset or interrupt), as long as the watchdog counting enable is not turned off, the watchdog counter will restart counting.

	SFR register								
Address	Name	RW	Reset value	Description					
0x91	WDT_CTRL	RW	0x00	WDT timeout configugration register					
0x92	WDT_EN	RW	0x00	WDT timing enable configuration register					

WDT related register

WDT SFR register list

Watchdog clock register:

The watchdog uses the internal low-speed clock LIRC to complete the timing function and can achieve timing from 18ms to 2.3s. The timing length is controlled by SFR (WDT_CTRL), as shown in the following table:

WDT_CTRL(91H) WDT timing overflow control register

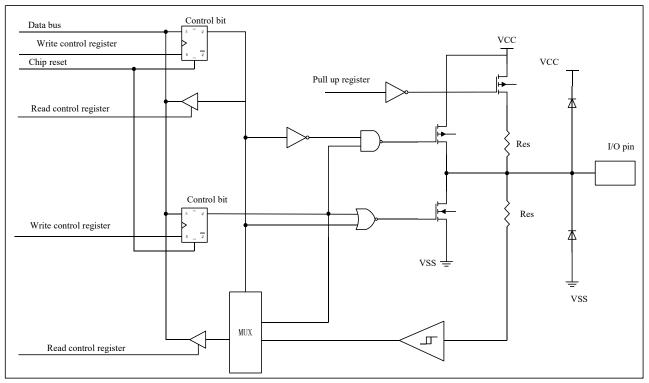
WDT_CTRL<2:0>	Interval
000	18ms
001	36ms
010	72ms
011	144ms
100	288ms
101	576ms
110	1152ms
111	2304ms

WDT_EN(92H) WDT timing enable register

Bit number	7	6	5	4	3	2	1	0		
Symbol		WDT_EN								
R/W		R/W								
Reset value				()					

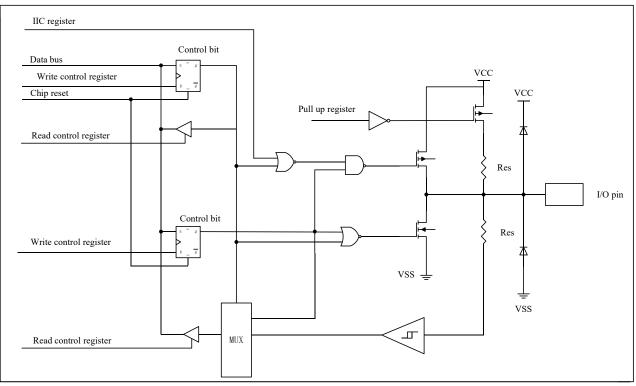
Turn off WDT when writing 0x55, write other values to enable WDT, the WDT always works after the reset is over. Clearing the WDT is done by writing to the WDT_CTRL register. Whichever values is written to this register will clear the WDT.

6. GPIO

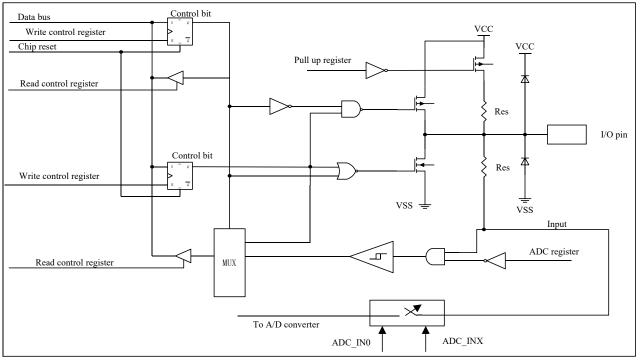

Some pins of the GPIO port are multiplexed with device peripheral functions, and cannot be configured as multiple clock functions at the same time, otherwise it will cause malfunction. IIC communication port, open-drain output, pull-up resister required.

TRISX register: TRISX set to 1 can be configured as input pin, set to 0 can be configured as output pin.

DATAX register: DATAX set to 1 the data in DATAX will be configured as high, set to 0 the data in DATAX will be configured as low.


PU_PX register: the pin corresponding to PU_PX is set to 1 is enabled, and the corresponding pin is cleared to disable the pull-up resistor, and the pull-up resistor is 30k.

ODRAIN_EN register(PC4/5/PE4/5 port open drain output enable register): ODRAIN_EN set to 1 corresponding pin will enable open drain output, set to 0 corresponding pin corresponding pin output disenabled, automatically turn on open-drain after enabling IIC function.



General IO structure

Open-drain output structure

ADC IO structure

6.1. GPIO Related Register

			SFR registe	r
Address	Name	RW	Reset value	Description
0x80	DATAB	RW	0xFF	PB data register
0x90	DATAC	RW	0xFF	PC data register
0xB0	DATAE	RW	0xFF	PE data register
0xC0	DATAF	RW	0xFF	PF data register
0xC8	DATAG	RW	0x1F	PG data register
0xD8	DATAH	RW	0xFF	PH data register
0xEA	TRISA	RW	0x0F	PA direction register
0xEB	TRISB	RW	0xFF	PB direction register
0xEC	TRISC	RW	0xFF	PC direction register
0xEE	TRISE	RW	0xFF	PE direction register
0xEF	TRISF	RW	0xFF	PF direction register
0xF2	TRISG	RW	0x1F	PG direction register
0xF7	TRISH	RW	0xFF	PH direction register
0xF8	DATAA	RW	0x0F	PA data register

Port configuration SFR list

			Secondary b	us register
Address	Name	RW	Reset value	Description
0x17	PU_PA	RW	0x00	PA pull-up resistor control register
0x18	PU_PB	RW	0x00	PB pull-up resistor control register
0x19	PU_PC	RW	0x00	PC pull-up resistor control register
0x1B	PU_PE	RW	0x00	PE pull-up resistor control register
0x1C	PU_PF	RW	0x00	PF pull-up resistor control register
0x1D	PU_PG	RW	0x00	PG pull-up resistor control register
0x1E	PU_PH	RW	0x00	PH pull-up resistor control register
0x23	COM_IO_SEL	RW	0x00	COM select configuration register
0x25	ODRAIN_EN	RW	0x00	PC4/5/PE4/5 open drain output enable register

6.2. GPIO Register Details

6.2.1. Data Register

DATAA (F8H) PA data register

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	PA3	PA2	PA1	PA0

R/W	-	-	-	-	R/W	R/W	R/W	R/W
Reset value	-	-	-	-	1	1	1	1

Bit number	Bit symbol	Description
		PA data register, you can configure the output level of the
2.0	2.0	PA group IO port as GPIO port, the read value is the current
3~0		level state of the IO port (input) or the configured output
		value (output)

DATAB(80H)PB data register

Bit number	7	6	5	4	3	2	1	0
Symbol	PB7	PB6	PB5	PB4	PB3	PB2	PB1	PB0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset value	1	1	1	1	1	1	1	1

Bit number	Bit symbol	Description
		PB data register, configurable PB group IO port as GPIO port
7~0		output level, the read value is the current level state of IO
		port (input) or configured output value (output).

DATAC(90H) PC port data register

Bit number	7	6	5	4	3	2	1	0
Symbol	PC7	PC6	PC5	PC4	PC3	PC2	PC1	PC0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset value	1	1	1	1	1	1	1	1

Bit number	Bit symbol	Description
7~0		PC data register, you can configure the output level when the IO port of the PC group is used as a GPIO port, and the read value is the current level state of the IO port (input) or the configured output value (output)

DATAE(B0H) PE data register

Bit number	7	6	5	4	3	2	1	0
Symbol	PE7	PE6	PE5	PE4	PE3	PE2	PE1	PE0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset value	1	1	1	1	1	1	1	1

Bit number	Bit symbol	Description
7~0		PE data register, you can configure the output level of PE group IO port as GPIO port, the read value is the current level state of IO port (input) or configure output value (output).

DATAF(C0H)PF data register

Bit number	7	6	5	4	3	2	1	0
Symbol	PF7	PF6	PF5	PF4	PF3	PF2	PF1	PF0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset value	1	1	1	1	1	1	1	1

Bit number	Bit symbol	Description
		PF data register, you can configure the output level of the PF
7.0	7.0	group IO port as a GPIO port, and the read value is the
7~0		current level state of the IO port (input) or the configured
		output value (output)

DATAG(C8H)PG data register

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	PG3	PG2	PG1	PG0
R/W	-	-	-	-	R/W	R/W	R/W	R/W
Reset value	-	-	-	-	1	1	1	1

Bit number	Bit symbol	Description
3~0		PG data register, you can configure the output level when the IO port of the PG group is used as a GPIO port, and the read value is the current level state of the IO port (input) or the configured output value (output).

DATAH(D8H)PH data register

Bit number	7	6	5	4	3	2	1	0
Symbol	PH7	PH6	PH5	PH4	PH3	PH2	PH1	PH0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset value	1	1	1	1	1	1	1	1

Bit number	Bit symbol	Description
7.0		PH data register, can configure the output level of PH group
7~0		IO port as GPIO port, the read value is the current level state of IO port (input) or configure output value (output)

6.2.2. Direction Register

TRISA (EAH) PA direction register

Bit number	7	6	5	4	3	2	1	0	
Symbol	-	-	-	-	_				
R/W	-	-	-	-	R/W				
Reset value	-	-	-	-	1	1	1	1	

Bit number	Bit symbol Description								
3~0	-	PA direction register 0: output; 1: input							
TRISB(EBH) PB direction register									
Bit number	7	6	5	4	3	2	1	0	
Symbol					-				
R/W	R/W								
Reset value	1	1	1	1	1	1	1	1	

Bit number	Bit symbol Description									
7~0	-	PB direction register 0: output; 1: input								
TRISC(ECH) PC direction register										
Bit number	7	6	5	4	3	2	1	0		
Symbol					-					
R/W	R/W									
Reset value	1									

Bit number	Bit symbol Description									
7~0	-	PC direction register 0: output; 1: input								
TRISE(EEH) PE direction register										
Bit number	7	6	5	4	3	2	1	0		
Symbol					-					
R/W		R/W								
Reset value	1	1	1 1 1 1 1 1 1							

Bit number	Bit symbol Description										
7~0			PE direct	PE direction register							
// 30	-	-	0: output	0: output; 1: input							
TRISF(EFH) PF direction register											
Bit number	7	6	5	4	3	2	1	0			
Symbol					-						
R/W		R/W									
Reset value	1										

Bit number	Bit symbol	Description
7~0		PF direction register
		0: output; 1: input

TRISG(F2H) PG direction register

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	-	-	-	-
R/W	-	-	-	-	R/W	R/W	R/W	R/W
Reset value	-	-	-	-	1	1	1	1

Bit number	Bit symbol	Description
2.0		PG direction register
3~0		0: output; 1: input

TRISH(F7H) PH direction register

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	-	-		-
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset value	1	1	1	1	1	1	1	1

Bit number	Bit symbol	Description
7~0		PH direction register
		0: output; 1: input

6.2.3. Pull-up Enable Register

PU_PA (17H) PA pull-up resistor control register

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	-	-	-	
R/W	-	-	-	-	R/W	R/W	R/W	R/W
Reset value	-	-	-	-	0	0	0	0

Bit number	Bit symbol	Description
		Port PA pull-up resistor control register
3~0		1: The pull-up resistor is enabled;
		0: The pull-up resistor is not enabled

PU_PB(18H) PB pull-up resistor control register

Bit number	7	6	5	4	3	2	1	0		
Symbol		_								
R/W		R/W								
Reset value		0								

Bit number	Bit symbol	Description
7~0		Port PB pull-up resistor control register
		1: The pull-up resistor is enabled;

BF7515BM44-LJTX

		0: The pull-up resistor is not enabled						
PU_PC(19H) PC pull-up resistor control register								
Bit number	7	6	5	4	3	2	1	0
Symbol				-	-			
R/W				R/	W			
Reset value				()			

Bit number	Bit symbol	Description
		Port PC pull-up resistor control register
7~0		1: The pull-up resistor is enabled;
		0: The pull-up resistor is not enabled

PU_PE (1BH) PE pull-up resistor control register

Bit number	7	6	5	4	3	2	1	0		
Symbol		-								
R/W		R/W								
Reset value				()					

Bit number	Bit symbol	Description
		Port PE pull-up resistor control register
7~0		1: The pull-up resistor is enabled;
		0: The pull-up resistor is not enabled

PU_PF (1CH) PF pull-up resistor control register

Bit number	7	6	5	4	3	2	1	0		
Symbol		_								
R/W		R/W								
Reset value				()					

Bit number	Bit symbol	Description
		Port PF pull-up resistor control register
7~0		1: The pull-up resistor is enabled;
		0: The pull-up resistor is not enabled

PU_PG(1DH) PG pull-up resistor control register

Bit number	7	6	5	4	3	2	1	0		
Symbol		-								
R/W		R/W								
Reset value				()					

Bit number	Bit symbol	Description
7.0		Port PG pull-up resistor control register
7~0		1: The pull-up resistor is enabled;

	0: The pull-up resistor is not enabled							
PU_PH (1EH) PH pull-up resistor control register								
Bit number	7	6	5	4	3	2	1	0
Symbol				-	-			
R/W				R/	W			
Reset value				()			

Bit number	Bit symbol	Description
		Port PH pull-up resistor control register
7~0		1: The pull-up resistor is enabled;
		0: The pull-up resistor is not enabled

6.2.4. Open Drain Enable Register

ODRAIN_EN(25H) PC4/5/PE4/5 port open drain output enable register(secondary bus register)

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	-	-	-	-
R/W	-	-	-	-	R/W	R/W	R/W	R/W
Reset value	-	-	-	-	0	0	0	0

Bit number	Bit symbol	Description
3~0		PC4/5/PE4/5 port open drain output enable register
		Bit[0]: PC4, Bit[1]: PC5, Bit[2]: PE4, Bit[3]: PE5
		1: Open drain output;
		0: CMOS output

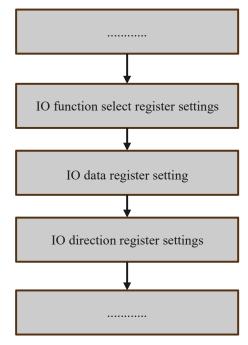
6.2.5. Large Sink Current

DP_	CON	(B1H)	LCD,	LED	control	register
-----	-----	-------	------	-----	---------	----------

Bit number	7	6	5	4	3	2	1	0
Symbol	I	IO_ON	DUTY_SEL			DPSEL	SCAN_MODE	COM_MOD
R/W	-	R/W	R/W			R/W	R/W	R/W
Reset value	-	0	0	0	0	0	0	0

Bit number	Bit symbol	Description	
		High current sink IO port drive enable	
		1: As a high current sink IO port;	
0	COM_MOD	0: Can be configured for other functions;	
		When used as a high current sink IO port, by configuring the	
		GPIO register to output the drive timing, the LED/LCD scan	

Semiconductor


			configur	ation is inv	alid				
COM_IO_SEI	COM_IO_SEL (23H) COML select configuration register								
Bit number	7	6	5	4	3	2	1	0	
Symbol	COML7	COML6	COML5	COML4	COML3	COML2	COML1	COML0	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset value	0	0	0	0	0	0	0	0	

Bit number	Bit symbol	Description
		In LED matrix drive mode, 4*4 mode is not selected:
		COM port select configuration register, the corresponding
		bit is 1, COMLx is common
		1: Select the COM port function.
		0: Select the I/O port mode
		In LED matrix drive mode, select 4*4 mode:
7~0	COMLx	COML0~ COML3 is common, and COML4~ COML7 is
		segment
		1: Select COM port function or SEG port function;
		0: Select the I/O port mode
		When the high current IO port drive is enabled:
		1: Select the high-current I/O port
		0: Select the I/O port mode

6.3. GPIO Configuration Process

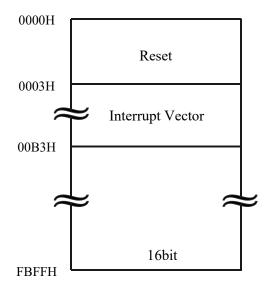
When setting the port as GPIO, the following three sets of registers need to be set accordingly.

IO configuration flow chart

7. Interrupt

7.1. Interrupt Sources and Entry Address

Interrupt source	Condition	Sign	Enable control	Priority control	Interrupt vector	Query priority	Interrupt number	Flag removal method	wake up Idle mode 1
INT0	condition is met	IE0	IEN0[0]	IPL0[0]	0x0003	1	0	User must clear	-
Timer0	Timer0 overflow	TF0	IEN0[1]	IPL0[1]	0x000B	2	1	User must clear	No
INT1	condition is met	IE1	IEN0[2]	IPL0[2]	0x0013	3	2	User must clear	-
Timer1	Timer1 overflow	TF1	IEN0[3]	IPL0[3]	0x001B	4	3	User must clear	No
INT2	condition is met	IE2	IEN1[2]	IPL1[2]	0x004B	5	9	User must clear	-
IIC	Receive or send completed	IE3	IEN1[3]	IPL1[3]	0x0053	6	10	User must clear	-
ADC	ADC conversion completed	IE4	IEN1[4]	IPL1[4]	0x005B	7	11	User must clear	No
LED/LCD	Scan complete	IE6	IEN1[6]	IPL1[6]	0X006B	9	13	User must clear	No
WDT/ Timer2	WDT/Timer 2 overflow	IE7	IEN1[7]	IPL1[7]	0x0073	10	14	User must clear	Yes
URAT2	Receive or send completed	IE8	IEN2[0]	IPL2[0]	0x007B	11	15	User must clear	No
LVDT	Voltage conditions meet	IE9	IEN2[1]	IPL2[1]	0x0083	12	16	User must clear	No
UART0	Receive or send completed	IE10	IEN2[2]	IPL2[2]	0x008B	13	17	User must clear	No
UART1	Receive or send completed	IE11	IEN2[3]	IPL2[3]	0x0093	14	18	User must clear	No



Timer3	Timer3 overflow	IE12	IEN2[4]	IPL2[4]	0x009B	15	19	User must clear	No
SPI	Receive or send completed	IE13	IEN2[5]	IPL2[5]	0x00A3	16	20	User must clear	No
INT3	condition is met	IE14	IEN2[6]	IPL2[6]	0x00AB	17	21	User must clear	-
INT4	condition is met	IE15	IEN2[7]	IPL2[7]	0x00B3	18	22	User must clear	-

Interrupt information list

Note: "-" means reserved.

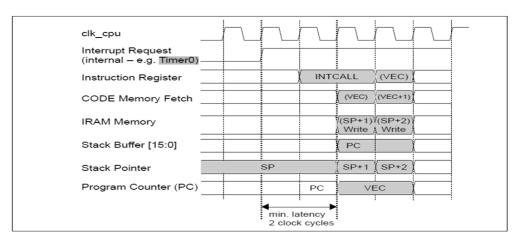
When the chip generates a reset signal, the program starts from the 0x0000 address. When an

interrupt signal occurs, the program will jump to the interrupt vector program address to execute the interrupt service routine.

7.2. Interrupt Function

7.2.1. Interrupt Response

When an interrupt request, CPU according to the interrupt vectors determine the type of interrupt service routine (ISR) to run. CPU complete execution ISR, unless a higher priority interrupt source applying for a break. After each ISR has RETI (return from interrupt) instruction. After RETI instruction, CPU continues to execute the program before the interrupt did not happen.


ISR can only be a higher priority interrupt request interrupt. That is, the low-priority ISR can be interrupted by a high-priority interrupt request.

BF7515BM44-LJTX response interrupt request until the current instruction finished. If the RETI instruction is being executed or read IP, IE, EIP, EIE register, after an additional instruction then respond the interrupt request.

7.2.2. Interrupt Priority

BF7515BM44-LJTX have two interrupt priority levels: interrupt level and the default priority. Interrupt level (top, high and low) override the default priority. The priority set to high is the first to respond. When the priority is set to the same level, the response will be queued by default. Power-down interrupt is the only high-level interrupt source if allowed. All interrupt sources can be set to high priority or low priority.

Each interrupt source can be assigned a priority level (high or low), and the default priority. The same level of interrupt sources (such as both high priority) the priority is the default priority decision. Interrupt service routine in progress can only be a high-priority interrupt request interrupt.

7.2.3. Interrupt Sampling

Interrupt sampling timing diagram

Internal modules such as internal timers and serial ports generate interrupt requests through interrupt flag bits in their respective SFRs. At the end of first clock per instruction cycle (C1), at the

Semiconductor

rising edge of the external interrupt system clock sampling.

The port external interrupt is active low and can be set to select edge trigger or level trigger via the IT0 bit in TCON SFR. For example, IT0=0, INT_EXT is the trigger for the edge. When the level change from high to low occurs on the INT EXT pin, the external interrupt flag is set to 1.

To ensure edge-triggered interrupt is detected, the corresponding port must maintain high level for two clocks and maintain low for level two clock.

7.2.4. Interrupt Wait

Interrupt response time is determined by current state. Fastest response time is five instruction cycles: one cycle to detect the interrupt request, the other 4 used to execute long call (LCALL) to ISR.

When the system is executing a RETI instruction and is followed by a MUL or DIV instruction, the interrupt waits for the longest time (13 instruction cycles). This 13 instruction cycles are as follows: one cycle to detect the interrupt request, three to complete the RETI, five used to execute DIV or MUL instruction, 4 used to execute long call (LCALL) to ISR. In this case, the response time is 13 clock cycles.

7.3. Interrupt Related Register

	SFR Register					
Address	Name	RW	Reset value	Description		
0xA8	IEN0	RW	0x00	Interrupt enable register		
0xAE	INT_PE_STAT	RW	0x00	Interrupt ststus register		
0xB8	IPL0	RW	0x00	Interrupt priority register 0		
0xC7	EXINT_STAT	RW	0x00	External interrupt ststus register		
0xE1	IRCON2	RW	0x00	Interrupt status register 2		
0xE6	IEN1	RW	0x00	Interrupt enable register 1		
0xE7	IEN2	RW	0x00	Interrupt enable register 2		
0xF1	IRCON1	RW	0x00	Interrupt status register 1		
0xF4	IPL2	RW	0x00	Interrupt priority register 2		
0xF6	IPL1	RW	0x00	Interrupt priority register 1		

Interrupt SFR register list

	Secondary bus register							
Address	Name	RW	Reset value	Description				
0x34	PERIPH_IO_SEL1	RW	0x10	External port function selection register 1				
0x35	PERIPH_IO_SEL2	RW	0x00	External port function selection register 2				
0x36	PERIPH_IO_SEL3	RW	0x00	External port function selection register 3				
0x37	PERIPH_IO_SEL4	RW	0x00	External port function selection register 4				
0x38	PERIPH_IO_SEL5	RW	0x00	External port function selection register 5				
0x39	EXT_INT_CON1	RW	0x55	External interrupt configuration register 1				
0x3A	EXT_INT_CON2	RW	0x01	External interrupt configuration register 2				

Interrupt secondary bus register list

7.3.1. Interrupt SFR Detailed Description

Bit number	7	6	5	4	3	2	1	0
Symbol	EA	-	-	-	ET1	EX1	ET0	EX0
R/W	R/W	-	-	-	R/W	R/W	R/W	R/W
Reset value	0	-	-	-	0	0	0	0

IEN0(A8H) Interrupt enable register

Bit number	Bit symbol	Description
		Interrupt enable bit.
		0: Mask all interrupts (EA has priority over the respective
7	EA	interrupt enable bits of the interrupt sources);
		1: The interrupt is turned on. Whether the interrupt request
		of each interrupt source is allowed or forbidden is

		determined by the respective enable bit.
6~4		Reserved
		Timer 1 overflow interrupt enable bit
3	ET1	0: Disable timer 1 (TF1) to apply for interrupt;
		1: Allow TF1 flag bit to request interrupt.
		INT_EXT1 enable bit.
2	EX1	0: Disable INT_EXT1 to apply for interrupt;
		1: Allow INT_EXT1 to apply for interrupt.
		Timer 0 overflow interrupt enable bit
1	ET0	0: Disable timer 0 (TF0) to apply for interrupt;
		1: Allow TF0 flag bit to request interrupt.
		INT_EXT0 enable bit
0	EX0	0: Disable INT_EXT0 to apply for interrupt;
		1: Allow INT_EXT0 to apply for interrupt.

INT_PE_STAT(AEH) Interrupt status register

	<u> </u>	-		
Bit number	7	6	5	4
Symbol	-	INT_TIMER3_STAT	INT08_STAT	INT_WDT_STAT
R/W	-	R/W	R/W	R/W
Reset value	-	0	0	0
Bit number	3	2	1	0
Symbol	INT_TIMER2_STAT	-	INT_LCD_STAT	INT_LED_STAT
R/W	R/W	-	R/W	R/W
Reset value	0	_	0	0

Bit number	Bit symbol	Description
7,2		Reserved
		TIMER3 interrupt status flag, this bit is cleared by writing
6	INT_TIMER3_STAT	0, and can also be cleared by writing TIMER3_CFG,
		1: interrupt is valid; 0: interrupt is invalid
		INT08 port interrupt status, this bit is cleared by writing
5	INITON STAT	0, and it can also be cleared by writing
5	INT08_STAT	INT08_IO_SEL=0,
		1: interrupt is valid; 0: interrupt is invalid
		WDT interrupt status flag, this bit is cleared by writing 0,
4	INT_WDT_STAT	and can also be cleared by writing WDT_CTRL,
		1: interrupt is valid; 0: interrupt is invalid
		TIMER2 interrupt status flag, this bit is cleared by writing
3	INT_TIMER2_STAT	0, and can also be cleared by writing TIMER2_CFG,
		1: interrupt is valid; 0: interrupt is invalid
1	INT_LCD_STAT	LCD interrupt status mark, write 0 to clear this bit, write

		SCAN_START operation can also be cleared,
		1: interrupt is valid; 0: interrupt is invalid
		LED interrupt status mark, this bit is cleared by writing 0,
0	INT_LED_STAT	and it can also be cleared by writing SCAN_START,
		1: interrupt is valid; 0: interrupt is invalid

IPL0 (B8H) Interrupt priority register 0

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	PT1	PX2	PT0	PX0
R/W	-	-	-	-	R/W	R/W	R/W	R/W
Reset value	-	-	-	-	0	0	0	0

Bit number	Bit symbol	Description
7~4	_	Reserved
2	DT1	TF1 (Timer1 interrupt) priority selection bit.
3	3 PT1	0: low priority; 1: high priority
2	DVO	INT_EXT1 interrupt priority selection bit.
2	PX2	0: low priority; 1: high priority
1	DTO	TF0 (Timer0 interrupt) priority selection bit.
1	PT0	0: low priority; 1: high priority
0	DVO	INT_EXT0 interrupt priority selection bit.
0	PX0	0: low priority; 1: high priority

EXINT_STAT (C7H) External interrupt status register

	< /	1 0		
Bit number	7	6	5	4
Symbol	INT07_STAT	INT06_STAT	INT05_STAT	INT04_STAT
R/W	R/W	R/W	R/W	R/W
Reset value	0	0	0	0
Bit number	3	2	1	0
Symbol	INT03_STAT	INT02_STAT	INT01_STAT	INT00_STAT
R/W	R/W	R/W	R/W	R/W
Reset value	0	0	0	0

Bit number	Bit symbol	Description
		INT0x port interrupt status, this bit is cleared by writing 0,
7.0	INT0x_STAT	and it can also be cleared by writing INT0x_IO_SEL=0,
7~0	x=7~0	1: interrupt is valid;
		0: interrupt is invalid

IRCON2 (E1H) Interrupt flag register 2

Bit number	7	6	5	4	3	2	1	0
Symbol	IE15	IE14	IE13	IE12	IE11	IE10	IE9	IE8
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

							-	
Reset value	0	0	0	0	0	0	0	0

Bit symbol	t symbol Description			
IE15	External interrupt 4 interrupt flag bit			
IE14	External interrupt 3 interrupt flag bit			
IE13	SPI interrupt flag bit			
IE12	Timer3 interrupt flag bit			
IE11	UART1 interrupt flag bit			
IE10	UART0 interrupt flag bit			
IE9	LVDT interrupt flag bit			
IE8	SCI interrupt flag bit			
	IE15 IE14 IE13 IE12 IE11 IE10 IE9			

IEN1 (E6H) Interrupt enable register 1

Bit number	7	6	5	4	3	2	1	0
Symbol	EX7	EX6	-	EX4	EX3	EX2	-	-
R/W	R/W	R/W	-	R/W	R/W	R/W	-	-
Reset value	0	0	-	0	0	0	-	-

Bit number	Bit symbol	Description
7	EX7	WDT/Timer2 interrupt enable
/		1: enable; 0: disable
6	EV6	LED/LCD interrupt enable
6	EX6	1: enable; 0: disable
4	EX4	ADC interrupt enable
4	LA4	1: enable; 0: disable
2	EX3	IIC interrupt enable
3	EAJ	1: enable; 0: disable
2	EX2	External interrupt 2 interrupt enable
2		1: enable; 0: disable
5, 1~0	-	Reserved

IEN2(E7H) Interrupt enable register 2

Bit number	7	6	5	4	3	2	1	0
Symbol	EX15	EX14	EX13	EX12	EX11	EX10	EX9	EX8
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset value	0	0	0	0	0	0	0	0

Bit number	Bit symbol	Description
7	EV15	External interrupt 4 interrupt enable
/	EX15	1: enable; 0: disable
		External interrupt 3 interrupt enable
6	EX14	1: enable; 0: disable

5	EV12	SPI interrupt enable
3	EX13	1: enable; 0: disable
4	EX12	Timer3 interrupt enable
4	EAIZ	1: enable; 0: disable
2	EV11	UART1 interrupt enable
3	EX11	1: enable; 0: disable
2	EX10	UART0 interrupt enable
Ζ	LAIU	1: enable; 0: disable
1	EX9	LVDT interrupt enable
1	LAY	1: enable; 0: disable
0	EX8	SCI interrupt enable
0	EAð	1: enable; 0: disable

IRCON1 (F1H) Interrupt flag register 1

Bit number	7	6	5	4	3	2	1	0
Symbol	IE7	IE6	-	IE4	IE3	IE2	-	-
R/W	R/W	R/W	-	R/W	R/W	R/W	-	-
Reset value	0	0	-	0	0	0	-	-

Bit number	Bit symbol	Description
7	IE7	WDT/Timer2 interrupt flag
6	IE6	LED/LCD interrupt flag
4	IE4	ADC interrupt flag
3	IE3	IIC interrupt flag
2	IE2	External interrupt 2 interrupt flag
5, 1~0	-	Reserved

IPL2 (F4H) Interrupt priority register 2

Bit number	7	6	5	4	3	2	1	0
Symbol	IPL2.7	IPL2.6	IPL2.5	IPL2.4	IPL2.3	IPL2.2	IPL2.1	IPL2.0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset value	0	0	0	0	0	0	0	0

Bit number	Bit symbol	Description
7	IPL2.7	External interrupt 4 priority selection bit.
/	IPL2./	1: high; 0: low
6	IPL2.6	External interrupt 3 priority selection bit.
0		1: high; 0: low
5		SPI priority selection bit.
5	IPL2.5	1: high; 0: low
4		Timer3 priority selection bit.
4	IPL2.4	1: high; 0: low

3	IPL2.3	UART1 priority selection bit.
5		1: high; 0: low
2		UART0 priority selection bit.
Ζ	IPL2.2	1: high; 0: low
1	IDI 2-1	LVDT priority selection bit.
1	IPL2.1	1: high; 0: low
0	IPL2.0	UART2 priority selection bit.
		1: high; 0: low

IPL1 (F6H) Interrupt priority register 1

Bit number	7	6	5	4	3	2	1	0
Symbol	IPL1.7	IPL1.6	-	IPL1.4	IPL1.3	IPL1.2	-	-
R/W	R/W	R/W	-	R/W	R/W	R/W	-	-
Reset value	0	0	-	0	0	0	-	-

Bit number	Bit symbol	Description
7	IPL1.7	WDT/Timer 2 interrupt priority bit 1: high; 0: low
6	IPL1.6	LED interrupt priority bit 1: high; 0: low
4	IPL1.4	ADC interrupt priority bit 1: high; 0: low
3	IPL1.3	IIC interrupt priority bit 1: high; 0: low
2	IPL1.2	External interrupt 2 interrupt priority bit 1: high; 0: low
5, 1~0		Reserved

7.3.2. Detailed description of Interrupt Secondary Bus Register

PERIPH_IO_SEL1(34H) External p	port function selection register 1
--------------------------------	------------------------------------

Bit number	7	6	5	4
Symbol	UART1_IO_SEL	UART0_IO_SEL		IIC_IO_SEL
R/W	R/W	R/W	R/W	R/W
Reset value	0	0	0	1
Bit number	3	2	1	0
Symbol	INT3_IO_SEL	INT2_IO_SEL	INT1_IO_SEL	INT0_8_IO_SEL
R/W	R/W	R/W	R/W	R/W
Reset value	0	0	0	0

Bit number Bit symbol Description

		UART1 port selection enable		
7	UART1_IO_SEL	0: Select UART1 (RXD1B/TXD1B) function;		
		1: Select UART1 (RXD1A/TXD1A) function		
		UART0 port selection enable		
6.5	LIADTO IO SEI	00: select UART0 (RXD0C/TXD0C) function;		
6~5	UART0_IO_SEL	01: Select UART0 (RXD0A/TXD0A) function;		
		1x: select UART0 (RXD0B/TXD0B) function		
		IIC port selection enable		
4	IIC_IO_SEL	0: Select IIC (SCL0B/SDA0B) function;		
		1: Select IIC (SCL0A/SDA0A) function		
3	INT3_IO_SEL	INT3 port selection enable		
3		1: Select INT3 function; 0: Not select INT3 function		
	INT2_IO_SEL	INT2 port selection enable		
2		1: Select INT2 function; 0: Not select INT2 function		
1		INT1 port selection enable		
1	INT1_IO_SEL	1: Select INT1 function; 0: Not select INT1 function		
0	NITO 9 10 CEL	INT0_8 port selection enable		
0	INT0_8_IO_SEL	1: select INT function; 0:Not select INT function		

PERIPH IO SEL2(35H) External port function selection register 2

Bit number	7	6	5	4
Symbol	INT0_7_IO_SEL	INT0_6_IO_SEL	INT0_5_IO_SEL	INT0_4_IO_SEL
R/W	R/W	R/W	R/W	R/W
Reset value	0	0	0	0
Bit number	3	2	1	0
Symbol	INT0_3_IO_SEL	INT0_2_IO_SEL	INT0_1_IO_SEL	INT0_0_IO_SEL
R/W	R/W	R/W	R/W	R/W
Reset value	0	0	0	0

Bit number	Bit symbol	Description
	7~0 $\begin{bmatrix} INT0_x_IO_SEL \\ x=7\sim0 \end{bmatrix}$	INT0_x port selection enable
7~0		1: Select INT function
		0: Not select INT function

PERIPH_IO_SEL3 (36H) External port function selection register 3

<u></u>		P • • • • • • • • • • •						
Bit number	7	6	5	4	3	2	1	0
Symbol	INT4_7_IO_SEL	-	-	-	-	-	-	-
R/W	R/W	-	-	-	-	-	-	-
Reset value	0	-	-	-	-	-	-	-

Bit number	Bit symbol	Description
7	INT4_7_IO_SEL	INT4_7 port selection enable

	1: Select INT function; 0: Not select INT function
6~0	 Reserved

PERIPH IO SEL4(37H) External port function selection register 4

Bit number	7 6		5	4
Symbol	INT4_15_IO_SEL	INT4_14_IO_SEL	INT4_13_IO_SEL	INT4_12_IO_SEL
R/W	R/W	R/W	R/W	R/W
Reset value	0	0	0	0
Bit number	3	2	1	0
Symbol	INT4_11_IO_SEL	INT4_10_IO_SEL	INT4_9_IO_SEL	INT4_8_IO_SEL
R/W	R/W	R/W	R/W	R/W
Reset value	0	0	0	0

Bit number	Bit symbol	Description
7~0	INT4_x_IO_SEL x=15~8	INT4x port selection enable 1: Select INT function
		0: Not select INT function

PERIPH_IO_SEL5 (38H) External port function selection register 5

			<u> </u>		
Bit number	7	6	5	4	
Symbol	-	INT4_22_IO_SEL	INT4_21_IO_SEL	INT4_20_IO_SEL	
R/W	-	R/W	R/W	R/W	
Reset value	-	0	0	0	
Bit number	3	2	1	0	
Symbol	INT4_19_IO_SEL	INT4_18_IO_SEL	INT4_17_IO_SEL	INT4_16_IO_SEL	
R/W	R/W	R/W	R/W	R/W	
Reset value	0	0	0	0	

Bit number	Bit symbol	Description
7	-	Reserved
DIT 4	NITA - IO SEL	INT4x port selection enable ($x=22\sim16$)
6~0	INT4_x_IO_SEL	1: Select INT function
	x=22~16	0: Not select INT function

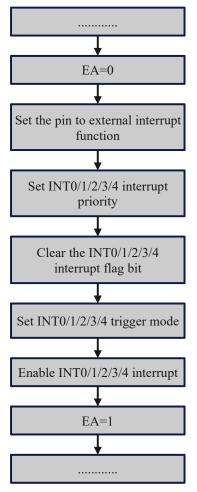
EXT_INT_CON1 (39H) External interrupt configuration register 1

Bit number	7	6	5	4	3	2	1	0
Symbol	INT3_PO	LARITY	INT2_PO	LARITY	INT1_PC	LARITY	INT08_P	OLARITY
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset value	0	1	0	1	0	1	0	1

Bit number	Bit symbol	Description
7~6	INT3_POLARITY	External interrupt 3 trigger polarity selection 01: Falling edge;

		10: rising edge;
		00/11: Double edge
		External interrupt 2 trigger polarity selection
5~4	INT2 POLARITY	01: Falling edge;
3~4	IN12_POLAKITY	10: rising edge;
		00/11: Double edge
	3~2 INT1_POLARITY	External interrupt 1 trigger polarity selection
2 2		01: Falling edge;
3~2		10: rising edge;
		00/11: Double edge
		External interrupt 0-8 trigger polarity selection
1 0		01: Falling edge;
1~0	INT08_POLARITY	10: rising edge;
		00/11: Double edge

EXT_INT_CON2 (3AH) External interrupt configuration register 2


Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	-	INT4_POLARITY	INT0_PC	DLARITY
R/W	-	-	-	-	-	R/W	R/W	R/W
Reset value	-	-	-	-	-	0	0	1

Bit number	Bit symbol	Description
		External interrupt 4_x trigger polarity selection:
2	INT4_POLARITY	1: Rising edge;
		0: Falling edge
		External interrupt 0_0~0_7 trigger polarity selection:
1.0	~0 INT0_POLARITY	01: Falling edge;
1~0		10: rising edge;
		00/11: Double edge

Note: INT4X provides an interrupt vector, which can only respond to one external interrupt at the same time. When the rising or falling edge of the external interrupt is triggered by multiple pins, the detection process must release all the enabled external interrupt pins to respond to the current The trigger signal (when the falling edge is triggered, the release is high, when the rising edge is triggered, the release is low).

7.4. External Interrupt Configuration Process

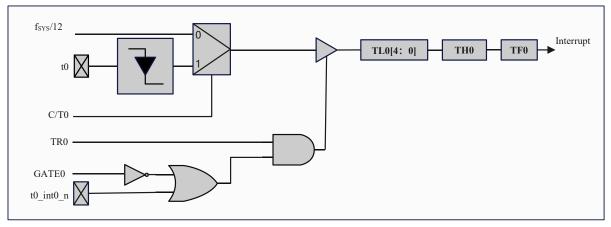
INT0/1/2/3/4 configuration process chart

8. Timer

The BF7515BM44-LJTX series contains 2 timers (Timer0, Timer1) and 2 external Timers (Timer2, 3) inside the core. Each Timer contains a 16-bit register. When accessed, it appears in the form of two bytes: a low byte (TL0 or TL1) and a high byte (TH0 or TH1). The registers of Timer2 are the low byte TIMER2_SET_L and the high byte TIMER2_SET_H. The registers of Timer3 are the low byte TIMER3_SET_L and the high byte TIMER3_SET_H.

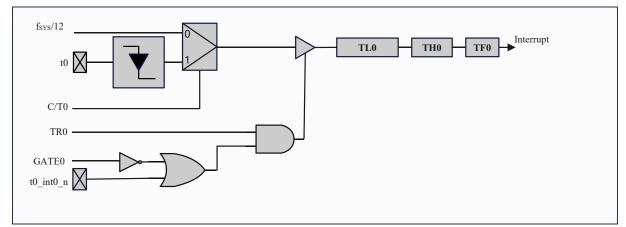
The features of Timer are as follows:

- 16-bit Timer0/1/3, 32-bit Timer2;
- Timer0 is connected to the system clock (f_{SYS}), and the timing clock is 1/12 of the f_{SYS} ;
- Timer1 is connected to the system clock (f_{SYS}), and the timing clock is 1/12 of the f_{SYS} ;;
- Timer2 can choose LIRC 32K or XTAL 32768Hz.
- Timer3 is connected to PLL 24MHz, the internal part-frequency system clock 1/12 or the system clock 1/4 in the timing clock;
- Timer0 supports 8bits automatic reload timing and manual reload timing functions.
- Timer1 supports 8bits automatic reload timing and manual reload timing functions.
- Timer2 supports 16bits automatic reload timing and manual reload timing, and supports interrupt wake-up function.
- Timer3 supports 16bits automatic reload timing and manual reload timing functions.

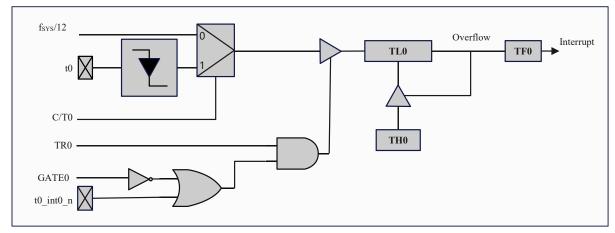

8.1. Timer0 and Timer1

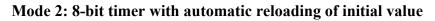
The Timer 0/1 has four operating modes, controlled by TMOD SFR and TCON SFR. Timer0/1 four modes of operation as follows:

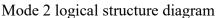
- 13 bit timer (Mode 0)
- 16 bit timer (Mode 1)
- Automatic overload 8-bit counter (Mode 2)
- Two 8-bit timer (Mode 3, only for timer 0)


Mode 0: 13-bit timer

Mode 0 logical structure diagram

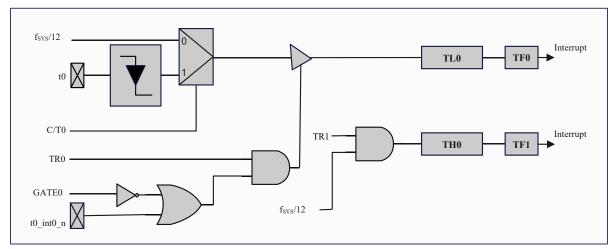

As shown in the figure, the working process of timer 0 and timer 1 is the same. In mode 0, Timer 0 is a 13-bit counter, and the 13-bit register consists of 8 bits of TH0 and the lower 5 bits of TL0. Timer 1 is a 13-bit counter, and the 13-bit register consists of 8 bits of TH1 and the lower 5 bits of TL1. The upper three bits of TL0 and TL1 should be ignored. The enable bit (TR0/TR1) in the TCON register controls the on and off of the timer.


The timer counts the selected System clock source ($f_{SYS}/12$). When the 13-bit counter counts up to all 1, the counter is cleared to 0 (all 0), and TF0 (or TF1) is set. t0/t1, C/T0 and C/T1 are all 0, t0_int0_n/t1_int1_n are all 1, and counting enable is only determined by TR0/1. **Mode 1: 16-bit timer**



Mode 1 logical structure diagram

As shown in the figure, Mode 1 of Timer 0 and Timer 1 are the same. In Mode 1, Timer 0 and Timer 1 are 16-bit counters. The 16-bit register consists of 8 bits TH0 and 8 bits TL0. When the counter counts up to 0xFFFF, the counter is cleared to all 0s. Otherwise, mode 1 and mode 0 are the same. t0/t1, C/T0, C/T1 are all 0, t0_int0_n/t1_int1_n are all 1, and counting enable is only determined by TR0/1.



Mode 2 of Timer 0 and Timer 1 are the same. In mode 2, the timer is an 8-bit counter with an automatic reload initial value. This counter is the LSB register (TL0 or TL1), and the initial value that needs to be reloaded is stored in the MSB register (TH0 or TH1).

As shown in the figure, the counter control of Mode 2 is the same as Mode 0 and Mode 1.

However, in mode 2, when TLn accumulates to FFh, the value stored in THn is reloaded to TLn. t0/t1, C/T0, C/T1 are all 0, t0_int0_n/t1_int1_n are all 1, and counting enable is only determined by TR0/1.

Mode 3 logical structure diagram

In mode 3, Timer 0 is two 8-bit timers, at this time Timer 1 stops counting and saves its value. TL0 is an 8-bit register controlled by the timer 0 control bit. The counter uses GATE as the enable terminal to control the INT_EXT signal reception.

TH0 is a separate 8-bit timer. TH0 can only be used to calculate the clock period (divide by 12). The control bit and flag bit (TR1 and TF1) of Timer 1 are used as the control bit and flag bit of TH0.

When Timer 0 works in Mode 3, the use of Timer 1 is restricted, because Timer 0 uses the control bit (TR1) and interrupt flag (TF1) of Timer 1.

When timer 0 works in mode 3, timer 1 is controlled by the mode bit of timer 1. To start timer 1, you need to set timer 1 to mode 0, 1, or 2. To turn off timer 1, set the mode of timer 1 to 3. Timer 1 can be used as a timer (clock is $f_{SYS}/12$), but because TR1 and TF1 are borrowed, overflow interrupts cannot be generated. When timer 0 is working in mode 3, the GATE of timer 1 is valid. t0/t1, C/T0, C/T1 are all 0, $t0_int0_n/t1_int1_n$ are all 1, and counting enable is only determined by TR0/1.

8.1.1. Timer0/1 Related Register

	SFR register							
Address	Name	RW	Reset value	Function description				
0x88	TCON	RW	0x05	Timer control register				
0x89	TMOD	RW	0x00	Timer mode register				
0x8A	TL0	RW	0x00	Timer 0 counter low 8 bit				
0x8B	TL1	RW	0x00	Timer 1 counter low 8 bit				
0x8C	TH0	RW	0x00	Timer 0 counter high 8 bit				
0x8D	TH1	RW	0x00	Timer 1 counter high 8 bit				

Timer0/1 SFR list

8.1.2. Timer0/1 Register Detailed Description

TCON(88H) Timer control register

Bit number	7	6	5	4	3	2	1	0
Symbol	TF1	TR1	TF0	TR0	IE1	-	IE0	-
R/W	R/W	R/W	R/W	R/W	R/W	-	R/W	-
Reset value	0	0	0	0	0	-	0	-

Bit number	Bit symbol	Description
7	TF1	Timer 1 overflow flag bit, set by hardware when Timer1 overflows, or TH0 of Timer0 overflows in mode 3.
6	TR1	Timer1 start enable, when set to1, start Timer1, or start Time0 mode three, TH0 count.
5	TF0	Timer 0 overflow flag, set by hardware when Timer0 overflows.
4	TR0	Timer0 start enable, set to 1 to start Timer0 counting.
3	IE1	External interrupt 1 flag bit, set by hardware, cleared by software.
2		Reserved
1	IEO	External interrupt 0 flag bit, set by hardware, cleared by software.
0		Reserved

TMOD(89H) Timer mode register

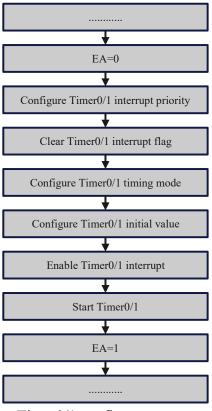
Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	M1[[1:0]	-	-	M0[[1:0]
R/W	-	-	R/	W	-	-	R/	W
Reset value	-	-	0	0	-	-	0	0

Bit number	Bit symbol	Description
7~6		Reserved
5~4	M1[1:0]	Timer 1 mode select bit 00 : Mode 0 - 13-bit timer; 01 : Mode 1 - 16-bit timer; 10 : Mode 2 - 8-bit timer with automatic reloading of initial value; 11 : Mode 3 - Two 8-bit timer
3~2		Reserved
1~0	M0[1:0]	Timer 0 mode select bit 00 : Mode 0 - 8-bit timer; 01 : Mode 1 - 16-bit timer; 10 : Mode 2 - 8-bit timer with automatic reloading of initial value; 11 : Mode 3 - Two 8-bit timer

TL1(8BH) Timer 1 counter low 8-bit

										
Bit number	7	7 6 5 4 3 2 1 0								
Symbol		TL1[7:0]								
R/W		R/W								
Reset value	0									

TH0(8CH) Timer 0 counter high 8-bit

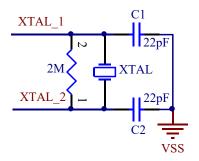

Bit number	7	6	5	4	3	2	1	0
Symbol		TH0[7:0]						
R/W		R/W						
Reset value				()			

TH1(8DH) Timer 1 counter high 8-bit

Bit number	7	7 6 5 4 3 2 1 0								
Symbol		TH1[7:0]								
R/W		R/W								
Reset value	0									

8.1.3. Timer0/1 Configure Process

Timer0/1 configure process


8.2. Timer2

The internal main structure of the Timer2 module is a 32-bit counter. The timer function is achieved by counting the input clock. The counting principle of Timer2 is accumulative counting. An interrupt is generated when the count reaches the set value. The counting clock can be external XTAL32768Hz clock or LIRC 32 kHz. Timer2 has two working modes: single timing mode and automatic reload mode;

Configure Timer2 function enable through register TIMER2_EN, TIMER2_RLD configure auto reload mode or manual reload mode, timing time is determined by register TIMER2_SET_L and TIMER2_SET_H. Timing clock for the internal low-speed clock or external clock oscillator, determined by the clock selection register.

Timer2 supports interrupt wake-up in idle mode 0/1. In the interrupt processing function, software is required to clear the interrupt flag.

Timer2 timing duration formula: TIMER2_CNT_MOD = 0: T_TIMER2 = T_TIMER2_CLK*({TIEMR2_SET_H,TIMER2_SETL} + 1) TIMER2_CNT_MOD = 1: T_TIMER2 = 65536*T_TIMER2_CLK*({TIEMR2_SET_H,TIMER2_SETL} + 1)

External crystal oscillator circuit reference

Notes:

- 1. arbitrary configuration TIMER2_SET_H, TIMER2_SET_L, TIMER2_CFG will clear counter;
- 2. C1 and C2 are recommended according to the crystal oscillator specification.

8.2.1. Timer2 Related Register

0x94 TIMER2_SET_H RW 0x00 high 8 bit.	SFR register					
0x94 TIMER2_SET_H RW 0x00 TIMER2 counter configuration register high 8 bit. TIMER2 counter configuration register TIMER2 counter configuration register	Address	Name	RW	Reset value	Function description	
0x94 TIMER2_SET_H RW 0x00 high 8 bit. TIMER2 counter configuration register	0x93	TIMER2_CFG	RW	0x00	TIMER2 confoguration register	
Dr05 TIMER2 SET I DW 0r00 TIMER2 counter configuration register	0x94	TIMER2_SET_H	RW	0x00	TIMER2 counter configuration register, high 8 bit.	
low 8 bit.	0x95	TIMER2_SET_L	RW	0x00	TIMER2 counter configuration register, low 8 bit.	

Timer2 SFR register list

		Sec	condary bus re	egister
Address	Name	RW	Reset value	Function description
0x2D	PD_ANA	RW	0xFF	Analog module switch register

8.2.2. Timer2 Register Detailed Description

TIMER2_CFG (93H) TIMER2 configuration register						
Bit number	7~4	3	2	1	0	
Symbol	-	TIMER2_CNT_MOD	TIMER2_CLK_SEL	TIMER2_RLD	TIMER2_EN	
R/W	-	R/W	R/W	R/W	R/W	
Reset value	-	0	0	0	0	

TIMER2 CFG (93H) TIMER2 configuration register

Bit number	Bit s	symbol			Dese	cription		
			TIME	TIMER2 counting step mode selection register				
3	TIMER2_	CNT_MOI) 1: The	e counting s	step is 655	36 clocks		
			0: The	e counting s	step is one	clock		
			TIME	R2 clock se	election re	gister		
2	TIMER2	_CLK_SEL	1: sele	ect XTAL3	2768Hz			
			0: sele	ect LIRC 32	2kHz			
			TIME	TIMER2 auto reload enable register				
1	TIMER2_RLD	1: Aut	1: Auto reload mode					
			0: mai	0: manual reload mode				
			TIME	TIMER2 count enable register				
			Config	Configure 1 to start timing, configure 0 to stop timing				
0			In mar	In manual reload mode, the hardware will automatically				
0		ER2_EN	clear t	clear this register after the timing is completed				
			Config	Configure the register during the scan process to				
				re-count.				
TIMER2_SET_	H(94H) TI	MER2 cour	t value c	onfiguratio	n register,	high 8 bits	3	
Bit number	7	6	5	4	3	2	1	0

Symbol	_
R/W	R/W
Reset value	0

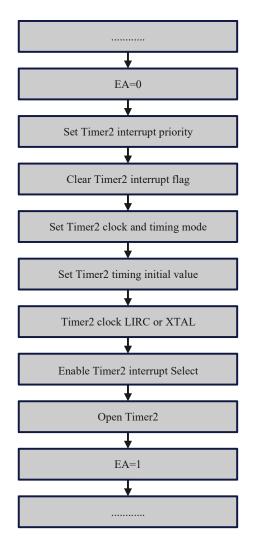
Bit number	Bit symbol		Description						
7~0			TIMER2 count value configuration register, high 8 bits, the						
/~0	-	_	register w	egister will count again when configured during scanning.					
TIMER2_SET_	TIMER2_SET_L(95H) TIMER2 count value configuration register, low 8 bits								
Bit number	7	6	5	4	3	2	1	0	
Symbol		- R/W							
R/W									

Bit number	Bit symbol	Description
7~0		TIMER2 count value configuration register, low 8 bits, the
		register will re-count when configured during scanning

0

Secondary bus register

Reset value


PD_ANA (2DH) Module switch control register

Bit number	7	6	5	4	3	2	1	0
Symbol	-	PD_LVDT	PD_BOR	PD_XTAL_32K	-	-	-	PD_ADC
R/W	-	R/W	R/W	R/W	-	-	-	R/W
Reset value	-	1	1	1	-	-	-	1

Bit number	Bit symbol	Description
4	PD XTAL 32K	PA port crystal oscillator circuit (32768Hz) control register 1: closed;
		0: open, closed by default

8.2.3. Timer2 Configure Process

Timer2 configure process table

During configuration:

- 1. Configure the timer setting register TIMER2_SET_H/TIMER2_SET_L and step configuration TIMER2_CNT_MOD;
- 2. Configure the auto-reload enable register TIMER2_RLD as needed, 1: is the automatic cycle counting mode, 0: is the single timing mode;
- Configure the timing enable register TIMER2_EN, start timing: TIMER2_EN = 1; stop timing: TIMER2_EN = 0.

Note:

- 1. TIMER2_EN = 1 operation should be placed at the end of all configurations;
- 2. During the timing of TIMER2, it is forbidden to change the related configuration of Timer2. If you want to modify it, you need to stop the timing first;
- 3. If precise timing is required, in the auto-reload mode, the relevant registers of TIMER2 are not allowed to be configured during interrupt processing.

8.3. Timer3

Timer3 is a 16-bit timer. Configure Timer3 function enable through register TIMER3_EN. TIMER3_RLD configures automatic reload mode or manual reload mode. The timing time is determined by registers TIMER3_SET_L and TIMER3_SET_H.

The timer clock can be divided by 12 or 4 of the 24MHz clock, which is determined by the clock selection register. Timer3 supports the interrupt wake-up wait mode function.

Single timing mode: After a timing is completed, the hardware will automatically pull down TIMER3_EN to stop timing.

Automatic reset mode: The hardware will automatically reload the setting value, and TIMER3_EN will continue to be maintained at 1 to restart the next timing; the software will stop TIMER3 counting by writing 0 to the register TIMER3_EN, or modify the timing mode midway.

The TIMER3 timing duration formula is:

At 12 frequency, $T_{TIMER3} = T_{CLK_{24M}} * ({TIEMR3_SET_H, TIMER3_SETL} + 1)*12$

At 4 frequency, $T_{TIMER3} = T_{CLK_{24M}} * ({TIEMR3_SET_H, TIMER3_SETL} + 1)*4$

Note:

Configure any TIMER3_SET_H, TIMER3_SET_L, TIMER3_CFG to clear the counter;

	SFR register								
Address	Name 1		Reset value	Description					
0x84	TIMER3_CFG	RW	0x00	TIMER3 configuration register					
0x85	TIMER3_SET_H	RW	0x00	TIMER3 count value configuration register, high 8 bits					
0x86	TIMER3_SET_L	RW	0x00	TIMER3 count value configuration register, high 8 bits					

8.3.1. Timer3 Related Registers

Timer3 SFR register list

8.3.2. Timer3 Register Details

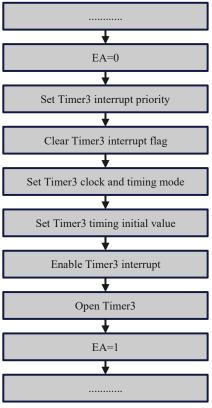
TIMER3	CFG ((84H)	TIMER3	configur	ation	register
11111111	· ·		1111111111			

Bit number	7~3	2	1	0
Symbol	-	TIMER3_CLK_SEL	TIMER3_RLD	TIMER3_EN
R/W	-	R/W	R/W	R/W
Reset value	-	0	0	0

Bit number	Bit symbol	Description	
r	TIMER3_CLK_SEL	TIMER3 timing clock selection register.	
2		1: select clk_24m/4;	

		0: select clk_24m/12.
		TIMER3 auto reload enable register
1	TIMER3_RLD	1: auto reload mode;
		0: manual reload mode.
		TIMER3 count enable register
		Configure 1 to start timing, configure 0 to stop timing
0	TIMER3_EN	In manual reload mode, the hardware will automatically
		clear this register after the timing is completed.
		Configure the register during the scan process to re-count.

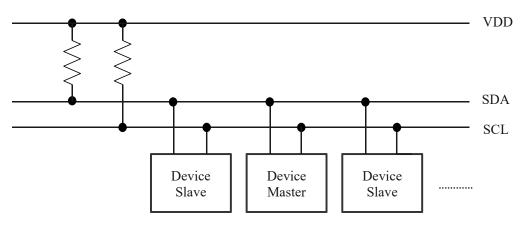
TIMER3_SET_H (85H) TIMER3 count value configuration register, high 8 bits


Bit number	7	6	5	4	3	2	1	0
Symbol	-							
R/W		R/W						
Reset value		0						

Bit number	Bit symbol Description							
7~0	_		TIMER3 count value configuration register, high 8 bits, the					
/~0	-	-	register will count again when configured during scanning.					
TIMER3_SET_	TIMER3_SET_L (86H) TIMER3 count value configuration register, low 8 bits							
Bit number	7	7 6 5 4 3 2 1 0						
Symbol		-						
R/W	R/W							
Reset value		0						

Bit number	Bit symbol	Description
7~0		TIMER3 count value configuration register, low 8 bits, the
		register will re-count when configured during scanning.

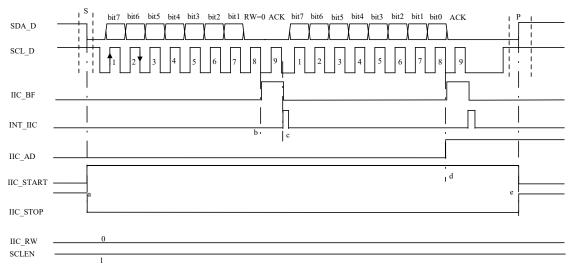
8.3.3. Timer3 Configure Process


Timer3 Configure process

9. IIC

The BF7515BM44-LJTX supports standard and fast IIC communication, and has the following characteristics:

- IIC slave supports 7-bit addressing mode
- Transmission rate: 100kHz/400kHz
- Extend the function of clock low level
- Diagnosis of abnormal communication
- During the communication process, the slave needs to support the following operations of the master:

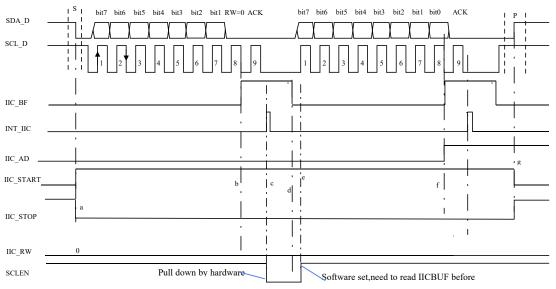

IIC host-slave

The host and slave from the SCL (serial clock) line, SDA (serial data) wire connection, in the communication mode, the PA0/1 is open drain, SCL, SDA must be connected to the pull resistor(suggest $4.7K \sim 10K$).

9.1. Communication Timing

BF7515BM44-LJTX uses hardware slave. When host read /write data, after the slave receives the address, if the address matches, an interrupt is generated and a valid response signal is sent. And an interrupt is generated after the host computer writes the eighth clock of the data, and the host will not generate an interrupt signal when sending the stop signal. IIC timing diagram as follows: **IIC host write timing diagram**

IIC write not pull down clock line diagram


As shown in the above figure, the schematic diagram of the clock line is not pulled down during the host write operation. From this, you can see the changes of the IIC bus and some internal signal changes.

First the host sends a start signal IIC_START, and the slave sets the IIC_START status bit after detecting the IIC_START signal, as shown by the dotted line a in the figure.

Then the host sends the address bytes and write flag bit, and the slave automatically compares with its own address after receiving the address byte. Set IIC_BF after the falling edge of the eighth clock if the address matches, as shown by the dotted line b in the figure. An interrupt signal INT_IIC is generated after the falling edge of the ninth clock, as shown by the dotted line c .The MCU executes interrupt subroutine device needs to read IICBUF. Even if this data is not useful, it needs to be operated.Reading the IICBUF operation will indirectly clear the START_BF. The host continues to send messages. The IIC_BF is also set after the falling edge of the flag is data, and the stop signal has no effect on the IIC_STOP flag. That is, the stop signal IIC_STOP is detected, as shown by the dotted line d. And the IIC_AD flag will not be cleared; The interrupt is generated after the falling edge of the ninth clock, and the interrupt subroutine requires the same operation. If the host wants to send multiple bytes, it can continue to send. The figure above only shows the case where the host sends a data.

Finally, the host sends a stop signal IIC_STOP after sending all the data, indicating the end of the communication, releasing the IIC bus, and the bus enters the idle state.

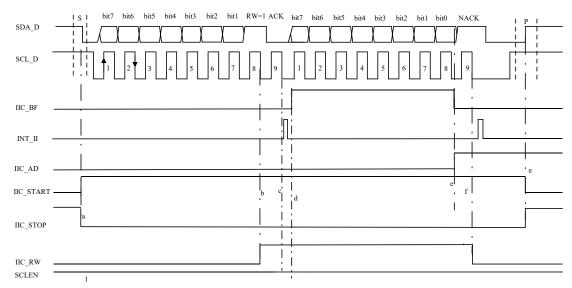
IIC host write pull low timing diagram

IIC write low clock line diagram

As shown in the above figure, it is a schematic diagram of pulling down the clock line during the host write operation, from which you can see the changes of the IIC bus and some internal signal changes.

First the host sends a start signal IIC_START, and the slave sets the IIC_START status bit after detecting the IIC_START signal, as shown by the dotted line a.

Then the host sends the address bytes and write flag bit, and the slave automatically compares with its own address after receiving the address byte. Set IIC_BF after the falling edge of the eighth clock if the address matches, as shown by the dotted line b.


An interrupt signal INT_IIC is generated after the falling edge of the ninth clock, as shown by the dotted line c. SCLEN will be cleared by hardware. This process is used to process or read data from the slave. Even if this data is not useful, reading IICBUF will cause IIC_BUF to be cleared indirectly, as shown by the dotted line d. Software sets SCLEN to release the clock line.As shown by the dotted line e.

After the master detects that the slave releases the SCL, it continues to send the synchronous clock. The IIC_BF is also set after the falling edge of the 8th clock of the 2nd byte, and the IIC_AD flag is also set. And the IIC_AD flag is also set. The currently received byte of the flag is data, as shown by the dotted line f, and the stop signal has no effect on the IIC_STOP flag. That is, the stop signal IIC_STOP is detected, and the IIC_AD flag will not be cleared; The interrupt is generated after the falling edge of the ninth clock, and the interrupt subroutine requires the same operation. If the host wants to send multiple bytes, it can continue to send. The figure above only shows the case where the host sends a data.

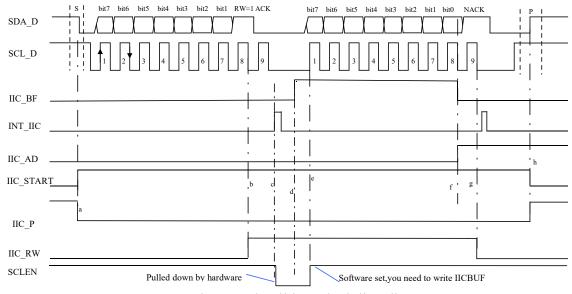
Finally, the host sends a stop signal IIC_STOP after sending all the data, indicating the end of the communication, releasing the IIC bus, and the bus enters the idle state.

IIC host read timing diagram

IIC host does not pull low clock line diagram

As shown in the above figure, the schematic diagram of the clock line is not pulled when the host reads.

First the host sends a start signal IIC_START, marking the beginning of communication. As shown by the dotted line a. The internal circuit detects the IIC_START signal timing and sets the status flag IIC_START.


Then the host sends the address bytes and write flag bit, $IIC_RW = 1$, indicates that the host reads the slave. The slave automatically compares with its own address after receiving the address byte.Status bit IIC_RW set. As shown by the dotted line b. Set IIC_RW after the falling edge of the ninth clock if the address matches.

An interrupt signal INT_IIC is generated after the falling edge of the ninth clock. As shown by the dotted line c. Ballast the data in IICBUFFER to IICBUF, IIC is set to clear, as shown by the dotted line d, and the highest bit is sent to the bus. After the eighth clock, one byte of data is sent, IIC_BF is set to clear; At the same time, the address data flag will also be set, indicating the currently transmitted byte data.

As shown by the dotted line e. An interrupt signal INT_IIC is generated after the falling edge of the ninth clock. If the host needs to read the slave, the host replies with a valid acknowledge bit ACK and continues to communicate. If the data require by the host has been read, the host replies with an invalid response NACK, and then sends a stop signal IIC_STOP to stop the communication. This should be noted in the application. When the NACK is detected, the read/write flag IIC_RW is cleared by hardware. As shown by the dotted line f. If the host sends a NACK, the slave SCLEN will not be automatically pulled low.

Finally, the host sends a stop signal IIC_STOP after reading all the data, indicating the end of the communication. When the IIC_STOP signal is detected the status bit IIC_STOP is set and IIC_START is cleared. Release IIC bus. As shown by the dotted line g. The bus enters the idle state.

IIC host read pull low timing diagram

IIC host read pull low clock line diagram

As shown in the above figure, the schematic diagram of the clock line is not pulled when the host reads.

First the host sends a start signal IIC_START, marking the beginning of communication. As shown by the dotted line a. The internal circuit detects the IIC_START signal timing and sets the status flag IIC_START.

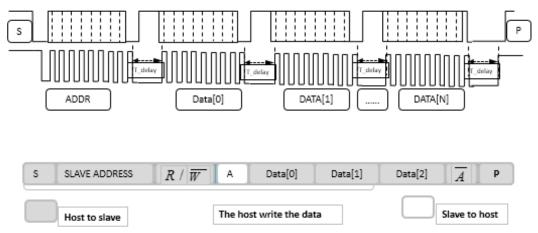
Then the host sends the address byte after the IIC_START signal. IIC_RW = 1, indicates that the host reads the slave. Status bit IIC_RW set. As shown by the dotted line b. Will not be set if the addresses do not match.

An interrupt signal INT_IIC is generated after the falling edge of the ninth clock. As shown by the dotted line c. SCLEN will also be automatically pulled low by the hardware after the falling edge of the ninth clock. This period is used to process or prepare data from the slave, then write the prepared data to IICBUF, set SCLEN in software, and release the clock line. As shown by the dotted line d. In writing the data to the IIC, the IIC will be set, indicating that the IIC is full at this time. As shown by the dotted line e.

After the master detects that the slave releases the SCL, it continues to send the synchronous clock and read the slave data. After the falling edge of the 8th clock, one byte of data has been sent and IIC_BF cleared; At the same time, the address data flag will also be set, indicating the currently transmitted byte data. As shown by the dotted line f.


An interrupt signal INT_IIC is generated after the falling edge of the ninth clock. If the host needs to continue to read the slave, the host replies with a valid acknowledge bit ACK and continues to communicate; If the data require by the host has been read, the host replies with an invalid response NACK, and then sends a stop signal IIC_STOP to stop the communication. When the NACK is detected, the read/write flag IIC_RW is cleared by hardware. As shown by the dotted line g.

Finally, the host sends a stop signal IIC_STOP after reading all the data, indicating the end of the communication. When the IIC_STOP signal is detected the status bit IIC_STOP is set and


IIC_START is cleared. Release IIC bus. As shown by the dotted line h. The bus enters the idle state.

IIC host read data diagram

PS: T_delay: Reserve slave interrupt time, generally 60us^300us, if the slave IIC interrupts the service processing time at100us, suggest T_delay>200us.

IIC host write data diagram

PS: T_delay: Reserve slave interrupt time, generally 60us^300us, if the slave IIC interrupts the service processing time at100us, suggest T_delay>200us.

At the eighth clock slave send ack, IIC interrupt occurs at the ninth clock fulling edge. It is recommended that the host delay 60us~300us when the ninth clock fulling edge is sent. Reserve the slave IIC interrupt service data preparation time, and then send the clock signal.

9.2. IIC Related Register

SFR register							
Address	ess Name RW Reset value Description			Description function			
0xE3	IICADD	RW	0x00	IIC address register			
0xE4	IICBUF	RW	0x00	IIC transmit receive data register			
0xE5	IICCON	RW	0x10	IIC configuration register			
0xE8	IICSTAT	<7:2>R <1:0>RW	0x44	IIC status register			
0xE9	IICBUFFER	RW	0x00	IIC transmit receive data buffer register			

IIC SFR register list

Secondary bus register							
AddressNameRWReset valueDescription function							
0x34	PERIPH_IO_SEL1	RW	0x10	External port function selection register 1			
0x50	IIC_FIL_MODE	RW	0x02	IIC filter selection register			

9.2.1. IIC Address Register

IICADD (E3H) IIC address register

Bit number	7	6	5	4	3	2	1	0
Symbol	IICADD[7:1]						-	
R/W		R/W						-
Reset value				0				-

Bit number	Bit symbol	Description
7~1	IICADD[7:1]	Configure the IIC communication address
0		Reserved

9.2.2. IIC Status Register

IICSTAT (E8H) IIC	status	register
-------------------	--------	----------

Bit number	7	6	5	4
Symbol	IIC_START	IIC_STOP	IIC_RW	IIC_AD
R/W	R	R	R	R
Reset value	0	1	0	0
Bit number	3	2	1	0
Symbol	IIC_BF	IIC_ACK	IIC_WCOL	IIC_RECOV
R/W	R	R	R/W	R/W
Reset value	0	1	0	0

Bit number	Bit symbol	Description
		Start signal flag
7	IIC_START	1: indicates that the start bit is detected;
		0: indicates that the start bit is not detected.
		Stop signal flag
6	IIC_STOP	1: Means in the stop state;
		0: Means that the stop bit is not detected.
		Read and write flag
		Record the read/write information obtained from the address
5	IIC_RW	byte after the last address match,
		1: Indicates read operation;
		0: means write operation.
		Address data flag
4		1: Indicates that the most recently received or sent byte is data;
4	IIC_AD	0: Indicates that the most recently received or sent byte is an
		address.
		IICBUF full flag bit: when receiving in IIC bus mode
		1: Indicates that the reception is successful and the buffer is full;
		0: indicates that the reception is not completed and the buffer is
		still empty
3	IIC_BF	When sending in IIC bus mode:
		1: Indicates that data transmission is in progress (not including
		the response bit and stop bit), and the buffer is still full;
		0: Indicates that the data transmission has been completed (not
		including the response bit and stop bit), and the buffer is empty.
		Reply flag
2	IIC_ACK	1: indicates an invalid response signal;
		0: indicates an effective response signal.
		Write conflict flag
		1: Indicates that when the IIC is sending the current data, new
1	IIC_WCOL	data is trying to be written into the sending buffer; the new data
		cannot be written into the buffer;
		0: No write conflict occurred.
		Receive overflow flag
		1: Indicates that new data is received when the previous data
0	IIC_RECOV	received by IIC has not been taken away, and the new data
		cannot be received by the buffer;
		0: Indicates that no receive overflow has occurred.

IIC_START: Start signal status bit, IIC_START is set when the start signal is detected, Indicating that the bus is busy.

IIC_STOP: Stop signal status bit, IIC_START is set when the start signal is detected, indicating that the bus is idle. When the start signal is detected, the hardware is cleared, indicating that communication begins.

IIC_AD: Address data flag. It indicates whether the byte currently received or sent is an address or data. IIC_AD =0, flag is currently received or sent byte is the address; IIC_AD = 1 flag is currently received or sent byte is the data; Start signal, stop signal, non-response signal have no effect on this status bit. This status bit change occurs on the falling edge of the eighth clock.

IIC_RW: Read and write flag. The flag bit is recorded the read and write information bits obtained from the address is matched. IIC_RW = 1 means the host reads the slave. RW = 0 means the host writes the slave. Start signal, stop signal, non-answer signal (NACK) is cleared IIC_RW. This status bit change occurs on the falling edge of the eighth clock.

IIC_BF: BUFFER full flag. It indicates that the transceiver buffer is currently full or empty. IIC_BF=0 indicates that the buffer does not receive data and the buffer is empty; IIC_BF=1 indicates that the buffer receive data and the buffer is full. This status bit can only be set and cleared indirectly, not directly.

Address matching and IIC_RW=0, IIC_BF will be set after the falling edge of the eighth clock, indicating that the IICBUF has received the data. The IICBUF should be read during the execution of the interrupt routine, and the read IICBUF will indirectly clear the BF flag. If the host does not read IICBUF and the host continues to send data, a receive overflow will occur. Although the slave still receives the host to send data and is ballasted to the IICBUF.

IIC_RW=1 indicates the operation of the master to read the slave, the slave operation needs to write data to the IICBUF, and the slave writes IICBUF operation to set the IICBUF. The software then sets SCLEN to release the clock line; The host The host sends the synchronous clock. After the 8th clock is passed, the IICBUF is cleared by hardware after the data in the IICBUF is sent out.

IIC_ACK: Answer flag. Regardless of whether the host is a read or write operation, the slave samples the data line from the rising edge of the ninth clock and records the response information. The acknowledge bits are divided into a valid acknowledgment ACK and a non-valid acknowledgement bit NACK. That is to say, the rising edge of the ninth clock samples the data to 0, indicating that the ACK is valid, and the IIC_ACK is cleared. If data 1 is sampled, NACK is set, indicating non-response. After the non-acknowledgment signal, the host will send a stop signal to announce the end of the communication. The start signal will clear this status bit.

IIC_WCOL: Write conflict flag. IICBUF only when IIC_RW=1, RD_SCL_EN=1 and SCLEN=0 can be written by the CPU. Any other attempt to write to IICBUF is forbidden. If the above conditions are not met, the write IICBUF operation occurs. Then the data will not be written to IICBUF, and the conflict flag IIC_WCOL will be set. This flag needs to be cleared by software.

IIC_RECOV: Receive overflow flag. In the case of IICBUF full, that is, in the case of data in the IICBUF. If IIC received new data, it will receive overflow and IIC RECOV will set. At the same time, the data in the IICBUF will not be updated, and the newly received data will be lost. This status bit also requires software to clear, otherwise it will affect the subsequent communication. This kind of situation will only appear in IICRW=0. BF=1, and the CPU will appear when it does not read IICBUF.

Semiconductor

9.2.3. IICCON Register

Inccon (ESH) inc configuration register							
Bit number	7	6	5	4			
Symbol	-	-	IIC_RST	RD_SCL_EN			
R/W	-	-	R/W	R/W			
Reset value	-	-	0	1			
Bit number	3	2	1	0			
Symbol	WR_SCL_EN	SCLEN	SR	IIC_EN			
R/W	R/W	R/W	R/W	R/W			
Reset value	0	0	0	0			

IIC control register, used to control communication work.

Bit number	7	6	5	4
Symbol	-	-	IIC_RST	RD_SCL_EN
R/W	W		R/W	R/W
Reset value	-	-	0	1
Bit number	3	2	1	0
Symbol	WR_SCL_EN	SCLEN	SR	IIC_EN
R/W	R/W	R/W	R/W	R/W
Reset value	0	0	0	0

IICCON (E5H) IIC configuration register

Bit number	Bit symbol	Description
7~6		Reserved
		IIC module reset signal
5	IIC_RST	1: IIC module reset operation;
		0: IIC module works normally
		The host reads the low clock line control bit
4	RD SCL EN	1: Enable the host to read and pull down the clock line
4	KD_SCL_EN	function,
		0: Disable the host read and pull down clock line function
		The host writes the low clock line control bit,
		1: Enable the function of writing and pulling down the clock
3	WR_SCL_EN	line,
		0: Disable the function of writing and pulling down the clock
		line
2	SCLEN	IIC clock enable bit
2	SCEEN	1: clock works normally, 0: lows the clock line
		IIC conversion rate control bit
		1: The conversion rate control is turned off to adapt to the
1	SR	standard speed mode (100K);
		0: Conversion rate control is enabled to adapt to fast speed
		mode (400K)
		IIC work enable bi
0	IIC_EN	1: IIC works normally;
		0: IIC does not work

The role is describle in detail below:

IICEN is module enable signal, when IICEN=1, the circuit works.

SR is the conversion rate control bit, SR=1 conversion ratecontrol off, port adapted to

100Kbps communication.

SCLEN is clock enable control bit, although the slave cannot generate the communication clock, the slave can extend the low time of the clock according to the protocol. SCLEN=0, clock line is locked at low level; SCLEN=1, release clock line. The premise of extending the low level of the clock is IICEN=1, otherwise the internal circuit will not have any effect on the IIC bus. SCLEN is often used to extend low time and make the host enter the wait state, so that the slave has enough time to process the data.

WR_SCL_EN is write low line control bit. When it is 1 to enable the interrupt to pull down the clock line, when it is 0, it does not enable the interrupt to pull down the clock line.

IIC_RW=0, according to the communication rate of the host and the time of processing the interrupt, it is determined whether to lower the clock line, that is, configure the WR_SCL_EN bit.

When the CPU can process the interrupt and exit the interrupt within 8 IIC clocks. WR_SCL_EN=0 disable pull down the clock clock line function. At this time, the hardware will not automatically pull down the clock line when the interrupt arrives. When the CPU cannot process the interrupt and exit in the 8 IIC clocks, WR_SCL_EN=1 enables the clock line to be pulled down. At this point, the hardware automatically pulls down the clock line when the interrupt arrives, forcing the host to enter the wait state. When the data written to the IIC is read by the CPU, the software sets SCLEN.

RD_SCL_EN is read low line control bit. When it is 1 to enable the interrupt to pull down the clock line, when it is 0, it does not enable the interrupt to pull down the clock line.

RD_SCL_EN=1, when the slave receives the address byte or sends one byte and the host sends, SCLEN wll be automatically pulled low by hardware, forcing the host to the enter the wait state. The release the IIC clock from the slave, the following two operations arerequired: first write the data to be sent to the IIC, set the software in IICBUF in SCLEN. The purpose of this design is to ensure that the data to be sent has been written in the IICBUF before the SCL is pulled high.

RD_SCL_EN=0, when the slave receives the address byte or sends one byte and the host sends an ACK, the slave immediately polls the data prepared in the IICBUFFER register to the transmit buffer register and then to the data line. Therefore, in order to ensure that data transmitted each time is correct, IICBUFFER prepares the next data to be sent in the interrupt service routine. The data received by the host is the last interrupted data, and the first time the data is received is ready for initialization.

Note: When you need to pull down the clock line, that is, WR_SCL_EN/RD_SCL_EN=1. Software should turn off the clock line until the last Byte data is sent and received. That is, WR_SCL_EN/RD_SCL_EN=0, the software should turn on the write low pull clock line before sending and receiving the last Byte data. This kind of operation can be self-regulated according to whether the host is software or hardware.

IIC_RST is IIC module control enable bit, enable the IIC module reset function for 1 and disable the IIC module reset function when 0. Pay attention to configuration 1 reset IIC module all DFF triggers. The reset terminal of IIC_RST is global reset, and the other reset terminal are iic_rst_n. All iic_rst writes 0 first, then operate other register configurations.

Semiconductor

9.2.4. IICBUF Register

IIC read and write buffer register, used to control communication work.

IICBUF (E4H)	Inc send and receive data register							
Bit number	7	7 6 5 4 3 2 1 0						
Symbol		IICBUF						
R/W		R/W						
Reset value		0						

IICBUF (E4H) IIC send and receive data register

Bit number	Bit symbol	Description
7~0	IICBUF	IIC transmit and receive data buffer

The specific application process is as follows:

In the send state, after the data is ballasted into the IICBUF, under the synchronous clock of the host. The data is sequentially shifted and sent out, the high position is in front. After 8 clocks, one byte is sent.

In the receive state, after the host's 8 clocks have passed, the data is written to the BUF. After the 9th clock, an interrupt is generated, telling the CPU to read the data in the IICBUF.

Writing data to IICBUF is conditional, when RD_SCL_EN=1, only IIC_RW=1, and SCLEN=0 can write data into IICBUF; Otherwise, the operation of writing IICBUF is prohibited. That is to say, if the condition is not satisfied, the operation of writing IICBUF cannot be successful, and the data cannot be written. IICBUF data will not change, but will also cause write confilicts.

For example: IICBUF already has been 55h. In case the condition of writing IICBUF is not satisfied, we want to write data 00h into IICBUF. The result is that the data in IICBUF is still 55h, and the write conflict flag IIC_WCOL is set to tell the user that the operation is abnormal.

When RD_SCL_EN=0, the data to be the slave is the value of the ballast IICBUFFER register when the interrupt signal is generated.

9.2.5. IICBUFFER Register

ine Det i Er (E) i e transmit une receive data ourier register									
Bit number	7	6	5	4	3	2	1	0	
Symbol		IICBUFFER							
R/W		R/W							
Reset value	0								

IICBUFFER (E9H) IIC transmit and receive data buffer register

The specific application process is as follows:

When RD_SCL_EN=0, and the host reads the data, the data in the IICBUFFER is sent to the slave transmit buffer register after the two clks after the interrupt is generated, and the data is sent as slave. Therefore, the data in the IICBUFFER should be prepared before the interrupt is generated. Generally, it is ready in the service routine. Device address generation interrupts send data to prepare for initialization.

9.3. Secondary bus register

9.3.1. External port function selection register 1

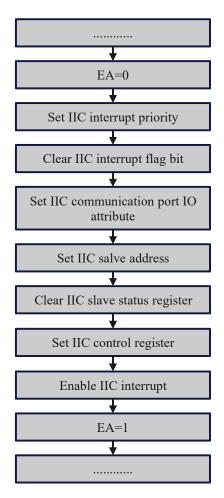
Bit number	7	6	5	4
Symbol	UART1_IO_SEL	UART0_	IO_SEL	IIC_IO_SEL
R/W	R/W	R/W	R/W	R/W
Reset value	0	0	0	1
Bit number	3	2	1	0
Symbol	INT3_IO_SEL	INT2_IO_SEL	INT1_IO_SEL	INT0_8_IO_SEL
R/W	R/W	R/W	R/W	R/W
Reset value	0	0	0	0

PERIPH IO SEL1(34H) External port function selection register 1

Bit number	Bit symbol	Description
		IIC port selection enable
4	IIC_IO_SEL	0: Select IIC (SCL0B/SDA0B) function;
		1: Select IIC (SCL0A/SDA0A) function

9.3.2. IIC filter selection register

IIC_	FIL_	MODI	E(50H)	IIC filt	ter select	ion regis	ter


Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	-	-	IIC_AFIL_SEL	IIC_DFIL_SEL
R/W	-	-	-	-	-	-	R/W	R/W
Reset value	-	-	-	-	-	-	1	0

Bit number	Bit symbol	Description
		IIC port analog filter selection enable
1	IIC_AFIL_SEL	1: Select analog filter function;
		0: Do not select analog filter function.
		IIC port digital filter selection enable
0	IIC_DFIL_SEL	1: Select digital filter function;
		0: Do not select digital filter function.

9.4. IIC Configuration Process

IIC configure process

Notes: IIC bus pull-up resistor 4.7K~10K, ground filter capacitor 100pF close to the lead chip.

10. UART

There are 3 UART modules in the BF7515BM44-LJTX series, UART0/1 can choose 3 channels/2 channels IO port mapping respectively. Each module can only correspond to one set of mappings at the same time.

Features of UART interface in the system:

- Support full-duplex, half-duplex serial
- Independent dual buffer receiver and single buffer transmitter
- Programmed baud rate (10bit analog-to digital divider)
- Interrupt-driven or polling operation:
 - send completed
 - receiving full
 - receive overflow, parity error, frame error
- Supports hardware parity production and check
- Programmable 8bit or 9bit character length
- STOP bit 1 or 2 can be selected
- Supports multiprocessor mode

10.1. UART0/UART1 Function Description

10.1.1. Baud Rate Generation

Baud rate generation modules: bandrate={UART_BDH[1:0], UART_BDL}.

Baud rate calculation formula: bandrate=0, does not generate baud rate clock. When bandrate=1~1024, baud rate = BUSCLK/ (16xbandrate). BUSCLK uses the divided clock of the system clock source, fixed to 24M. Each time the baud rate register is configured, the internal counter is cleared and the baud rate signal is regenerated. Communication requires the transmitter and receiver to use the same baud rate.

10.1.2. Transmitter Function

Send data flow: Trammitted by writing UART_BUF data, sending stop bit after sending stop bit. Software clear interrupt flag and waits for the next write. The transmitter output pin (TXD) idle state defaults to a logic high state. The entire transmission process must be performed when the module is enabled.

By writing data into the data register (UART_BUF), the data will be directly saved to the sending data buffer and the sending process will be started. In the subsequent complete sending process, the data buffer is locked, and the configuration write data register is invalid until the sending is completed after the stop bit, write UART_BUF again to restart a new transmission.

The central element of the serial port transmitter is the transmit shift register with a length of 10/11/12 bits (depending on the setting in the DATA_MODE control bit). Assuming DATA_MODE=0, select the normal 8-bit data mode. In 8-bit data mode, there are 1 start bit, 8 data bits, and 1/2 stop bits in the shift register.

Both sending and receiving are in little-endian mode (LSB first).

10.1.3. Receiver Function

The receiver is enabled by setting the RECEIVE_ENABLE bit in UART_CON1. Of course, the entire receiving process must be performed when the module is enabled.

Receiving data flow: When the receiving enable is valid, the data is received at any time, the receiving interrupt is set after receiving the stop bit, and the software clears the interrupt flag.

The currently received data will have a detection mechanism, which can detect three types of errors: receiving overflow, frame error, and parity error, all of which require software to clear the flag. It is recommended that after detecting the receiving interrupt, read the status flag, read the data buf, and finally clear the received data status flag (UART_STATE[3:0]).

The data character is composed of a logic 0 start bit, 8 (or 9) data bits (LSB first) and a logic 1 stop bit (1bit). After receiving the stop bit into the receiving shifter, if the receiving data register is not full, the data character is transferred to the receiving data register, and the receiving data register is full status flag is set. If the receiving data register has been set to be full at this time, the overflow

status flag is set, and the new data will be lost. Because the receiver is double-buffered, the program has a full character time for reading after setting the receive data register is full and before reading the data in the receive data buffer to avoid receiver overflow. When the program detects that the receive data register is full, it obtains data from the receive data register by reading UART BUF.

10.1.4. Receiver sampling method

The receiver uses a 16 times baud rate clock for sampling. The receiver searches for the falling edge on the RXD serial data input pin by extracting logic level samples at 16 times the baud rate. The falling edge is defined as logic 0 samples after 3 consecutive logic 1 samples. The 16 times baud rate clock is used to divide the bit time into 16 segments, which are labeled RT1 to RT16.

The receiver then samples each bit time of RT8, RT9 and RT10, including the start bit and stop bit, to determine the logic level of the bit. The logic level is the logic level of the vast majority of samples taken during the bit time. When the falling edge is positioned, the logic level is 0 to ensure that this is the real start bit, not noise. If at least two of these three samples are 0, the receiver assumes that it is synchronized with the receiver character and starts Shift receives the following data, if the above conditions are not met, exit the state machine and return to the state of waiting for the falling edge.

The falling edge detection logic keeps looking for a falling edge. If an edge is detected, the sample clock resynchronizes the bit time. In this way, when noise or baud rate is not matched, the reliability of the receiver can be improved.

10.1.5. Multiprocessor Mode

When MULTI_MODE (UART_CON1.4) is set, it supports multi-machine communication between a master processor and one or more slave processors by using the ninth data bit and software identification. In the multi-processor mode, the received ninth bit of data is saved to R8 (UART_STATE.6). After receiving the stop bit, the serial port interrupt is only activated when R8=1.

A typical multi-machine communication application is that when the host wants to send data to one or more slaves, it first sends an address byte for selecting the target slave. The difference between the address byte and the data byte is: the ninth bit of the address byte is logic 1; the ninth bit of the data byte is always set to logic 0.

When MULTI_MODE (UART_CON1.4)=1, the master sends data bytes, and the slave does not generate interrupts. But when the host sends an address byte, all the slaves will generate an interrupt. The slave judges whether the machine is addressed in this interrupt service routine. The address allocation of the slave is realized by software. The addressed slave clears the MULTI_MODE (UART_CON1.4) bit and waits to receive data. The unaddressed slave will keep MULTI_MODE (UART_CON1.4) as 1 to ignore the data byte sent by the master.

	SFR register					
Address	Name	RW	Reset value	Description		
0xD6	UART1_BDL	RW	0x00	UART1 baudrate control register		
0xD7	UART1_CON1	RW	0x00	UART1 mode control register1		
0xD9	UART1_CON2	RW	0x0C	UART1 mode control register2		
0xDA	UART1_STATE	RW	0x00	UART1 status flag register		
0xDB	UART1_BUF	RW	0xFF	UART1 data register		
0xDC	UART0_BDL	RW	0x00	UART0 baudrate control register		
0xDD	UART0_CON1	RW	0x00	UART0 mode control register1		
0xDE	UART0_CON2	RW	0x0C	UART0 mode control register2		
0xDF	UART0_STATE	RW	0x00	UART0 status flag register		
0xE2	UART0_BUF	RW	0xFF	UART0 data register		
		II	ART SFR regis	ter list		

10.2. UART0/UART1 Related Register

UART SFR register list

	Secondary bus register					
Address	Name	RW	Reset value	Description function		
0x34	PERIPH_IO_SEL1	RW	0x10	External port function selection register 1		

10.3. UART0/UART1 Register Details

UART1_BDL(D6H) UART1 baudrate control register

_ `				0				
Bit number	7	6	5	4	3	2	1	0
Symbol	_							
R/W	R/W							
Reset value				()			

Bit number	Bit symbol	Description
		Baud rate control register
		The lower 8 bits of the baud rate modulus divisor register,
7~0		Baud_Mod={UART1_BDH[1:0], UART1_BDL},
/~0		When Baud_Mod=0, the baud rate clock will not be
		generated. When Baud_Mod=1~1023, the baud rate =
		BUSCLK/(16xBaud_Mod)

UART1_CON1(D7H) UART1 mode control register 1

Bit number	7	6	5	4
Symbol	-	uart_enable	receive_enable	multi_mode
R/W	-	R/W	R/W	R/W
Reset value	-	0	0	0

BF7515BM44-LJTX

Bit number	3	2	1	0
Symbol	stop_mode	data_mode	parity_en	parity_sel
R/W	R/W	R/W	R/W	R/W
Reset value	0	0	0	0

Bit number	Bit symbol	Description
6	uart anabla	Module enable
0	uart_enable	1: module enable; 0: module close
5	magaine anglela	Receiver enable
5	receive_enable	1: receiver is on; 0: receiver is off
4	multi mada	Multi-processor communication mode,
4	multi_mode	1: mode enable; 0: mode disable
3	stan mada	Stop bit width selection,
3	stop_mode	1: 2 bits; 0: 1 bit
2	data mada	Data mode selection
Ζ	data_mode	1: 9-bit mode; 0: 8-bit mode
1	monites on	Parity check enable
1	parity_en	1: parity check is enabled; 0: parity check is disabled
0	monitry gol	Parity check selection
0	parity_sel	1: odd check; 0: even check

UART1_CON2 (D9H) UART1 mode control register 2

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	tx_empty_ie	rx_full_ie	UART	1_BDH
R/W	-	-	-	-	-	-	R	/W
Reset value	_	-	_	-	1	1	0	0

Bit number	Bit symbol	Description
		Send interrupt enable
3	tx_empty_ie	1: interrupt enable;
		0: interrupt disable (used in polling mode)
		Receive interrupt enable
2	rx_full_ie	1: interrupt enable;
		0: interrupt disable (used in polling mode)
1.0	LIADTI DDU	UART1_BDH, the upper 2 bits of the baud rate modulus
1~0	UART1_BDH	divisor register

UART1_STATE (DAH) UART1 status flag register

Bit number	7	6	5	4
Symbol	-	r8	t8	tx_empty_if
R/W	-	R	R	R/W
Reset value	-	0	0	0

BF7515BM44-LJTX

Bit number	3	2	1	0
Symbol	rx_full_if	rx_overflow_if	frame_err_if	parity_err_if
R/W	R/W	R/W	R/W	R/W
Reset value	0	0	0	0

Bit number	Bit symbol	Description
6	r8	The 9th data of the receiver, read only
5	t8	The 9th data of the transmitter, read only when parity check is enabled
4	tx_empty_if	Send interrupt mark1: The sending buffer is empty;0: Send buffer is full, software write 0 to clear, write 1 is invalid
3	rx_full_if	Receive interrupt mark 1: The receive buffer is full; 0: The receive buffer is empty, software writes 0 to clear, writes 1 is invalid
2	rx_overflow_if	Receive overflow flag 1: Receive overflow (new data is lost); 0: no overflow, software write 0 to clear, write 1 is invalid
1	frame_err_if	Frame error flag1: Frame error detected;0: No frame error is detected, software writes 0 to clear, write1 is invalid
0	parity_err_if	Parity error flag1: Receiver parity error;0: The parity check is correct, the software writes 0 to clear, and writes 1 is invalid

UART1_BUF(DBH)UART1 data register

Bit number	7	6	5	4	3	2	1	0		
Symbol	-									
R/W	R/W									
Reset value	1	1	1	1	1	1	1	1		

Bit number	Bit sy	mbol	Description						
7~0			Read returns the contents of the read-only receive data buffer, write into the write-only transmit data buffer						
UART0 BDL (DCH) UART0 baudrate control register									
Bit number	7	6	5	4	3	2	1	0	
Symbol					_				

R/W	R/W
Reset value	0

Bit number	Bit symbol	Description
		Baud rate control register
	The lower 8 bits of the baud rate mo	The lower 8 bits of the baud rate modulus divisor register,
7.0		Baud_Mod={UART0_BDH[1:0], UART0_BDL},
7~0		When Baud_Mod=0, the baud rate clock is not generated,
		when Baud_Mod= $1 \sim 1023$, the baud rate =
		BUSCLK/(16xBaud_Mod)

UART0 CON1 (DDH) UART0 control register 1

	· /			
Bit number	7	6	5	4
Symbol	-	uart0_enable	receive_enable	multi_mode
R/W	-	R/W	R/W	R/W
Reset value	-	0	0	0
Bit number	3	2	1	0
Symbol	stop_mode	data_mode	parity_en	parity_sel
R/W	R/W	R/W	R/W	R/W
Reset value	0	0	0	0

Bit number	Bit symbol	Description
6	uart0 enable	Module enable
0		1: module enable; 0: module close
5	receive enable	Receiver enable
5		1: receiver is on; 0: receiver is off
4	multi modo	Multi-processor communication mode
4	multi_mode	1: mode enable; 0: mode disable
3	stan mada	Stop bit width selection
3	stop_mode	1: 2 bits; 0: 1 bit
2	J. 4.5	Data mode selection
2	data_mode	1: 9-bit mode; 0: 8-bit mode
		Parity check enable
1	parity_en	1: parity check is enabled;
		0: parity check is disabled
0	monitry and	Parity check selection
0	parity_sel	1: odd check; 0: even check

UART0_CON2 (DEH) UART0 control register 2

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	tx_empty_ie rx_full_ie		UAR	Г0_BDH
R/W	-	-	-	-	R/W		F	R/W

Reset value	-	-	-	-	1	1	0	0

Bit number	Bit symbol	Description
3	tre amontre in	Transmit interrupt enable
3	tx_empty_ie	1: interrupt enable, 0: interrupt disable (used in polling mode)
2	my fall is	Receive interrupt enable
2	rx_full_ie	1: interrupt enable, 0: interrupt disable (used in polling mode)
1~0	UART0_BDH	The upper 2 bits of the baud rate modulus divisor register

UART0_STATE (DFH) UART0 status flag register

		00			
Bit number	7	6	5	4	
Symbol	-	r8	t8	tx_empty_if	
R/W	-	R	R	R/W	
Reset value	-	0	0	0	
Bit number	3	2	1	0	
Symbol	frx_full_i	rx_overflow_if	frame_err_if	parity_err_if	
R/W	R/W	R/W	R/W	R/W	
Reset value	0	0	0	0	

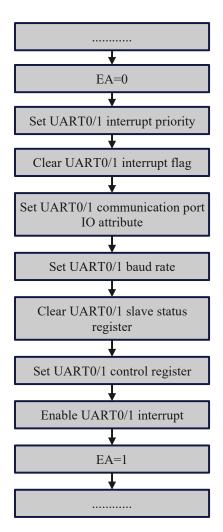
Bit number	Bit symbol	Description
6	r8	The 9th data of the receiver, read only
5	t8	The 9th data of the transmitter, read only when parity check is enabled
		Send interrupt mark:
4	ty omnty if	1: The sending buffer is empty
4	tx_empty_if	0: Send buffer is full, software write 0 to clear, write 1 is invalid
		Receive interrupt mark:
2	frx_full_i	1: The receive buffer is full
3		0: The receive buffer is empty, software writes 0 to clear,
		writes 1 is invalid
		Receive overflow flag:
2	rx_overflow_if	1: Receive overflow (new data is lost)
		0: no overflow, software write 0 to clear, write 1 is invalid
		Frame error flag:
1	from or if	1: Frame error detected
1	frame_err_if	0: No frame error is detected, software writes 0 to clear,
		write 1 is invalid
		Parity error flag:
0	parity_err_if	1: Receiver parity error
		0: The parity check is correct, the software writes 0 to clear,

Semiconductor

			and writes	s 1 is inval	id					
UART0_BUF (E2H) UART0 data register										
Bit number	7	6	5	4	3	2	1	0		
Symbol		-								
R/W	R/W									
Reset value	1	1	1	1	1	1	1	1		

Bit number	Bit symbol	Description
7~0		Read returns the contents of the read-only receive data buffer,
		write into the write-only transmit data buffer

Secondary bus register


PERIPH_IO_SEL1(34H) External port function selection register 1

Bit number	7	6	5	4
Symbol	UART1_IO_SEL	UART0_	IO_SEL	IIC_IO_SEL
R/W	R/W	R/W	R/W	R/W
Reset value	0	0	0	1
Bit number	3	2	1	0
Symbol	INT3_IO_SEL	INT2_IO_SEL	INT1_IO_SEL	INT0_8_IO_SEL
R/W	R/W	R/W	R/W	R/W
Reset value	0	0	0	0

Bit number	Bit symbol	Description
	UART1_IO_SEL	UART1 port selection enable
7		0: Select UART1 (RXD1B/TXD1B) function;
		1: Select UART1 (RXD1A/TXD1A) function
	UART0_IO_SEL	UART0 port selection enable
6.5		00: select UART0 (RXD0C/TXD0C) function;
6~5		01: Select UART0 (RXD0A/TXD0A) function;
		1x: select UART0 (RXD0B/TXD0B) function

10.4. UART0/UART1 Configure Process

UART initial configure process

- 1. Configuration module enable, receive enable, mode select: UART_CON1;
- 2. Configure baudrate, open interrupt enable: UART_BDL, UART_CON2;
- 3. Write UART_BF starts to send data, after detecting the transmission interrupt, clear the interrupt flag tx_empty_if;
- 4. When the receiving interrupt is detected, first read the receiving status UART_STATE, then read R8 and UART_BUF, and finally clear the receiving status flag (UART_STAT[3:0] = B0000). Once the receiving process is completed, wait for the next receiving interrupt.
- 5. If the configuration interrupt is not enabled and the program executes the UART function, it also needs to read the status flag first, then read R8 and UART_BUF, and finally clear the status flag.
- 6. Interrupt flag bit clearing operation. In full-duplex operation, the clear flag bit operation requires writing 0 for the effective interrupt bit and writing 1 for other interrupt bits (writing 1 is an invalid operation), otherwise it is easy to misuse. For example: when the transmission interrupt is valid, you need to write UART0_STATE = 0x0F; (that is, configure

UART0_STATE[0:3] = 0x0F, and write R8 is invalid. When t8 is in 9-bit mode and no parity, you need to configure valid transmission data).

7. 8-bit mode: the parity check is disabled.

9-bit mode: When the parity bit is enabled, when the ninth bit is not enabled, the ninth bit is T8 written in. There are only sending and receiving interrupts. The error flag only marks the error detection of the current data, and only the corresponding bit is cleared by writing 0. There is no error interrupt. The sending interrupt is set to 1 after the stop bit is sent, and the software is cleared to 0. The receiving interrupt is receiving Set to 1 after the stop bit is completed, cleared by software.

Multi-processor mode: only work in 9-bit mode, when the received R8 bit = 1, the receive interrupt is set, otherwise it is not set. When using the multi-processor mode, configure the receive enable, configure the multi-processor mode, receive the address data (the 9th bit = 1), receive and generate an interrupt, the application confirms whether the address matches, and the configuration closes the multi-processor mode if it matches. Data (the 9th bit = 0) can be interrupted by the receive interrupt until the next address data is received. If the address does not match, the multi-processor mode is turned on, and all subsequent data will not be received until the next address data is cycled in turn application.

Hardware response: Send data, start by writing UART0/1_BUF value, set the sending interrupt flag after sending the stop bit, and clear the interrupt flag by software, and wait for the next write. When the receiving data is enabled, the data can be received at any time. After receiving the stop bit, the receiving interrupt is set and the software clears the interrupt flag. The currently received data will have a detection mechanism, which can detect three types of errors: receiving overflow, frame error, and parity error, all of which require software to clear the flag. It is recommended that after detecting the receiving interrupt, read the status flag and clear all the receiving status flags UART0/1_STATE[0:3].

10.5. UART2 Function Description

10.5.1. Baud Rate Generation

Baud rate generation modules: Baud_Mod= {SCI_BDH [4:0], SCI_BDL}.

Baud rate calculation formula: Baud_Mod=0, does not generate baud rate clock. When Baud_Mod=1~8191, SCI baud rate = BUSCLK/ (16xBaud_Mod). BUSCLK is the sci work clock, fixed 24MHz clock used in this project. Each time the baud rate register is configured, the internal counter is cleared and the baud rate signal is regenerated. Communication requires the transmitter and receiver to use the same baud rate. Baud rate deviation range allowed by communication: 8/(11*16)=4.5%.

Support automatic baud rate matching. In the LIN protocol, the sync segment character is 0x55. When the baud rate is detected, the measurement starts from the falling edge of the received START bit until the falling edge of the 8th data bit stops. A total of 8 bits will automatically update the baud rate after the communication is completed, and can be read out through the register SCI_BDH/SCI_BDL. Note here that the receiving sync segment automatically matches the baud rate, and the receiving function is performed at the same time. After receiving the character, the receiving interrupt will occur. The maximum deviation before the baud rate match is not allowed to exceed 40%, otherwise the calibration fails.

10.5.2. Transmitter Function

The emitter output pin TXD idle state defaults to a logic high state (txd_inv =0 after reset). If txd_inv =1, the transmitter output is reversed.

The transmitter can send three characters: lead idle character, abort character, data character. Three characters are queued for sending, SCI_TRANS_CTRL[4]: trans_enable bit writes 0 and then writes 1 to queue leading idle characters. SCI_BREAK_CTRL[0]: break_trans_start bit writes 1 and then writes 0 to queue a stop characters, write data register SCI_BUFFER will queue a data character.

The transmitter is enabled by setting the trans_enable bit in the SCI_TRANS_CTRL. This will queue the leading idle characters, the leading idle character is a complete character frame in the idle state, and sends 12-bit or 11-bit or 10-bit idle characters (logic high) according to the data_mode and stop_mode controls. In the normal application process, idle characters need to be sent, the program will wait for tx_empty to be valid and set, the last character of the displayed information has been moved to the transmit shifted, and then 0 and 1 are sequentially written to the tran bit.

Notes: when trans_enable=0, as long as the characters (including three characters) in the shifter are not complete, the SCI transmitter will not stop sending.

By writing data to the SCI data register (SCI_BUFFER), the program saves the data to the transmit data buffer, which queues a data character. The transmit component of the SCI transmitter has a center component length of 10 or 11 or 12 bits (depending on the setting in the data_mode and

stop_mode control bit). If data_mode=0, select normal 8-bit data mode. In 8-bit data mode, the shift register has 1 start bit, 8 data bits and 1/2 stop bit. When the transmit shift register can be used for a new SCI character, the value waiting in the transmit data register empty (tx_empty) status flag is set, indicating that another character can be written to the transmit data buffer of the SCI BUFFER.

By register SCI_BREAK_CTRL[0]: break_trans_start bit writes 1 and then writes 0 to queue a stop character. The abort character is a full-character time of logic 0 (10-bit time), including start and stop bits. The longer pause of 13-bit time can be enabled by setting break_trans_size=1. At the same time, data_mode and stop_mode can each choose to add one time. In general, the program waits for tx_empty to be valid and then sets it to display that the last character of the message has been moved to the transmit shifter, and then writes 0 and 1 to the break bit in turn. Then, once the shifter is available, the operation immediately queues the abort characters that will be sent. If the break is still 1 when the abort that has entered the queue enters shifter, the extra abort character will enter the queue.

If no new characters (including three characters) are waiting in the transmit data buffer after stopping the TxD pin, the transmitter sets the transmission completion flag and enters the idle mode. TxD is in a high state, waiting for more characters to be sent.

Notes: send data empty interrupt generation conditions include: configure the transmitter to enable 0 to 1 enable an empty interrupt, and send a fifo to the shift register to enable a empty interrupt. Turning off the transmitter enable during transmission stops sending after the current character has been sent, clearing the previous queued characters.

Send completion interrupt generation condition: the queued characters are sent once and the completion interrupt is started.

10.5.3. Receiver Function

By setting rxd_inv=1, receiver input is inverted, received input is inverted. By setting SCI_TRANS_CTRL in receive_enable bit, receiver is enabled.

There are three types of received characters: data character, abort character and idle character.

The data character consists of the start bit of logic 0, 8 (or 9) data bits (LSB first) and the stop bit of logic 1. After receiving the stop bit to the receive shifter, if the receive data register is not full (rx_full_if=0), the data character is transferred to the receive data register, setting the receive data register full (rx_full_if=1) status flag. If the rx_full_if of the receive data register is already set at this time, the overflow heart state flag is set and the new data is lost. Because the SCI is double-buffered, the program has a full data in the receive data buffer after setting rx_full_if to avoid receiver overflow.

When the program detects that the receive data register is full (rx_full_if=1), it acquires data from the receive data register by reading the SCI_BUFFER.

The abort character counts from the 0 character of start until the stop bit detects 0 character. The break_check_en bit selects whether the 11-bit abort character detection is enabled. When a rising edge on the pin is detected, the count is cleared. Detected enough 0 characters (11/12/13bit), set abort character detection tag (break_check_if). The idle character starts from the stop/start bit after the idle character bit count according to the idle bit selection, and starts to the idle bit selection, and starts to detect after the receiver has been active for a period of time (rx_full is effectively set once). Once the 0 character is detected, the count is cleared, and 1 character (10/11/12 bit) is detected, and the idle character detection flag (idle_if) is set.

Notes: enables only the abort character after the abort character detection, regardless of data reception, for lin protocol flow control; close the stop character detection enable, only receive data, ignore the abort character detection.

10.5.4. Receiver sampling method

SCI receiver samples with 16x baud rate. The receiver searches for falling edge on the RxD serial data input pin by extracting logic level samples at 16x baud rate. The falling edge to the definition is a logical 0 sample after 3 consecutive logic 1 samples. The 16x baud rate clock is used to divide the bit time into 16 segments, labeled RT1 and RT16 respectively. When the falling edge is located, three samples are taken from RT3, RT5 and RT7 to ensure that this is the true starting point, not juist the noise. If at least two samples of the three samples that it is synchronized with the receiver character, starts shifting to receive the following data, and if it does not satisfy the above, exits the state machine and returns to the state of waiting for the falling edge state.v

The receiver samples each bit time of RT8, RT9 and RT10, including the start bit and the stop bit to determine the logic level of the bit. The logic level is the logic level of most samples extracted during bit time. In the start bit, if at least 2 samples in the sample on RT3, RT5 and RT7 are 0, then the bit is assumed to be 0, even if one or samples extracted on RT8, RT9 and RT10 are 1. If any sample in any bit time of a character frame (8 samples of the start bit RT3~RT10, 3 samples of the other bit 3 RT8~RT10) cannot match the logic level of the bit, a noise error flag is set when the received character is transmitted to the receive data buffer.

The falling edge detection logic constantly looks for the falling edge. If an edge is detected, the bit name so that when the noise or mismatch baud rate occurs, the receiver reliability can be improved

10.5.5. Receiver Sleep Wake Up

Receiver sleep wake up is a hardware mechanism that uses hardware detection to eliminate software overhead for handling unimportant information characters. Allow SCI receiver to ignore characters in information used for different SCI receivers.

In this application system, the receiver estimates the first character of each message. Once it is determined that the message is intended for different receivers, they immediately write a logic 1 to the receiver wake-up (RWU) control bit in the SCI_TRANS_CTRL. When setting the RWU bit, it is forbidden to set the status flag related to the receiver (when setting rwu_idlesel bit, IDLE bit is set and interrupt is generated).

In the receiver sleep state (software sets the RWU bit to sleep), the wake up mode can be

selected by the wake_sel bit (that is, the hardware automatically clears the RWU bit), including idle character wake up and address mark wake up.

Idel character detection are described above. Once the receiver detects a complete idle character, RWU is automatically cleared. After wake-up, the receiver will set the corresponding status flag when the next character is received.

The address mark wake-up is when the receiver detected a logic 1 in the highest bit of the received character (8th bit in data_mode=0; 9th bit r8 in data_mode=1), RWU is automatically cleared. After the wake-up, the receiver related status flag and interrupt and the current character can be set.

10.5.6. Pin Connection Mode

When cycle_mode=1, single_txd bit select cycle mode (single_txd= 0) or signle line mode (single_txd= 1).

Cycle mode:

Cycle mode is independent of external system connections and is sometimes used to check software to help isolate system problems. In this mode, the transmitter output internally supports connection to the receiver input, and SCI does not use the RxD pin.

Signle line mode:

In signle line mode, the txd_direct bit controls the serial data direction on the TxD pin. When txd_direct= 0, the TxD pin is the input of the SCI receiver, connected to the receiver input; when txd_direct=1, the TxD pin is an emitter driven output.

10.5.7. Idle mode 0 wake-up function

When the system enters the idle mode 0, if the module is enabled (sci_enable=1), the receiver is enabled (receive_enable=1), and the rx edge interrupt is enabled (rx_edge_ie=1), it will be in the receive port Wake up the system when low level.

	SFR register			
Address	Name	RW	Reset value	Description
0x98	SCI_S1	RW	0x00	UART2 interrupt ststus flag register
0xBA	SCI_C2	RW	0x00	UART2 control register 2
0xBB	SCI_C3	RW	0x00	UART2 control register 3
0DC	SCI S2	DW	000	UART2 synchronization interval control
0xBC	SCI_S2	RW	0x00	register
0xBD	SCI_D	RW	0xFF	UART2 data register
0xC2	SCI_INT_CLR	RW	0x00	UART2 module interrupt clear register
0xED	SCI_C1	RW	0x00	UART2 control register 1
	UART SFR register list			
	Secondary bus register			
Address	Name	RW	Reset value	Description
0x60	SCI_BDH	RW	0x00	SCI baud rate control register high 5 bits

10.6. UART2 Related Register

UART2 secondary bus register list

SCI baud rate control register low 8 bits

10.7. UART2 Register Details

RW

0x00

SCI BDL

0x61

Bit number	7	6	5	4
Symbol	SCI_TE	SCI_TF	SCI_RI	SCI_I
R/W	R	R	R	R
Reset value	0	0	0	0
Bit number	3	2	1	0
Symbol	SCI_RO	SCI_N	SCI_F	SCI_P
R/W	R	R	R	R
Reset value	0	0	0	0

SCI S1(98H) UART2 interrupt flag register

Bit number	Bit symbol	Description
		Send buffer empty interrupt flag
7	SCI_TE	1: Sending buffer is empty;
		0: Sending buffer is full, read only
		Send complete interrupt flag
6	SCI_TF	1: Sending completed, the transmitter is idle;
		0: the transmitter is working, read only
5	SCI_RI	Receive full interrupt flag

		1: The receive buffer is full;
		0: The receive buffer is empty, read-only
		Idle line interruption mark
4	SCI_I	1: Idle line detected;
		0: Idle line not detected, read only
		Receive overflow flag
3	SCI_RO	1: Receive overflow (new data is lost);
		0: No overflow, read only
		Noise mark
2	SCI_N	1: Noise detected;
		0: Noise not detected, read only
		Frame error flag
1	SCI_F	1: Frame error detected;
		0: Frame error not detected, read only
		Parity error flag,
0	SCI_P	1: Receiver parity check error;
		0: Parity check is correct, read only

SCI_C2 (BAH) UART2 control register 2

Bit number	7	6	5	4
Symbol	tx_empty_ie	tx_finish_ie	rx_full_ie	idle_ie
R/W	R/W	R/W	R/W	R/W
Reset value	0	0	0	0
Bit number	3	2	1	0
Symbol	trans_enable	receive_enable	rwu	break_trans_start
R/W	R/W	R/W	R/W	R/W
Reset value	0	0	0	0

Bit number	Bit symbol	Description
7	ty ampty is	Send buffer empty interrupt enable
/	tx_empty_ie	1: interrupt enable; 0: interrupt disable
C	tor finiale is	Send completion interrupt enable
6	tx_finish_ie	1: interrupt enable; 0: interrupt disable
5	erre fortt in	Receive full interrupt enable
5	rx_full_ie	1: interrupt enable; 0: interrupt disable
4	: 11 - : -	Idle line interrupt enable
4	idle_ie	1: interrupt enable; 0: interrupt disable
2	4	Transmitter enable
3	trans_enable	1: Transmitter is turned on; 0: Transmitter is turned off
2		Receiver enable
2	receive_enable	1: Receiver is on; 0: Receiver is off

1	rwu	Receiver wake-up control
		1: the receiver is in the standby state, waiting for the
1		wake-up condition;
		0: the receiver is operating normally
	0 break_trans_start	Sending interval segment, write 1 and 0 into this bit
0		successively, that is, an interval segment is placed in the
		sending data stream

SCI_C3(BBH) UART2 control register 3

Bit number	7	6	5	4
Symbol	r8	t8	txd_direct	txd_inv
R/W	R	R/W	R/W	R/W
Reset value	0	0	0	0
Bit number	3	2	1	0
Symbol	rxd_inv	rwu_idlesel	idle_sel	wake_sel
R/W	R/W	R/W	R/W	R/W
Reset value	0	0	0	0

Bit number	Bit symbol	Description
7	r8	The ninth data of the receiver, read only
6	t8 The ninth data of the transmitter	
		Pin direction selection in single line mode
5	txd_direct	1: TXD pin is the output in single-wire mode;
		0: TXD pin is the input in single-wire mode
4	trid intr	TXD data inversion selection
4	txd_inv	1: Send data is inverted; 0: Send data is not inverted
3	and inve	RXD data inversion selection
3	rxd_inv	1: Received data is inverted; 0: Received data is not inverted
		Receive wake-up idle detection
		1: During the receiving standby state (RWU = 1), the idle_ie
2	rwu_idlesel	bit is set when an idle character is detected;
		0: During the receiving standby state, the idle_ie bit is not
		set when an idle character is detected
		Idle line type selection
		1: The idle character bit count starts after the stop bit;
1	idle_sel	0: The count of idle character bits after the start bit starts,
		counting 10-bit time (if data_mode=1 or stop_mode =1, m
		will increase by 1 bit time respectively)
0	wake cel	Receiver wake-up mode selection
0	wake_sel	1: Address mark wake up; 0: Idle route wake up

SCI_S2(BCH) UART2 synchronization interval control register

Bit number	7	6	5	4
Symbol	break_check_if	rx_edge_if	rx_active_flag	-
R/W	R/W	R/W	R/W	-
Reset value	0	0	0	-
Bit number	3	2	1	0
Symbol	break_check_ie	rx_edge_ie	break_trans_size	break_check_en
R/W	R/W	R/W	R/W	R/W
Reset value	0	0	0	0

Bit number	Bit symbol	Description
		Interval detection interrupt mark
7	huast shart if	1: Interval is detected;
/	7 break_check_if	0: Interval segment is not detected, write 1 to this bit to clear,
		write 0 to be invalid
		RxD pin active edge interrupt flag
6	rx_edge_if	1: An active edge appears on the receiving pin;
0	IX_cugc_II	0: There is no active edge on the receiving pin, this bit is
		cleared by writing 1, and writing 0 is invalid
5	rx active flag	Receiver activity flag, read only
5		1: Receiver is active; 0: Receiver is idle
4		Reserved
3	break check ie	Interval detection interrupt enable
5		1: interrupt enable; 0: interrupt disable
2	rx edge ie	RXD pin active edge interrupt enable
Σ		1: interrupt enable; 0: interrupt disable
		Interval segment generation bit length
		1: Send with 13 bit time (if data_mode=1 or stop_mode=1,
1	break_trans_size	add 1 bit time respectively);
		0: Send with 10-bit time (if data_mode=1 or stop_mode=1,
		add 1 bit time respectively)
		Interval detection enable
0	break_check_en	1: Detect on the length of 11 bit time (if data_mode=1 or
U U	oreak_encek_en	<pre>stop_mode=1, add 1 bit time respectively);</pre>
		0: No detection

SCI_D(BDH) UART2 data register

Bit number	7	6	5	4	3	2	1	0
Symbol		_						
R/W		R/W						
Reset value	FF							

Bit number	Bit symbol	Description
7~0	-	UART2 data register Read returns the contents of the read-only receive data buffer, write into the write-only transmit data buffer

SCI_INT_CLR (C2H) UART2 module interrupt clear register

Bit number	7	6	5	4			
Symbol	clr_tx_empty_if	clr_tx_finish_if	clr_rx_full_if	clr_idle_if			
R/W	R/W	R/W	R/W	R/W			
Reset value	0	0	0	0			
Bit number	3	2	1	0			
Symbol	clr_rx_overflow_if	clr_noise_err_if	clr_frame_err_if	clr_parity_err_if			
R/W	R/W	R/W	R/W	R/W			
Reset value	0	0	0	0			

Bit number	Bit symbol	Description
		Send buffer empty interrupt clear bit
7	clr_tx_empty_if	Writing 1 to this bit clears the corresponding interrupt,
		writing 0 is invalid
		Send complete interrupt clear bit
6	clr_tx_finish_if	Writing 1 to this bit clears the corresponding interrupt,
		writing 0 is invalid
		Receive full interrupt clear bit
5	clr_rx_full_if	Writing 1 to this bit clears the corresponding interrupt,
		writing 0 is invalid
		Idle line interrupt clear bit
4	clr_idle_if	Writing 1 to this bit clears the corresponding interrupt,
		writing 0 is invalid
		Receive overflow flag clear bit
3	clr_rx_overflow_if	Writing 1 to this bit will clear the corresponding mark,
		writing 0 is invalid
		Noise Marker Clear Bit
2	clr_noise_err_if	Writing 1 to this bit will clear the corresponding mark,
		writing 0 is invalid
		Frame error flag clear bit
1	clr_frame_err_if	Writing 1 to this bit will clear the corresponding mark,
		writing 0 is invalid
		Parity error flag clear bit
0	clr_parity_err_if	Writing 1 to this bit will clear the corresponding mark,
		writing 0 is invalid

SCI_C1 (EDH) UART2 control register 1

Bit number	7	6	5	4
Symbol	cycle_mode	stop_mode	single_txd	data_mode
R/W	R/W	R/W	R/W	R/W
Reset value	0	0	0	0
Bit number	3	2	1	0
Symbol	parity_en	parity_sel	rate_match_en	sci_enable
R/W	R/W	R/W	R/W	R/W
Reset value	0	0	0	0

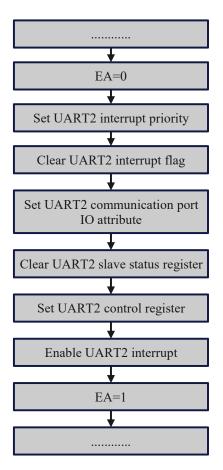
Bit number	Bit symbol	Description
		Cycle mode enable
7	cycle_mode	1: Cyclic mode or single-line mode, txd connects to rxd;
		0: Normal two-wire mode
6	stop_mode	Stop bit selection: 1: 2bits, 0: 1bit
		Single wire mode enable:
5	single tyd	1: Single-wire mode is selected when cycle_mode=1, txd pin
5	single_txd	is valid
		0: Internal circulation mode, txd pin is invalid
4	data mode	Transmission data mode selection
+	data_mode	1: 9-bit mode (the 9th bit is the parity bit); 0: 8-bit mode
3	parity_en	Parity check enable
	parity_en	1: Parity check is enabled; 0: Parity check is disabled
2	parity_sel	Parity selection
	parity_ser	1: odd parity, 0: even parity
		Synchronization segment (0x55) baud rate automatic
1	rate_match_en	matching enable
		1: adaptive baud rate update; 0: fixed baud rate configuration
		Module working clock gating enable, 1: Enable to turn on
0	sci_enable	the module working clock, 0: Disable to turn off the module
		working clock

Secondary bus register:

SCI_BDH (60H) SCI baud rate control register, high 5 bits

	Ĺ		Ŭ					
Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	-	-	-	-
R/W	-	-	-	R/W	R/W	R/W	R/W	R/W
Reset value	-	-	-	0	0	0	0	0

Bit number	Bit symbol	Description
4.0		SCI baud rate control register
4~0	4~0	Baud rate modulus divisor register, high 5 bits


SCI_BDL (61H) SCI baud rate control register, low 8 bits

Bit number	7	6	5	4	3	2	1	0
Symbol		_						
R/W		R/W						
Reset value	0							

Bit number	Bit symbol	Description
		SCI baud rate control register
		The lower 8 bits of the baud rate modulus divisor register,
7~0		Baud_Mod={ SCI_BDH[4:0], SCI_BDL}, when Baud_Mod
		= 0, no baud rate clock is generated, when Baud_Mod =
		$1 \sim 8191$, SCI baud rate = BUSCLK/(16^* Baud_Mod).

10.8. UART2 Configuration Process

UART2 initial configure process

11. SPI

SPI is a serial, synchronous, full/half duplex communication bus. The communication clock is the frequency division of the system clock. At a system clock frequency of 12MHz, it supports up to 2MHz (master and slave) communication. The communication mode supports normal mode and high-speed mode. . Four modes of clock idle level are selectable, and the SPI clock accounted for 50% (10% deviation allowed).

SPI normal mode: MCU writes into the SPI transmit buffer SPID through interrupt (when the SPI enable is turned on immediately generates a transmit empty interrupt) or polling, the data is automatically loaded into the shift register, and sent to SPI_MOSI synchronously via SCLK; SPI_MISO receives data and loads it into the SPI receive buffer. When an accept full interrupt is generated, the received data can be read from SPID.

SPI high-speed mode: MCU sends to SRAM to write and send data (up to 4K can be written). During communication, SPI reads the data to be sent directly from SRAM without interruption or polling; at the same time, every time a piece of data is received (8Bits), write the corresponding address of SRAM immediately. When the communication is completed, SPI generates a sending empty sign and a receiving full sign at the same time, and sends an interrupt.

Four modes of SFR configuration:

CPOL: Select clock idle state level:

0: The idle state of the clock is low;

1: Clock idle state is high level.

CPHA: Select the data moment of each cycle.

0: Data sampling is performed on the first transition edge (rising or falling edge) of the clock;

1: Data sampling is performed on the second transition edge (rising or falling edge) of the clock;

Mode 0 (CPOL=0, CPHA=0): The idle level of the clock is low, and the master and slave samples the data on the rising edge.

Mode 1 (CPOL=0, CPHA=1): The idle level of the clock is low, and the master and slave samples the data on the rising edge.

Mode 2 (CPOL=1, CPHA=0): The idle level of the clock is high, and the master and slave will sample the data on the rising edge.

Mode 3 (CPOL=1, CPHA=1): The clock idle level is high, and the master and slave machines sample data on the rising edge.

Clock signal Polarity 0 Polarity 1	SPI_CLK(CPOL=0) SPI_CLK(CPOL=1)
Slave selection	SPI_CS
Clock phase is 0	CPHA=0
Clock leading edge	Cycle # CPHA=0 Clock leading 4 5 6 7 8
data sampling Data output on the	MOSI(CPHA=0) <u>bit1</u> <u>b</u> <u>Clock back</u> <u>4</u> <u>bit5</u> <u>bit6</u> <u>bit7</u> <u>bit8</u>
back edge of the clock	MISO(CPHA=0) <u>bit2</u> <u>bit3</u> <u>bit4</u> <u>bit5</u> <u>bit6</u> <u>bit7</u> <u>bit8</u>
Clock phase is 1	CPHA=1
Clock leading edge data output	Cycle # CPHA=1 Clock leading edge output 4 5 6 7 8
Data sampling on the	MOSI(CPHA=1) Clock back edge sampling bit4 bit5 bit6 bit7 bit8
back edge of the clock	MISO(CPHA=1)

SPI working mode timing diagram

Note: SI: Slave sampling data SO: Slave sending data MI: Host sampling data MO: Host sending data PI_CS high level minimum time requirement is 1 SPI clock cycle.

11.1. SPI Related Registers

	SFR register							
Address	Name	RW	Reset value	Function				
0xB5	SPI_CFG1	RW	0x15	SPI configuration register 1				
0xB6	SPI_CFG2	RW	0x18	SPI configuration register 2				
0xBE	SPI_STATE	RW	0x01	SPI status register				
0xBF	SPI_SPID	RW	0x00	SPI cache operation register				

SPI SFR register list

	Secondary bus register							
Address	s Name R		Reset value	Function				
0x3E	SPI TX START ADDR	RW	0x00	SPI send data buffer first address				
UX3E	SFI_IA_SIAKI_ADDK	IX VV	0X00	register (high speed)				
02E	CDI DV CTADT ADDD	DW	0x00	SPI receive data buffer first address				
UX3F	0x3F SPI_RX_START_ADDR	RW		register (high speed)				
010		DW	DW	0x00	SPI data buffer address number low			
0x40	SPI_NUM_L	RW	0x00	8-bit register (high speed)				
0 41		RW	0.00	SPI data buffer address number high				
0X41	0x41 SPI_NUM_H		0x00	4-bit register (high speed)				

SPI list of secondary bus registers

11.2. SPI Register Details

Bit number	7	6	5	4	3	2	1	0
Symbol	RX_IE	SPI_EN	TX_IE	MSTR	CPOL	CPHA	LSBFE	CS_N
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset value	0	0	0	1	0	1	0	1

SPI_CFG1 (B5H) SPI control register 1

Bit number	Bit symbol	Description
		Receive enable- SPI receive buffer is full (SPRF) interrupt enable
7	RX_IE	1: interrupt is valid;
		0: interrupt is disabled (using polling)
6	CDI EN	SPI enable
0	SPI_EN	1: module enable open;0: module enable close
		Transmit enable-SPI transmit buffer empty (SPTEF) interrupt
5	TX IE	enable
5		1: interrupt is valid;
		0: interrupt is disabled (using polling)
4	MSTR	Master-slave mode selection
4	MSTK	1: master mode; 0: slave mode
3	CPOL	SCLK active level selection
		1: active low; 0: active high
		SCLK phase selection
2	СРНА	1: Send data at the first valid clock edge;
		0: Sample data at the first valid clock edge
		LSB first (shifter direction)
1	LSBFE	1: SPI serial data transmission starts from the lowest bit;
		0: SPI serial data transmission starts from the highest bit
0	CS_N	Chip select signal

SPI_CFG2 (B6H) SPI control register 2

Bit number	7	6	5	4
Symbol	-	FEEDBACK	HSPEED_START	HALF_FUPLEX
R/W	-	R/W	R/W	R/W
Reset value	-	0	0	1
Bit number	3	2	1	0
Symbol	BIDIR_SELECT		SPR	
R/W	R/W	R/W	R/W	R/W
Reset value	1	0	0	0

BF7515BM44-LJTX

Bit number	Bit symbol	Description
		Send the received data to the master\slave
6	FEEDBACK	1: Send the received data to the master\slave;
		0: Send the data written by MCU to the master\slave
		The high-speed SPI communication mode is turned on and
		the hardware is automatically pulled down after the work is
		completed
5	LICDEED STADT	1: High-speed SPI communication mode is on; 0:
5	HSPEED_START	High-speed SPI communication mode is off
		In high-speed SPI mode, whether in slave or master mode,
		the chip select signal cannot be pulled high, which will
		cause the data sent by SPI to be lost
4	HALE EUDIEV	Half-duplex mode selection:
4	HALF_FUPLEX	1: select half-duplex mode; 0: select full-duplex mode
		Half-duplex mode, transmission and reception direction
3	BIDIR_SELECT	selection
		1: send; 0: receive
		SPI baud rate coefficient, up to 2MHz:
		0: sys_clk/2; 1: sys_clk/4;
2~0	SPR	2: sys_clk/6; 3: sys_clk/8;
		4: sys_clk/10; 5: sys_clk/12;
		6: sys_clk/14; 7: sys_clk/16

SPI_STATE(BEH) SPI status flag register

Bit number	7~3	2	1	0
Symbol		SPRF	OVERFLOW_RX	SPTEF
R/W		R/W	R/W	R/W
Reset value		0	0	1

Bit number	Bit symbol	Description
2	SPRF	Read buffer full mark, software write 0 to clear
		In the normal communication mode, when the receiving
		overflow is caused by not reading in time,
		OVERFLOW_RX=1, the signal does not generate an
1	OVEDELOW DY	interrupt, only the mark
1	OVERFLOW_RX	In high-speed SPI communication mode, it is invalid (when
		the number of received data is equal to the configured
		{SPI_NUM_H,SPI_NUM_L}, the work will end, SPRF will
		be set, and a full interrupt will be generated).
0	SPTEF	Send buffer empty mark, write into SPID hardware to clear
0		automatically. In the SPI idle state, the first data written to

SPID will be directly stored in the shift register, and the
second data written will be loaded into the transmit buffer,
and SPTEF will be automatically pulled low.

SPI SPID (BFH) SPI data register

Bit number	7	6	5	4	3	2	1	0
Symbol		-						
R/W		R/W						
Reset value	0							

Bit number	Bit symbol	Description
		SPID reading this register will return the data read from the
		receive data buffer rx_reg. Writing to this register will write
		data into the transmit data buffer tx_reg.
		Data should not be written into the transmit data buffer, unless
		the SPI transmit buffer empty flag (SPTEF) is set, indicating
7~0		that there is a certain space in the transmit buffer to queue new
/~0		transmit bytes.
		After setting the SPRF and before completing another
		transmission, you can read data from the SPID at any time. If
		the data is not read from the receive data buffer before the end
		of the new transmission, the receive overflow will result and
		the newly transmitted data will be lost.

SPI secondary bus register list:

SPI_TX_START_ADDR(3EH) SPI high speed mode transmit buffer first address

Bit number	7	6	5	4	3	2	1	0
Symbol		_						
R/W		R/W						
Reset value	0							

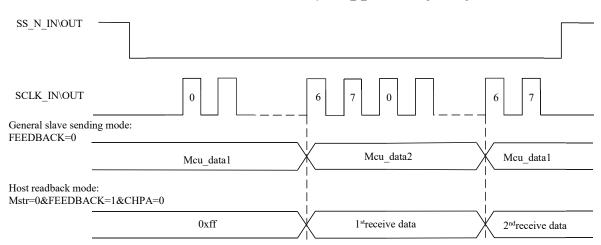
Bit number	Bit symbol		Description						
7~0			In SPI high-speed mode, the first address of the transmit data						
/~0	-	-	buffer, SPI_TX_START_ADDR*16						
SPI_RX_START_ADDR (3FH) SPI high-speed mode receive buffer first address									
Bit number	7	6	5	4	3	2	1	0	
Symbol		-							
R/W	R/W								
Reset value	0								

Bit number	Bit symbol	Description
7~0		In SPI high-speed mode, the first address of the receive data



			buffer, SF	PI_RX_ST	ART_ADI	DR*16		
SPI_NUM_L (40H) SPI high speed mode data cache address number low 8 bits								
Bit number 7 6 5 4 3 2 1 0					0			
Symbol -								
R/W	R/W R/W							
Reset value	lue 0							

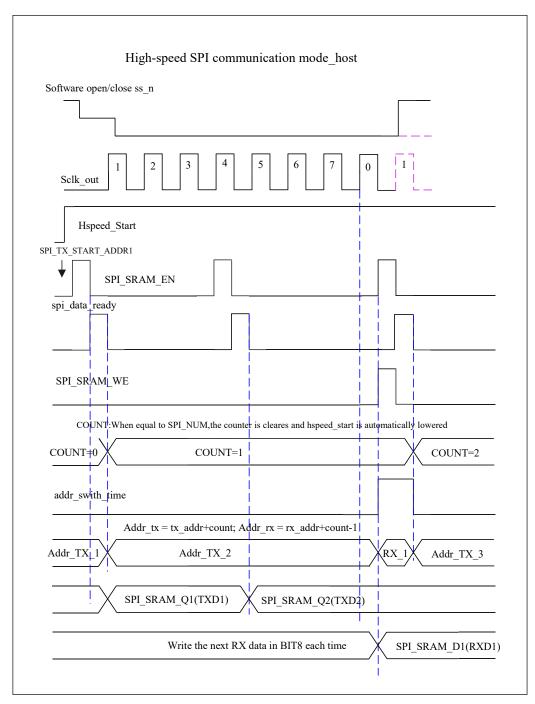
Bit number	Bit symbol	Description					
7~0		SPI high speed mode data cache address number low 8 bits					
SPI_NUM_H (41H) SPI high-speed mode data cache address number high 4 bits							


Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	-	-	-	-
R/W	-	-	-	-	R/W	R/W	R/W	R/W
Reset value	-	-	-	-	0	0	0	0

Bit number	Bit symbol	Description
3~0		SPI high-speed mode data cache address number high 4 bits

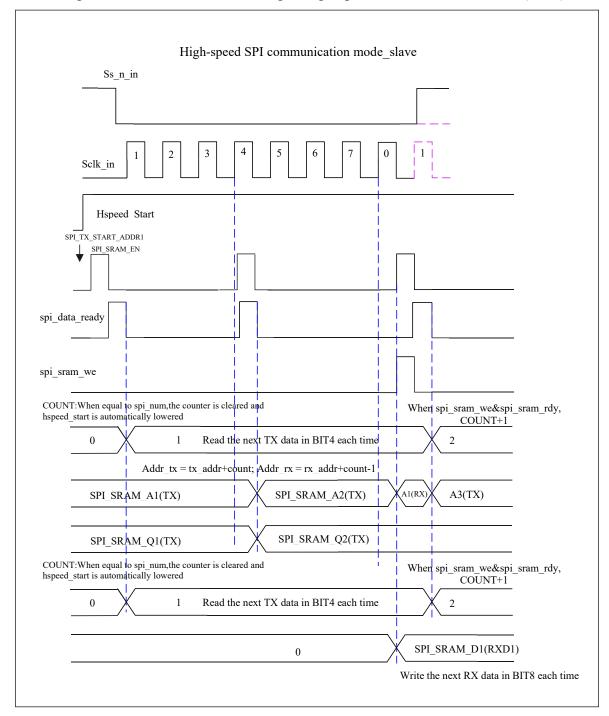
11.3. Communication Timing

There are three flag bits, two interrupt mask bits and an interrupt vector related to the SPI system. The SPI receive interrupt enable bit (RX_IE) allows interrupts from the SPI receiver full flag (SPRF) to occur. The SPI transmit interrupt enable bit (TX_IE) allows interrupts from the SPI transmit buffer empty flag (SPTIEF) to occur. When a flag bit is set and the related interrupt enable bit is set, the hardware interrupt request is sent to the CPU. If the interrupt enable bit is cleared, the software can poll the relevant flag bit without interruption. The SPI interrupt service routine (ISR) should check the flag bit to determine the event that caused the interrupt. Before returning from the ISR (usually near the start of the ISR), the service program should also clear the flag bit.

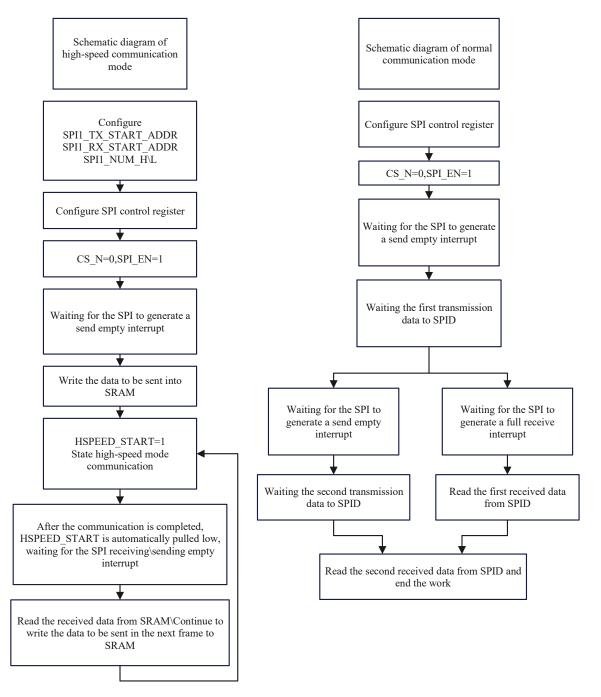


If there is new data in the TX buffer, the host will send continuously, and ss_n_out cannot be pulled high in the middle

Schematic diagram of SPI continuous working in normal communication mode



Schematic diagram of SPI continuous working in high-speed communication mode (host):



Schematic diagram of SPI continuous working in high-speed communication mode (slave):

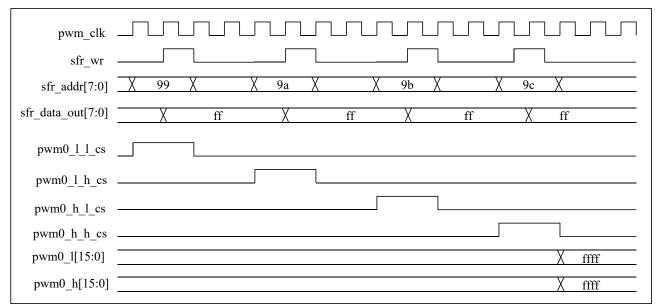
11.4. SPI Configuration Process

SPI workflow diagram

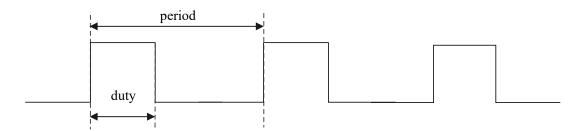
Note:

- 1. Configure CPOL and CPHA when the chip selection is high, otherwise SCLK has glitches (master, slave).
- 2. In high-speed mode, hspeed start will be automatically pulled low after the work is completed. At this time, the host can no longer send SCLK, otherwise an unstable state will occur.
- 3. In slave mode, after the chip select is pulled low, SPI_EN cannot be turned off. Otherwise,

when the SPI EN is reopened, when the chip select becomes low again, the internally generated SCLK will have a glitch. That is, while SPI is selected, SPI EN cannot be turned off.


- 4. In the slave mode, if the chip select is always 0, if you need to switch CPOL\CPHA\LSBFE midway, the slave can only switch after the master raises the chip select.
- 5. In high-speed mode, if an odd number of data is sent in each frame, the chip select signal needs to be pulled up once between each frame.

12. PWM


The functional characteristics of PWM are as follows:

- 4 independent PWM modules (the clock source is f_{SYS})
- PWM0 supports up to 3 outputs, the same frequency and the duty cycle
- PWM1 supports up to 3 outputs, the same frequency and the duty cycle
- PWM2 and PWM3 support 1 output
- High-level control register and low-level control register are 16-bit registers
- Output period: Tpwm_data = $(PWM_H + PWM_L)^* T_{fSYS}$
- Output duty cycle: Dpwm_data = PWM_H/(PWM_L + PWM_H)

• Support common frequency: 38kHz (infrared application)

The period and pulse width of the PWM pulse width modulation module can be configured through registers. When $PWM_H + PWM_L = 0$, the output is low, but the configuration of the register must be selected when the PWM output port is valid (active high) and high The level control register and the low level control register must be configured in order from low to high, in order to ensure that the internal counter of the PWM module counts correctly and avoid generating wrong waveforms.

			SFR reg	gister
Address	Name	RW	Reset value	Description
0x99	PWM0_L_L	RW	0x00	Pwm0 low level control register (low 8 bits)
0x9A	PWM0_L_H	RW	0x00	Pwm0 low level control register (high 8 bits)
0x9B	PWM0_H_L	RW	0x00	Pwm0 high level control register (low 8 bits)
0x9C	PWM0_H_H	RW	0x00	Pwm0 high level control register (high 8 bits)
0x9D	PWM1_L_L	RW	0x00	Pwm1 low level control register (low 8 bits)
0x9E	PWM1_L_H	RW	0x00	Pwm1 low level control register (high 8 bits)
0x9F	PWM1_H_L	RW	0x00	Pwm1 high level control register (low 8 bits)
0xA1	PWM1_H_H	RW	0x00	Pwm1 high level control register (high 8 bits)
0xA2	PWM2_L_L	RW	0x00	Pwm2 low level control register (low 8 bits)
0xA3	PWM2_L_H	RW	0x00	Pwm2 low level control register (high 8 bits)
0xA4	PWM2_H_L	RW	0x00	Pwm2 high level control register (low 8 bits)
0xA5	PWM2_H_H	RW	0x00	Pwm2 high level control register (high 8 bits)
0xA6	PWM3_L_L	RW	0x00	Pwm3 low level control register (low 8 bits)
0xA7	PWM3_L_H	RW	0x00	Pwm3 low level control register (high 8 bits)
0xA9	PWM3_H_L	RW	0x00	Pwm3 high level control register (low 8 bits)
0xAA	PWM3_H_H	RW	0x00	Pwm3 high level control register (high 8 bits)

12.1. PWM Related Registers

PWM SFR register list

	Secondary bus register							
Address Name RW Reset value Description								
0x33	PWM_IO_SEL	RW	0x00	PWM port selection register				

PWM list of secondary bus registers

12.2. PWM Register Details

12.2.1. PWM Level Control Register

PWM0 I	(99H)	PWM0	low leve	el control	register	(low 8-bit)
1 1110 1	())11)	1 11110	10 10 10 10		riegister	

Bit number	7	6	5	4	3	2	1	0				
Symbol												
R/W		R/W										
Reset value		0										
PWM0_L_H (9.	AH) PWM	0 low leve	l control re	egister(high	n 8-bit)							
Bit number	7	6	5	4	3	2	1	0				
Symbol												
R/W		R/W										

Semiconductor

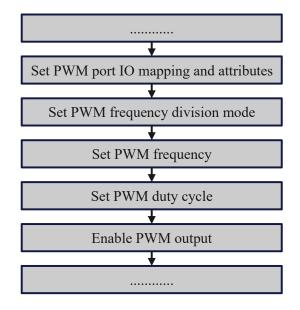
BF7515BM44-LJTX

Reset value					0							
PWM0_H_L (9H	3H) PWM	0 high lev	el control r	egister(lov	v 8-bit)							
Bit number	7	6	5	4	3	2	1	0				
Symbol					-							
R/W		R/W										
Reset value					0							
PWM0_H_H (90	CH) PWM	l0 high lev	el control r	egister(hig	gh 8-bit)							
Bit number	7	6	5	4	3	2	1	0				
Symbol					-							
R/W				R	/W							
Reset value					0							
PWM1_L_L (9E) PWM	1 low leve	l control re	gister(low	v 8-bit)							
Bit number	7	6	5	4	3	2	1	0				
Symbol					-							
R/W				R	/W							
Reset value					0							
	EH) PWM	1 low leve	l control re	gister(hig	h 8-bit)							
Bit number	7	6	5	4	3	2	1	0				
Symbol					-							
R/W				R	/W							
Reset value					0							
PWM1_H_L (9F	FH) PWM	1 high leve	el control r	egister(lov	v 8-bit)							
Bit number	7	6	5	4	3	2	1	0				
Symbol					-							
R/W				R	/W							
Reset value					0							
PWM1_H_H (A	1H) PWM	[1 high lev	el control 1	register(hig	gh 8-bit)							
Bit number	7	6	5	4	3	2	1	0				
Symbol					-							
R/W				R	/W							
Reset value					0							
PWM2_L_L (A2	2H) PWM	2 low leve	l control re	gister(low	7 8-bit)							
Bit number	7	6	5	4	3	2	1	0				
Symbol					-			·				
R/W				R	/W							
Reset value					0							
PWM2_L_H (A	3H) PWM	2 low leve	el control re	egister(hig	h 8-bit)							
Bit number	7	6	5	4	3	2	1	0				

R/W		R/W										
Reset value		0										
PWM2_H_L (A	PWM2_H_L (A4H) PWM2 high level control register(low 8-bit)											
Bit number	7	7 6 5 4 3 2 1 0										
Symbol				-								
R/W				R/	W							
Reset value				C)							
PWM2_H_H (A	5H) PWN	12 high lev	el control 1	register(hig	h 8-bit)	1	1	-1				
Bit number	7	6	5	4	3	2	1	0				
Symbol				-								
R/W				R/	W							
Reset value				C)							
PWM3_L_L (A6H) PWM3 low level control register(low 8-bit)												
Bit number	7	7 6 5 4 3 2 1 0										
Symbol		_										
R/W		R/W										
Reset value				0)							
PWM3_L_H (A	7H) PWM	13 low leve	el control re	egister(high	a 8-bit)			_				
Bit number	7	6	5	4	3	2	1	0				
Symbol				-								
R/W				R/	W							
Reset value				0)							
PWM3_H_L (A	9H) PWM	13 high lev	el control r	egister(low	v 8-bit)	1						
Bit number	7	6	5	4	3	2	1	0				
Symbol				-								
R/W				R/	W							
Reset value				0)							
PWM3_H_H (A	AH) PWN	A3 high lev	vel control	register(hig	gh 8-bit)			_				
Bit number	7	6	5	4	3	2	1	0				
Symbol				-								
R/W				R/	W							
Reset value				C)							

12.2.2. PWM Secondary bus register

PWM_IO_SEL(33H) PWM port selection register

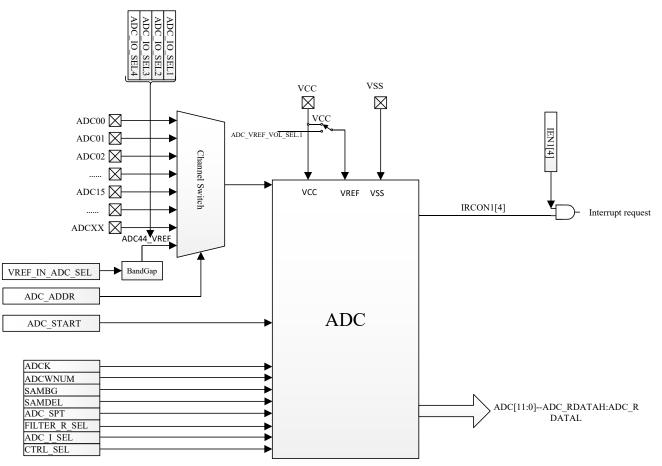

Bit number	7	6	5	4	3	2	1	0		
Symbol		-								
R/W		R/W								
Reset value				()					

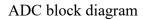
Bit number	Bit symbol	Description
Bit number 7~0	Bit symbol	DescriptionPWM port selection enablePWM_IO_SEL[0] corresponds to PWM0_A,PWM_IO_SEL[1] corresponds to PWM0_B,PWM_IO_SEL[2] corresponds to PWM0_C,PWM_IO_SEL[3] corresponds to PWM1_A,PWM_IO_SEL[4] corresponds to PWM1_B,PWM_IO_SEL[5] corresponds to PWM1_C,PWM_IO_SEL[6] corresponds to PWM2,PWM_IO_SEL[7] corresponds to PWM3
		1: select PWM function; 0: not select PWM function

12.3. PWM Configuration Process

PWM configure process

Note:Frequency range: recommended 370Hz~369kHz.



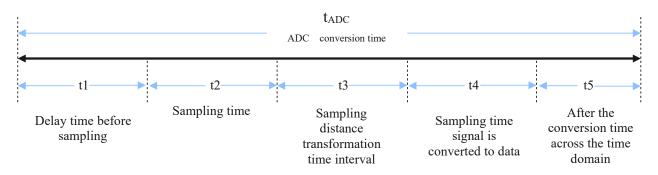


13. ADC

The BF7515BM44-LJTX chip contains a single-ended, 12-bit linear successive approximation analog-to-digital converter (ADC), and the reference voltage of the ADC is connected to the VCC of the chip. ADC channels can input independent analog signals. The ADC module converts 1 channel each time, $ADC_START=0\rightarrow1(\frown)$ starts the conversion, after the conversion is completed, the ADC result register is updated and an interrupt is generated. The ADC module of the BF7515BM44-LJTX chip has the following characteristics:

- 12-bit resolution linear and successive approximation to ADC;
- Single conversion mode;
- Sampling time and conversion speed can be configured;

13.1. Function Description


13.1.1. ADC Conversion Time

Timing requirements: (ADCWNUM+3) * $t_{ADCK} > 4 * t_{ADCCKV}$

ADC clock (ADCK): 0: 8MHz; 1: 6MHz; 2: 4MHz; 3: 3MHz.

ADC comparator offset cancellation analog input clock (ADCCKV) : 0: 12MHz; 1: 8MHz; 2: 4MHz; 3: 2MHz.

ADC external input signal plus RC filter voltage establishment time>= 2*(ADC conversion time) ADC conversion time:

As shown in the table, the ADC conversion time formula:

Formula	Note
$t_{ADC} = t1 + t2 + t3 + t4 + t5$	ADC conversion time
$t1 = SAMDEL* t_{ADCK}$	SAMDEL: Pre-sampling delay time select register
$t2 = 4 * (ADC_SPT+1) * t_{ADCK}$	ADC_SPT: ADC sampling time configuration register
$t3 = (3 + ADCWNUM) * t_{ADCK}$	ADCWNUM: Distance conversion interval after sampling
$t4 = (2*1 + 12) * t_{ADCK}$	ADCK: ADC clock
t5 = 200ns	-

13.1.2. ADC Reference Voltage

When VCC is selected as the ADC reference voltage:

When the power supply voltage fluctuates greatly or decreases, the VCC voltage value can be inversed by the formula ADCINNER_Data/VREF_IN_ADC_SEL = 4096/VCC, and the Vin voltage value can be inversely calculated by the formula Vin_Data/Vin=4096/VCC.

ADCINNER_Data: ADC internal channel data;

Vin_Data: ADC input channel data;

Vin: input voltage;

VREF_IN_ADC_SEL: Need to read the chip calibration value, Vin =

(Vin_Data/ADCINNER_Data)*VREF_IN_ADC_SEL, VREF_IN_ADC_SEL needs to read the chip calibration value, first obtain the internal channel data, and then obtain the input voltage Vin_Data data, and the interval between two acquisitions should be as short as possible;

) Semiconductor

When the ADC_VREF_VOL _SEL 4V reference voltage is selected:

It is recommended that the ADC clock is 3MHz. The Vin_Data/Vin=4096/ADC_VREF_VOL SEL can be used to inversely calculate the Vin voltage value.

Vin_Data: ADC input channel data;

Vin: input voltage (0~ADC_VREF_VOL_SEL);

VREF_IN_ADC_SEL: Need to read the chip calibration value, Vin =

(Vin_Data/ADCINNER_Data)*VREF_IN_ADC_SEL, ADC_VREF_VOL _SEL needs to read the chip calibration value, first obtain the internal channel data, and then obtain the input voltage Vin_Data data, and the interval between the two acquisitions should be as short as possible;

calibration value:

 $\{SPROG_ADDR_H, SPROG_ADDR_L\} = 0x41CA ADC$ internal channel input voltage calibration value high eight bits,

 $\{SPROG_ADDR_H, SPROG_ADDR_L\} = 0x41CB ADC$ internal channel input voltage calibration value low eight bits,

Read the chip information address ADC internal channel input voltage 1.362V calibration value;

 $\{SPROG_ADDR_H, SPROG_ADDR_L\} = 0x41CC ADC$ internal channel input voltage calibration value high eight bits,

 $\{SPROG_ADDR_H, SPROG_ADDR_L\} = 0x41CD ADC$ internal channel input voltage calibration value low eight bits,

Read the chip information address ADC internal channel input voltage 2.253V calibration value;

 $\{SPROG_ADDR_H, SPROG_ADDR_L\} = 0x41CE ADC$ internal channel input voltage calibration value high eight bits,

 $\{SPROG_ADDR_H, SPROG_ADDR_L\} = 0x41CF ADC$ internal channel input voltage calibration value low eight bits,

Read the chip information address ADC internal channel input voltage 3.111V calibration value;

 $\{SPROG_ADDR_H, SPROG_ADDR_L\} = 0x41CA ADC$ internal channel input voltage calibration value high eight bits,

 $\{SPROG_ADDR_H, SPROG_ADDR_L\} = 0x41CB ADC$ internal channel input voltage calibration value low eight bits,

Read the chip information address ADC internal channel input voltage 4.082V calibration value;

 $\{SPROG_ADDR_H, SPROG_ADDR_L\} = 0x41D4 ADC_Vref 4V voltage calibration value high eight bits,$

 $\{SPROG_ADDR_H, SPROG_ADDR_L\} = 0x41D5 ADC_Vref 4V voltage calibration value low eight bits,$

Read the calibration value of the chip information address ADC_Vref4V;

Refer to Chapter 3 to read Flash information steps.

13.2. ADC Related Register

	SFR register									
Address	Name	Name RW Reset value		Function description						
0xC1	ADC_SPT	RW	0x00	ADC sampling time configure register						
0xC3	ADC_SCAN_CFG	RW	0x00	ADC scan configuration register						
0xC4	ADCCKC	RW	0x00	ADC clock and filter configuration register						
0xC5	ADC_RDATAH	R	0x00	ADC scan result register, high 4 bits						
0xC6	ADC_RDATAL	R	0x00	ADC scan result register, lower 8 bits						

ADC SFR register list

	Secondary bus register									
Address	Name	RW	Reset value	Function description						
0x2A	ADC_IO_SEL0	RW	0x00 ADC function select register							
0x2D	PD_ANA.0	RW	0XFF Analog ADC judgment register							
0x32	ADC_CFG_SEL	RW	V 0x00 ADC configuration register							
0x42	ADC_CFG_SEL1	RW	0x02 ADC control register							
0x53	ADC_IO_SEL1	RW	0x00	ADC select enable register						
0x54	ADC_IO_SEL2	RW	0x00	ADC select enable register						
0x55	ADC_IO_SEL3	RW	0x00	ADC select enable register						
0x56	ADC_IO_SEL4	RW	0x00	ADC select enable register						
0x57	ADC_IO_SEL5	RW	0x00	ADC select enable register						

ADC list of secondary bus registers

13.3. ADC Register Details

ADC_SPT (C1H) ADC sample time configuration register

_ `			<u> </u>							
Bit number	7	6	5	4	3	2	1	0		
Symbol		ADC_SPT								
R/W		R/W								
Reset value				()					

Bit number	Bit symbol	Description
7.0	ADC_SPT	ADC sampling time configuration register
7~0		Sampling time: t2= (ADC_SPT+1)*4* t _{ADCK}

ADC_SCAN_CFG (C3H) ADC scan configuration register

Bit number	7	6	6 5 4 3 2 1							
Symbol	-		ADC_ADDR							
R/W	-									

Reset value - 0 0

Bit number	Bit symbol	Description
		ADC channel address selection register
		000000: corresponding to ADC0;
		000001: corresponding to ADC1;
6~1	ADC_ADDR	
		101010: corresponding to ADC42;
		101011: corresponding to ADC43;
		101100: ADC44_VREF.
		ADC scan open register,
		ADC_START= $0 \rightarrow 1(f)$ starts conversion, and
		ADC_START is not allowed to be configured during
0	ADC_START	scanning. ADC_START is set from 0 to 1, ADC starts to
		scan. After one scan, ADC_START is automatically set to 0
		by hardware, corresponding to the ADC interrupt flag bit.
		The ADC interrupt flag bit needs to be cleared by software.

ADCCKC (C4H) ADC clock and filter configuration register

Bit number	7	7 6		4	
Symbol	FILTER_SEL	SAMBG	SAN	I DEL	
R/W	R/W	R/W	R/W	R/W	
Reset value	0	0	0	0	
Bit number	3	2	1	0	
Symbol	ADC	CKV	AI	DCK	
R/W	R/W	R/W	R/W	R/W	
Reset value	0	0	0	0	

Bit number	Bit symbol	Description
7	EILTED SEL	ADC filter selection
/	FILTER_SEL	0: No RC filter added; 1: RC filter added.
6	SAMDC	Sampling timing and comparison timing interval selection
6	SAMBG	0: interval of 0 t _{ADCK} ; 1: interval of 1 t _{ADCK}
	SAMDEL	Sampling delay time selection
5~4		$00: 0*t_{ADCK}; 01: 2*t_{ADCK};$
		10: 4* t _{ADCK} ; 11: 8* t _{ADCK}
2.2	ADCCKU	ADC comparator offset cancellation analog input clock
3~2	ADCCKV	0: 12MHz 1: 8MHz 2: 4MHz 3: 2MHz
1.0	ADCK	ADC clock selection
1~0	ADCK	0: 8MHz 1: 6MHz 2: 4MHz 3: 3MHz

ADC_RDATAH (C5H) ADC scan result register high 4 bits

Bit number	7	6	5	4	3	2	1	0		
Symbol	-	-	-	-	ADC_RDATAH[3:0]					
R/W	-	-	-	-	R					
Reset value	-	-	-	-	0					
ADC_RDATAL(C6H) ADC scan result register low 8 bits										
Bit number	7	6	5	4	3 2 1 0					
Symbol				ADC_RD	ATAL[7:0)]				
R/W		R								
Reset value					0					

Bit number	Bit symbol	Description					
3~0	ADC_RDATAH[3:0]	ADC scan result register					
7~0	ADC_RDATAL[7:0]	ADC scan result register					

ADC Secondary bus register:

ADC_IO_SEL0 (2AH) ADC function selection register

Bit number	7	6	5	4	3	2	1	0	
Symbol	-		ADC_IO_SEL0 [6:0]						
R/W	-		R/W						
Reset value	-				0				

Bit number	Bit symbol	Description
6~0	ADC_IO_SEL0 [6:0]	Enable the ADC control function that disables analog input pins 1: Select ADC function; 0: Do not select ADC function 0000001=ADC00; 0000010=ADC01; 0000100=ADC02; 0001000=ADC03; 0010000=ADC04; 0100000=ADC05; 1000000=ADC06

PD_ANA (2DH) Module switch control register

Bit number 7 6		6	5 4			2	1	0
Symbol	-	PD_LVDT	PD_BOR	PD_XTAL_32K	-	-	-	PD_ADC
R/W	-	R/W	R/W	R/W	-	-	-	R/W
Reset value	-	1	1	1	-	-	-	1

Bit number	Bit symbol	Description
3~1		Reserved
0	PD_ADC	Analog ADC shutdown control register PD_ADC=0 ADC module works normally; PD_ADC=1 ADC module does not work

ADC_CFG_SEL(32H) ADC configuration register

Bit number	7	6	5	4	3	2	1	0
Symbol	-		AĽ	CWN	JM		ADC_I_SEL[1]	ADC_I_SEL[0]
R/W	-	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset value	-	0	0	0	0	0	0	0

Bit number	Bit symbol	Description
6.2		Selection of distance conversion interval time after
6~2	ADCWNUM	sampling: (3+ADCWNUM)* t _{ADCK}
1		ADC select comparator bias current
	ADC_I_SEL[1]	1: 4uA; 0: 5uA
0		ADC select buffer bias current
0	ADC_I_SEL[0]	1: 4uA; 0: 5uA

ADC_CFG_SEL1 (42H) ADC comparator offset cancellation selection register

	· /	1	-	
Bit number	7	6	5	4
Symbol	-	-	ADC_VREF_SEL	ADC_VREF_VOL_SEL
R/W	-	-	R/W	R/W
Reset value	-	-	0	0
Bit number	3	2	1	0
Symbol	VREF_IN_	ADC_SEL	СТ	'RL_SEL
R/W	R/W	R/W	R/W	R/W
Reset value	0	0	1	0

Bit number	Bit	symbol			De	scription		
		ADC reference voltage selection:						
5		VDEE CE	, 0	: Select VCC	as the out	put signal;		
5	ADC_	VREF_SE	L 1	: Select the v	oltage outp	out by the A	ADC_VRE	F
			n	nodule as the	reference	voltage.		
			A	DC_VREF o	output mod	e selection	ı:	
			0	: reserved				
4	ADC_VREF_VOL_SEL	SEI 1	1: 4V as ADC reference voltage.					
4			When the ADC_VREF output mode selects 4V as the					
				ADC reference voltage, it is recommended to select				
			3	MHz for the	ADC frequ	ency divis	ion clock	
			V	oltage select	ion input to	o the interr	nal ADC cl	nannel of
3~2	VREF_I	N_ADC_S	EL tl	ne chip				
				0: 1.362V;	01: 2.253	/; 10:3.1	11V; 11	: 4.082V.
1~0	CTRL_SEL			DC offset ca	ncellation	timing sele	ection	
1~0				: Reserved; 1	: Reserved	; 2: Sequer	nce 2	
ADC_IO_SEL1 (53H) ADC select enable register								
Bit number	7	6	5	4	3	2	1	0

Symbol	ADC_IO_SEL1 [7:0]
R/W	R/W
Reset value	0

ADC IO SEL2(54H) ADC select enable register

	<u>`</u>							
Bit number	7	6	5	4	3	2	1	0
Symbol		ADC_IO_SEL2 [7:0]						
R/W		R/W						
Reset value	0							

Bit number	Bit symbol	Description				
		Enable the ADC control function that disables analog input				
		pins				
		1: Select ADC function;				
7~0	ADC_IO_SEL2	0: Do not select ADC function				
/~0	[7:0]	00000001=ADC15; 00000010=ADC16;				
		00000100=ADC17; 00001000=ADC18;				
		00010000=ADC19; 00100000=ADC20;				
		01000000=ADC21; 10000000=ADC22				

ADC_IO_SEL3(55H) ADC select enable register

Bit number	7	6	5	4	3	2	1	0
Symbol		ADC_IO_SEL3[7:0]						
R/W		R/W						
Reset value		0						

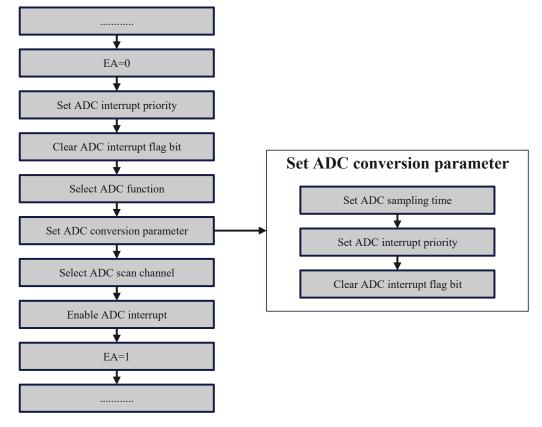
Bit number	Bit symbol	Description
		Enable the ADC control function that disables analog
		input pins
7~0	ADC_IO_SEL3[7:0]	1: Select ADC function;
		0: Do not select ADC function
		00000001=ADC23; 00000010=ADC24;

	00000100=ADC25;	00001000=ADC26;
	00010000=ADC27;	00100000=ADC28;
	01000000=ADC29;	10000000=ADC30

ADC_IO_SEL4(56H) ADC select enable register

Bit number	7	6	5	4	3	2	1	0
Symbol		ADC_IO_SEL4 [7:0]						
R/W		R/W						
Reset value	0							

Bit number	Bit symbol	Description				
		Enable the ADC control function that disables analog input				
		pins				
		1: Select ADC function;				
7~0	ADC_IO_SEL4	0: Do not select ADC function				
/~0	[7:0]	00000001=ADC31; 00000010=ADC32;				
		00000100=ADC33; 00001000=ADC34;				
		00010000=ADC35; 00100000=ADC36;				
		01000000=ADC37; 10000000=ADC38				


ADC_IO_SEL5(57H) ADC select enable register 5

Bit number	7	6	5	4	3	2	1	0		
Symbol	-	-	-	ADC_IO_SEL5 [4:0]						
R/W	-	-	-	R/W						
Reset value	-	-	-	0						

Bit number	Bit symbol	Description					
7~5		Reserve					
		Enable the ADC control function that disables analog input					
		pins					
	ADC IO CELS	1: Select ADC function;					
4~0	ADC_IO_SEL5	0: Do not select ADC function					
	[4:0]	00001=ADC39; 00010=ADC40;					
		00100=ADC41; 01000=ADC42;					
		10000=ADC43;					

13.4. ADC Configuration Process

ADC configuration process

14. LVDT

BF7515BM44-LJTX series supports low voltage alarm function, which can effectively monitor the dynamic changes of voltage. Support 3 voltage levels, respectively: 2.7V/3.0V/3.8V (preset point step-down interrupt, hysteresis 0.1V generates corresponding step-up interrupt).

When the voltage monitoring is configured with the above threshold, the voltage drop to this threshold will trigger a low-voltage interrupt, and the system can handle the low-voltage interrupt appropriately according to application needs.

14.1. LVDT related registers

	SFR register								
AddressNameRWReset valueFunction description									
0xD5	INT_POBO_STAT	RW	0x00	Boost/Buck interrupt status register					
LVDT SFR register list									
		Sa	andawy hug ng	mistor					

	Secondary bus register									
AddressNameRWReset valueFunction description										
0x2C	2C SEL_LVDT_VTH		0x00	LVDT threshold selection register						
0x2D	x2D PD_ANA		0xFF	Analog module switch register						

LVDT secondary bus register list

14.2. LVDT Register Details

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	-	-	INT_PO_STAT	INT_BO_STAT
R/W	-	-	-	-	-	-	R/W	R/W
Reset value	-	-	I	-	-	-	0	0

INT_POBO_STAT(D5H) Boost/buck interrupt status register

Bit number	Bit symbol	Description
1	NIT DO STAT	LVDT boost interrupt status.
1	INT_PO_STAT	1: boost interrupt is valid; 0: boost interrupt is invalid.
0	DIT DO CTAT	LVDT buck interrupt status.
0	INT_BO_STAT	1: the buck interrupt is valid; 0: the buck interrupt is invalid

LVDT secondary bus register

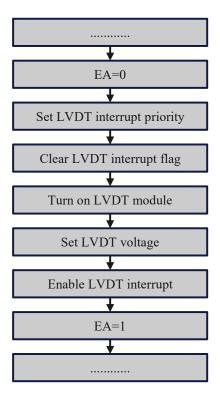
SEL_LVDT_VTH (2CH) LVDT threshold selection register

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	-	-		-

R/W	-	-	-	-	-	-	R/W	
Reset value	-	-	-	-	-	-	0	0

Bit number	Bit symbol	Description
1.0		LVDT threshold selection
1~0		00: 2.7V; 01: 3V; 10: 3.8V; 11: Reserved

PD_ANA (2DH) Module switch control register


Bit number	7	6	5	4	3	2	1	0
Symbol	-	PD_LVDT	PD_BOR	PD_XTAL_32K	-	-	-	PD_ADC
R/W	-	R/W	R/W	R/W	-	-	-	R/W
Reset value	-	1	1	1	-	-	-	1

Bit number	Bit symbol	Description
6	PD_LVDT	LVDT control register, 1: closed, 0: open, closed by default

Note: It is recommended that the LVDT be configured with 3V. The low level of the LVDT voltage detection point has better suppression of power ripple. If the high-voltage detection voltage level is disturbed, software is required to do debounce processing to reduce the probability of misjudgment.

14.3. LVDT Configuration Process

LVDT Configuration Process

15. LED/LCD

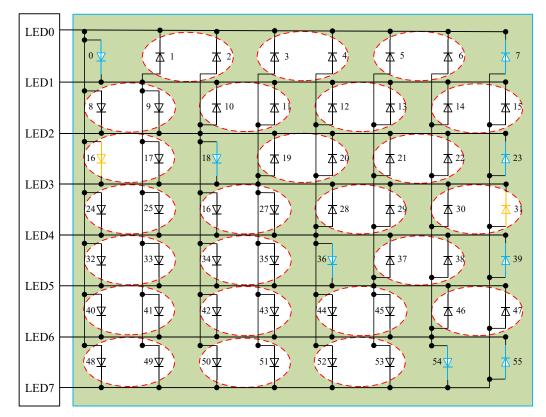
The module can be configured with three drive modes: LED matrix drive mode, LED dot matrix drive mode, LCD drive mode. Through register configuration, only one mode of operation is supported at the same time.

All of the above driving methods, the total IO port switch is configurable, the scanning mode is configurable, the software controls the LED scanning to start, the interrupt mode scanning once interrupts and stops, and the cycle mode automatically starts the next frame scanning after one frame is scanned, without interruption If you want to stop, you need to turn off the scan enable by the software. When the scan enable is turned off, all states of the module are reset., including LED controller and LCD controller.

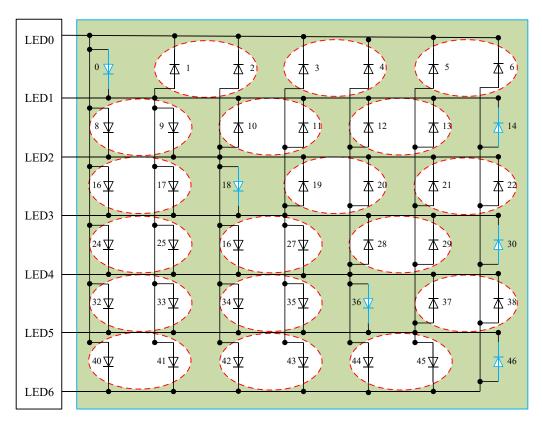
15.1. LED Dot Matrix Driver

Features of LED dot matrix drive mode:

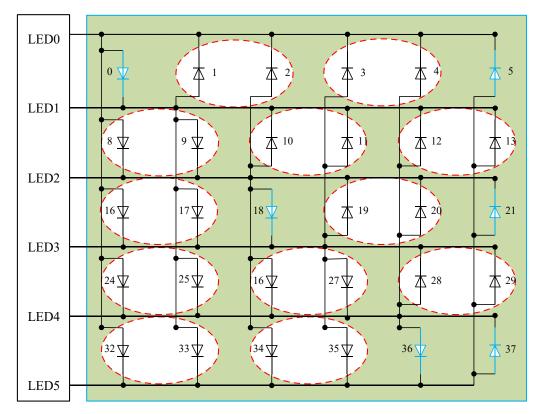
- Support up to 56 lights LED drive, configurable to choose dot matrix 4*5, 5*6, 6*7, 7*8;
- Dual-lamp conduction mode at the same time, see the dot matrix description below for specific distribution;
- Single lamp on-time setting file: 8-bit register, configurable range is 16us-4.096ms, step is 16us;
- The driving time of each lamp is individually selectable;
- IO ports have multiple multiplexing relationships, each IO port needs to be configured through software to switch to LED port, and the LED function of LED0~LED7 corresponding to IO port will be automatically turned on according to the LED dot matrix mode selection;
- The address of the 56 light dot matrix is unique, see the dot matrix description below, which is used to input switch light information;


15.1.1. LED Dot Matrix Driver Description

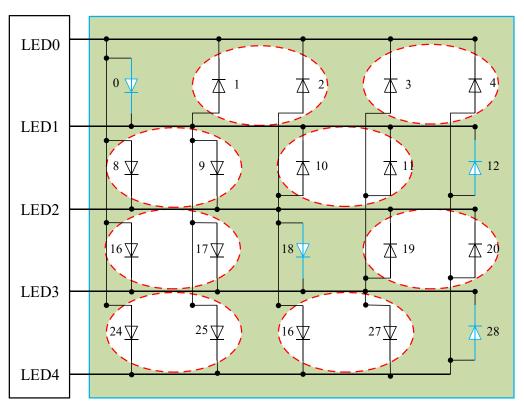
The LED dot matrix is a universal 7*8 dot matrix, and uses the dual lamp mode, that is, two lamps are lit at a time (common cathode).


Corresponding to LED0~LED7 ports, up to 7x8=56 lamps can be configured to drive. The lamp address of the corresponding position is marked in the 7*8 dot matrix in the figure below. The display configuration in the SRAM corresponds to the lighting condition of the corresponding address (1 means lighting, 0 means no light), the hardware code needs to analyze the light address and the current scan address to automatically complete the corresponding IO port output control. Configurable dot matrix 4*5, 5*6, 6*7, 7*8, different size dot matrix, the corresponding lamp address remains unchanged.

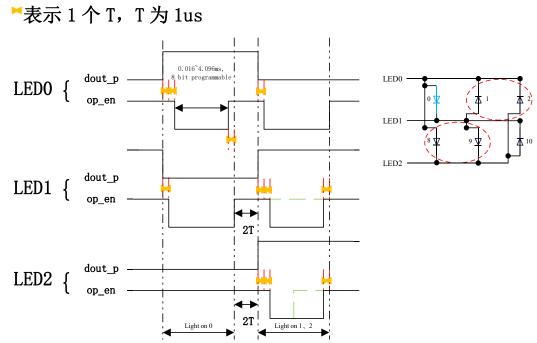
7*8 dot matrix:

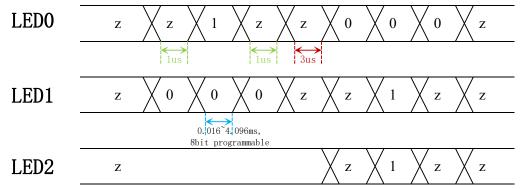


6*7 dot matrix:



5*6 dot matrix:


4*5 dot matrix:



Dot matrix scan timing example:

Take lighting 0, 1, 2 as an example, the detailed digital output interface control sequence is shown in the figure below:

Note: 1. dout_p: output data signal; 2. op_en: output enable signal. Combined with the above figure, the schematic diagram of the IO port status is as follows:

LED scanning timing diagram

The calculation formula of the total time of led serial dot matrix is as follows:

Total scan time t = n1*t single led scan time + n2*t double led scan time + (n1+n2)*5*t led

n1: The number of single led groups.

n2: The number of double led groups.

 $t_{\text{single led scan time}}$: when $Dx_SEL=0$, $t_{\text{single led scan time}} = t_{\text{on-time 1}}$.

when $Dx_SEL=1$, $t_{single led scan time} = t_{on-time 2}$.

t double led scan time: It is determined by the long on-time. If led 1 and led 2 scan at the same time.

If led 1 on-time > led 2 on-time, $t_{double led scan time} = led 1$ on-time.

If led 1 on-time < led 2 on-time, t double led scan time = led 2 on-time.

If led 1 on-time = led 2 on-time, t double led scan time = led 1 on-time = led 2 on-time.

t led: Led clock cycle, 1us.

The on-time of each led is determined by Dx_SEL stored in sram. When $Dx_SEL=0$, select t_{on-time 1}; when $Dx_SEL=1$, select t_{on-time 2}

t on-time 1: Register SCAN_WIDTH configuration;

t on-time 2: Register LED2_WIDTH configuration.

15.1.2. Display Configuration Address

LED dot matrix drive mode corresponding to display configuration:

DX indicates whether the light is selected or not, 0: not bright, 1: bright;

Dx_SEL indicates that the light is selected for the lighting cycle, 0: select the first segment of the light cycle, 1: select the second segment of the light cycle.

Address	7	6	5	4	3	2	1	0
1000H	D7	D6	D5	D4	D3	D2	D1	D0
1001H	D15	D14	D13	D12	D11	D10	D9	D8
1002H	D23	D22	D21	D20	D19	D18	D17	D16
1003H	D31	D30	D29	D28	D27	D26	D25	D24
1004H	D39	D38	D37	D36	D35	D34	D33	D32
1005H	D47	D46	D45	D44	D43	D42	D41	D40
1006H	D55	D54	D53	D52	D51	D50	D49	D48
1007H	D7_SEL	D6_SEL	D5_SEL	D4_SEL	D3_SEL	D2_SEL	D1_SEL	D0_SEL
1008H	D15_SEL	D14_SEL	D13_SEL	D12_SEL	D11_SEL	D10_SEL	D9_SEL	D8_SEL
1009H	D23_SEL	D22_SEL	D21_SEL	D20_SEL	D19_SEL	D18_SEL	D17_SEL	D16_SEL
100AH	D31_SEL	D30_SEL	D29_SEL	D28_SEL	D27_SEL	D26_SEL	D25_SEL	D24_SEL
100BH	D39_SEL	D38_SEL	D37_SEL	D36_SEL	D35_SEL	D34_SEL	D33_SEL	D32_SEL
100CH	D47_SEL	D46_SEL	D45_SEL	D44_SEL	D43_SEL	D42_SEL	D41_SEL	D40_SEL
100DH	D55_SEL	D54_SEL	D53_SEL	D52_SEL	D51_SEL	D50_SEL	D49_SEL	D48_SEL

LED dot matrix drive mode corresponding display configuration table

15.1.3. LED Dot Matrix Register

	SFR register									
Address	Name	RW	Reset Value	Description						
0xAF	SCAN_START	RW	0x00	LCD, LED scan open register						
0xB1	DP_CON	RW	0x00	LCD, LED control register						
0xB2	DP_MODE	RW	0x00	LCD, LED mode register						
0xB3	SCAN_WIDTH	RW	0x00	LED cycle configuration register						
0xB4	LED2 WIDTH	RW	0x00	LED dot matrix drive mode cycle						
UXD4		IX VV	0x00	configuration register						

LED SFR register

Secondary bus register								
Address	Name	RW	Reset Value	Description				
0x31	LED_DRIVE	RW	0x00	LED port drive capability configuration register				

LED Secondary bus register

SCAN_START(AFH) LCD, LED scan open register

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	-	-	-	-
R/W	-	-	-	-	-	-	-	R/W
Reset value	-	-	-	-	-	-	-	0

Bit number	Bit symbol	Description
0		LCD, LED scan on register
0		1: Scan on;0: Scan off

DP_CON (B1H) LCD, LED control register

Bit number	7	6	5 4 3		2	1	0	
Symbol	-	IO_ON	DUTY_SEL			DPSEL	SCAN_MODE	COM_MOD
R/W	-	R/W	R/W			R/W	R/W	R/W
Reset value	-	0	0 0 0		0 0 0		0	0

Bit number	Bit symbol	Description
		LCD/LED scanning corresponds to the total control bit of all
6	IO_ON	IO ports
		0: Close IO;1: Open IO
5~3	DUTY_SEL	LED dot matrix drive mode dot matrix selection configuration register DP_CON[4:3]: 0: 4x5 dot matrix; 1: 5x6 dot matrix;
		 2: 6x7 dot matrix; 3: 7x8 dot matrix DP_CON[5]: 4x5 dot matrix—Enable with LED3 (PB3 as the starting port.)
		LCD, LED selection control bit
2	DPSEL	0: Select LCD driver, LED driver is invalid; 1: Select LED driver, LCD driver is invalid
		LCD, LED scan mode configuration
1	SCAN_MODE	1: Cycle scan mode;
		0: Interrupt scan mode
		High current sink IO port drive enable
0	COM_MOD	1: As a high current sink IO port;
		0: Can be configured for other functions;

	When used as a high current sink IO port, by configuring the
	GPIO register to output the drive timing, the LED/LCD scan
	configuration is invalid

DP MODE(B2H) LCD, LED mode register

Bit number	7	6 5		4	3 2		1	0		
Symbol	LED_MOD	LCD_CKSEL		LCD_RSEL	LCD_FCSEL		LCD_RMOD			
R/W	R/W	R/W	R/W	R/W	R/W R/W		R/W	R/W		
Reset value	0	0	0	0	0	0	0	0		

Bit number	Bit symbol	Description
7	LED_MOD	LED drive mode selection register 1: Serial dot matrix scanning 0: Row and column matrix scan

SCAN WIDTH (B3H) LED period configuration register

	/			<u> </u>								
Bit number	7	6	5	4	3	2	1	0				
Symbol		_										
R/W		R/W										
Reset value					0							

Bit number	Bit symbol	Description
7~0		In the LED dot matrix drive mode, the corresponding single lamp lighting time configuration register-the first segment of the lamp cycle configuration: period=(scan_width+1)*16us, the support configuration range is 0.016~4.096ms; When on-time 1 <on-time 2,="" 2.<="" group="" is="" of="" on-time="" scan="" th="" the="" this="" time=""></on-time>

LED2_WIDTH (B4H) LED dot matrix drive mode cycle configuration register

Bit number	7	6	5	4	3	2	1	0			
Symbol		_									
R/W		R/W									
Reset value					0						

Bit number	Bit symbol	Description
		In the LED dot matrix drive mode, the corresponding single
		lamp lighting time configuration register-the second stage of
		lamp cycle configuration
7~0		period=(led2_width+1)*16us
		Note: This register is only applicable to LED dot matrix
		drive mode: when the on time 1 is greater than the on time 2,
		the scan time of this group is on time 1.

Secondary bus register:

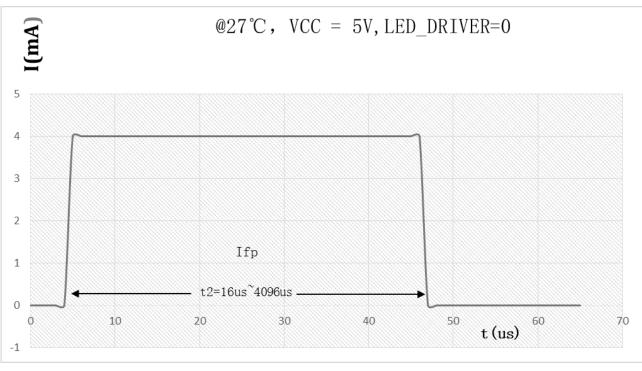
Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-			-	
R/W	-	-	-	-	R/W	R/W	R/W	R/W
Reset value	-	-	-	-	0	0	0	0

LED_DRIVE(31H) LED port drive capability configuration register

15.1.4. LED Serial Dot Matrix Drive Current Description

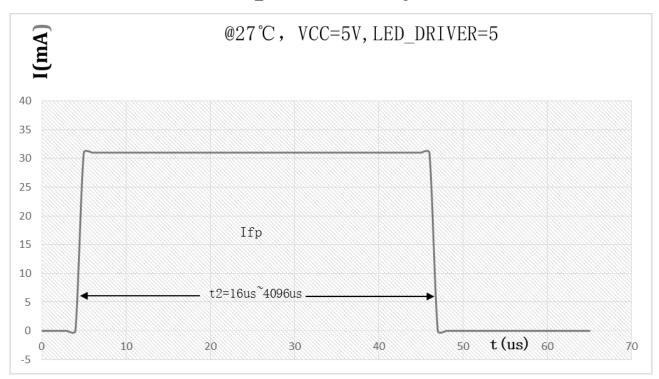
 $(Ta = 25^{\circ}C, VCC = 5V, LED \text{ lamp voltage drop } 1.8V \sim 2.3V)$

LED_DRIVE	Ifp(mA)
0	4
1	10
2	16
3	20
4	26
5	31
6	36
7	41
8	46
9	51
10	55
11	60
12	65
13	69
14	74
15	78

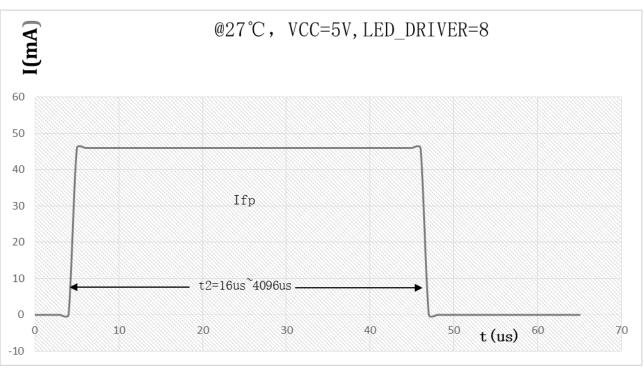

LED secondary bus drive current configuration register reference list

Note:

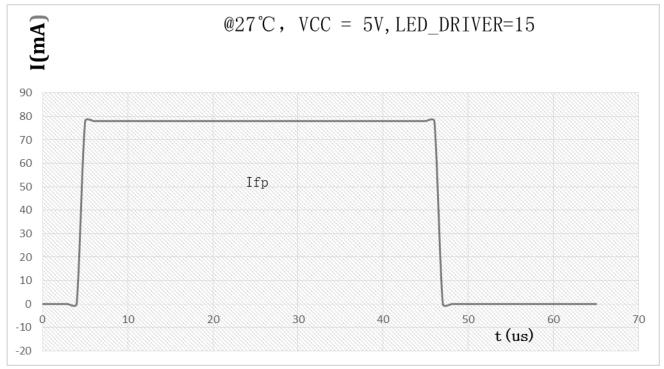
- 1. LED drive current deviation range (±8%)@VCC=5V,Ta=(-40°C~105°C), the setting of LED_DRIVE is recommended to be less than the nominal Ifp current of the LED lamp, and the LED lamp to be driven should be forward LED lights with the same voltage VF.
- 2. LED_DRIVE: LED drive capability configuration register

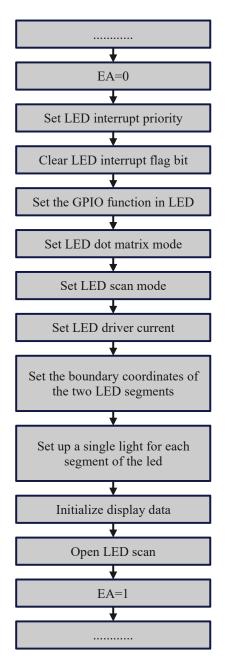

Ifp: LED light conducts steady-state current




LED serial dot matrix drive current-time diagram under several common configurations:

LED_DRIVER VS Time Figure1



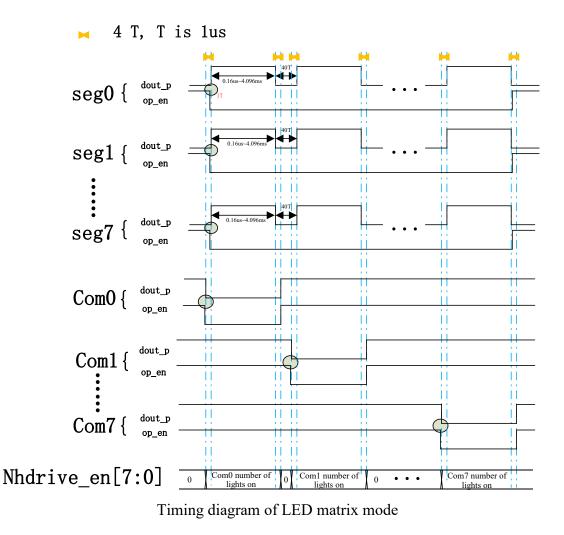

LED_DRIVER VS Time Figure3

LED_DRIVER VS Time Figure4

15.1.5. LED Dot Matrix Configuration Process

LED dot matrix configuration flow chart

15.2. LED Matrix Drive


Features of LED matrix drive mode:

- Support up to 8 COM x 8 SEG;
- The SEG and COM scan period share the same register SCAN_WIDTH, single SEG period= (scan_width+1) *16us, single COM period= (scan_width+1) *16us+8us;
- Single SEG conduction duty cycle: 1/8~8/8, configured by the register DP_CON[5:3];
- Support COM: 1 to 8, configured by the secondary bus register COM_IO_SEL;
- Support SEG: 1 to 8, configured by the secondary bus register SEG_IO_SEL configuration;

15.2.1. LED Matrix Driver Description

The LED matrix drive consists of a controller, a counter, a duty cycle comparator, and an sram circuit.

SRAM stores the corresponding SEG port output data of each COM port to determine whether to light up (1 means light, 0 means no light), the hardware code only needs to directly output data to the IO port according to the following sequence.

Note: 1. dout_p: output data signal; 2. op_en: output enable signal.

Signal Nhdrive_en[7:0] each corresponding to a COM port drive ability, when it drives the number of lights is 1~4, Nhdrive en is 0, the number of lights is 5~8, Nhdrive en is 1, do not scan for 0;

When selecting the high current IO function, the COM port is fixed to select the high current port, the corresponding Nhdrive en is 1.

15.2.2. Display Configuration Address

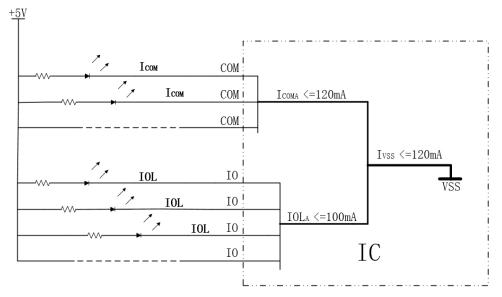
LED matrix drive mode corresponding display configuration:

SEGx means to choose whether to light up, 0: no light, 1: light

Ad	dress	7	6	5	4	3	2	1	0
1000H	COM0	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1	SEG0
1001H	COM1	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1	SEG0
1002H	COM2	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1	SEG0
1003H	COM3	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1	SEG0
1004H	COM4	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1	SEG0
1005H	COM5	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1	SEG0
1006H	COM6	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1	SEG0
1007H	COM7	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1	SEG0

LED matrix drive mode corresponding display configuration table

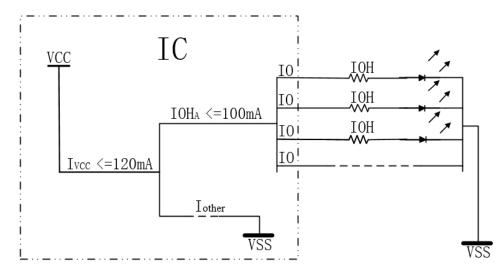
15.2.3. Set COM and SEG


In the led matrix drive mode, the number of COM/SEG is optional, IO free configuration. The scan COM is controlled by the secondary bus register COM_IO_SEL control and seg by the secondary bus register SEG IO SEL.

In 4*4 mode, the number of COM/SEG ports is controlled by the secondary bus register COM_IO_SEL, and the scanning sequence is universal.

Configure high current IO:

- (1) Configure register DP_CON[0]=1;
- (2) Configure the secondary bus register COM_IO_SEL=1.



Note: As a high-current IO port, LED/LCD scanning configuration is invalid.

Enable LED row matrix:

The maximum total current allowed for IO output is 100mA:

Iother: Is the chip analog module power consumption. For more information, please refer to BYD_MCU_Product Application Precautions.

15.2.4. LED Matrix Drive Register

	SFR register											
Address	Name	RW	Description									
0xAF	SCAN_START	RW	0x00	LCD, LED scan open register								
0xB1	DP_CON	RW	0x00	LCD, LED control register								
0xB2	DP_MODE	RW	0x00	LCD, LED mode register								
0xB3	SCAN_WIDTH	RW	0x00	LED cycle configuration register								
0xB9	DP_CON1	RW	0x00	LCD contrast Configuration Register								

	Secondary bus register										
AddressNameRWReset ValueDescription											
0x23	COM_IO_SEL	RW	0x00	COM selection configuration register							
0x24	SEG_IO_SEL	RW	0x00	LED_SEG0-7 port selection configuration register							

SCAN_START(AFH) LCD, LED scan open register

—			1	0				
Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	-	-	-	-
R/W	-	-	-	-	-	-	-	R/W
Reset value	-	-	-	-	-	-	-	0

Bit number	Bit symbol	Description	
0		LCD, LED scan on register	
0		1: Scan on; 0: Scan off	

DP_CON (B1H) LCD, LED control register

Bit number	7	6	5 4 3		5 4 3		1	0
Symbol	-	IO_ON	DUTY_SEL		DPSEL	SCAN_MODE	COM_MOD	
R/W	I	R/W		R/W		R/W	R/W	R/W
Reset value	-	0	0	0	0	0	0	0

Bit number	Bit symbol	Description
		LCD/LED scanning corresponds to the total control bit of all
6	IO_ON	IO ports
		0: Close IO; 1: Open IO
		LED row and column drive mode single COM port
		conduction duty cycle configuration register:
5~3	DUTY_SEL	0: 1/8 duty cycle; 1: 2/8 duty cycle; 2: 3/8 duty cycle;
		3: 4/8 duty cycle; 4: 5/8 duty cycle; 5: 6/8 duty cycle;
		6: 7/8 duty cycle; 7: 8/8 duty cycle
		LCD, LED selection control bit
2	DPSEL	0: Select LCD driver, LED driver is invalid
		1: Select LED driver, LCD driver is invalid
		LCD, LED scan mode configuration
1	SCAN_MODE	1: Cycle scan mode
		0: Interrupt scan mode
		High current sink IO port drive enable
		1: As a high current sink IO port;
0	COM_MOD	0: Can be configured for other functions;
		When used as a high current sink IO port, by configuring the
		GPIO register to output the drive timing, the LED/LCD scan

		configuration is invalid								
DP_MODE(B2H) LCD, LED mode register										
Bit number	7	6 5 4 3 2 1 0								
Symbol	LED_MOD	LCD_C	CKSEL	LCD_RSEL	LCD_FCSEL LCD_RM			RMOD		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset value	0	0	0	0	0	0	0	0		

Bit number	Bit symbol	Description
		LED drive mode selection register
7	LED_MOD	1: Serial dot matrix scanning
		0: Row and column matrix scan

SCAN WIDTH (B3H) LED period configuration register

Bit number	7	7 6 5 4 3 2 1 0									
Symbol		-									
R/W					R/W						
Reset value		0									

Bit number	Bit symbol	Description
7~0		Under LED matrix drive mode, corresponding to single COM port scan time period=(scan_width+1)*16us, support configuration range 0.016~4.096ms;

DP_CON1 (B9H) LCD contrast configuration register

Bit number	7	6	5	4
Symbol	-	TRI_COM_INV	MATRIX_MOD	PD_LCD_POWER
R/W	-	R/W	R/W	R/W
Reset value	-	0	0	0
Bit number	3	2	1	0
Symbol		V	OL	
R/W	R/W	R/W	R/W	R/W
Reset value	0	0	0	0

Bit number	Bit symbol	Description
		LED matrix 4*4 mode COM port reverse selection register
6	TRI_COM_INV	In 4*4 mode,
6		1: Output high when COM is selected; 0: Output low when
		COM is selected
		LED matrix 4*4 mode selection register
5	MATRIX_MOD	1: Select 4*4 mode, COML0~ COML3 are common,
		COML4~ COML7 are segment;

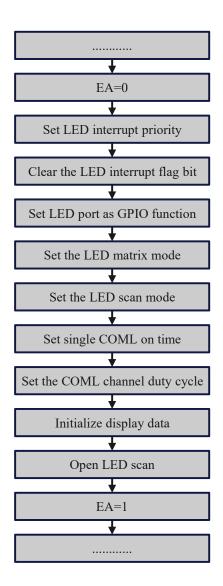
0: Do not select 4*4 mode

Secondary bus register:

COM IO SEL (23H) COML select configuration register

Bit number	7	6	5	4	3	2	1	0
Symbol	COML7	COML6	COML5	COML4	COML3	COML2	COML1	COML0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset value	0	0	0	0	0	0	0	0

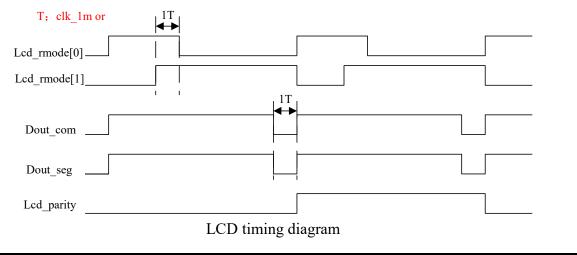
Bit number	Bit symbol	Description
		In LED matrix drive mode, 4*4 mode is not selected:
		COM port select configuration register, the corresponding bit is 1,
		COMLx is common
		1: Select the COM port function.
		0: Select the I/O port mode
		In LED matrix drive mode, select 4*4 mode:
7~0		COML0~ COML3 is common, and COML4~ COML7 is segment
		1: Select COM port function or SEG port function;
		0: Select the I/O port mode
		When the high current IO port drive is enabled:
		1: Select the high-current I/O port
		0: Select the I/O port mode


SEG_IO_SEL (24H) LED_SEG0-7 port selection configuration register

Bit number	7	6	5	4	3	2	1	0
Symbol	SEGL7	SEGL6	SEGL5	SEGL4	SEGL3	SEGL2	SEGL1	SEGL0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset value	0	0	0	0	0	0	0	0

Bit number	Bit symbol	Description	
		LED_SEG0-7 port selection configuration register, the corresponding bit is 1, select SEGL function	
7~0		 Select the SEGMENT port mode; select IO port mode 	
			Note: This register is only valid when the LED matrix is not
		4*4 mode.	

15.2.5. LED Matrix Configuration Process


15.3. LCD Driver

Features of LCD drive mode:

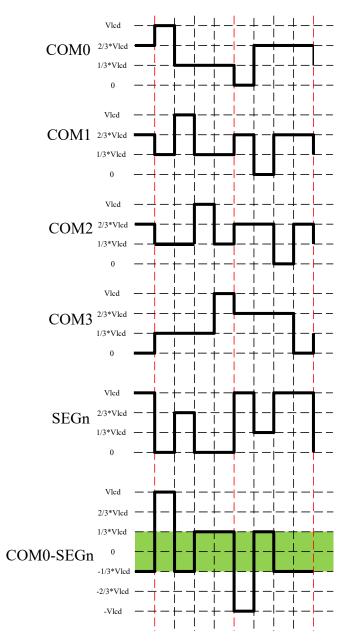
- Supports duty cycles:
 - 1/4 duty cycle, 1/3 bias (4 COM X 16 SEG);
 - 1/8 duty cycle, 1/4 bias (8 COM X 16 SEG);
 - 1/4 duty cycle, 1/3 bias (4 COM X 20 SEG);
 - 1/5 duty cycle, 1/3 bias (5 COM X 19 SEG);
 - 1/6 duty cycle, 1/3 bias (6 COM X 18 SEG);
 - 1/6 duty cycle, 1/4 bias (6 COM X 18 SEG);
- Support 3 kinds of bias resistance: 60k/225k/900k;
- Support 2 drive modes: Traditional resistance mode (fast charging mode, slow charging mode), Automatic switching mode between fast and slow charging;
- Support 3 kinds of working clock: internal low-speed clock LIRC, external crystal oscillator 32768Hz, internal osc1Mhz;
- When the LCD selects the clock CLK_1M, the lighting time of a single COM can be configured, and the configuration range is 0.064~4.096ms with a step of 64us; the LCD conduction frequency is fixed at 64Hz in other clock modes (calculated according to 32768HZ);
- Support LCD contrast control, 0.531VDD~1.000VDD, 16-level contrast adjustment;
- The COM port is determined by the duty cycle configuration, and the SEG port is freely configured by the register;

15.3.1. LCD Driver Description

In LCD mode, the number of COM ports scanned is completely controlled by the duty cycle configuration of the drive mode. The SEG port output data corresponding to each COM port is stored in SRAM to determine whether the light is on (1 means light, 0 means no light)), the hardware code needs to directly output data to the IO port control circuit according to the following sequence.

DUTY_SEL	Duty cycle	COM *SEG	COM	SEG
000/110/111	1/4 duty cycle, 1/3 bias	4COM*16SEG	СОМ0-3	SEG0-7, SEG16-23;
001	1/8 duty cycle, 1/4 bias	8COM*16SEG	СОМ0-7	SEG0-7, SEG16-23;
010	1/4 duty cycle, 1/3 bias	4COM*20SEG	СОМ0-3	SEG0-7, SEG16-23; COM4-7 is shared as SEG24-27
011	1/5 duty cycle, 1/3 bias	5COM*19SEG	COM0-4	SEG0-7, SEG16-23; COM5-7 is shared as SEG24-26
100	1/6 duty cycle, 1/3 bias	6COM*18SEG	COM0-5	SEG0-7, SEG16-23; COM6-7 is shared as SEG24-SEG25
101	1/6 duty cycle, 1/4 bias	6COM*18SEG	СОМ0-5	SEG0-7, SEG16-23; COM6-7 is shared as SEG24-SEG25

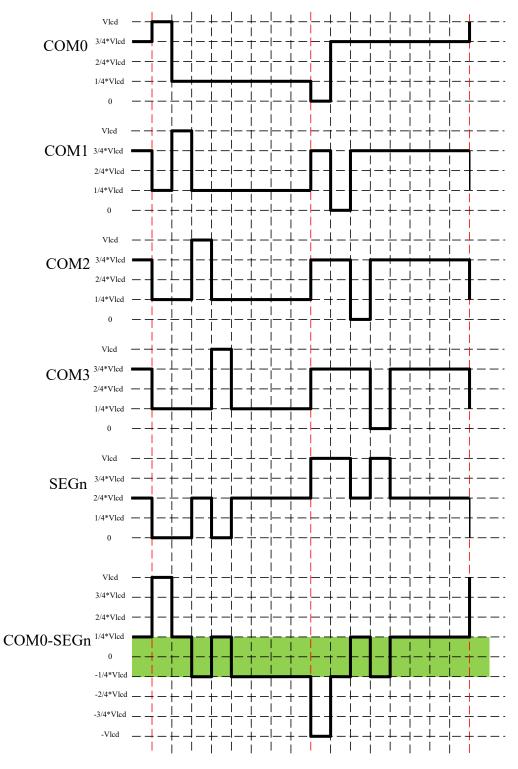
Analog IO implements the following truth table:

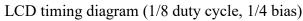

Bias voltage selectionLCD_BIAS_SEL0: 1/3 bias voltage1: 1/4 bias voltage;Odd and even frame selectionLCD_PARITY0: odd frame1: even frame;Resistance string selectionLCD_RMODE001: 20K010: 75K100: 300K;Data selectionDOUT_PB (for example), compatible with the previous data line, the outputfunction of the corresponding IO port is invalid (OP_EN_N=1);

COM truth table							
LCD_BIAS_SEL	LCD_PARITY	DOUT_PB	Output voltage value				
0	0	0	1/3VLCD				
0	0	1	VLCD				
0	1	0	2/3VLCD				
0	1	1	VSS				
1	0	0	1/4VLCD				
1	0	1	VLCD				
1	1	0	3/4VLCD				
1	1	1	VSS				
	SEG	truth table					
LCD_BIAS_SEL	LCD_PARITY	DOUT_PB	Output voltage value				
0	0	0	2/3VLCD				
0	0	1	VSS				
0	1	0	1/3VLCD				
0	1	1	VLCD				
1	0	0	2/4VLCD				
1	0	1	VSS				
1	1	0	2/4VLCD				
1	1	1	VLCD				

LCD Configure truth table

This realizes the bias voltage division sequence on the PAD, as shown in the figure below:




LCD timing diagram (1/4 duty cycle, 1/3 bias)

BF7515BM44-LJTX

Semiconductor

15.3.2. Display Configuration Address

Address	7	6	5	4	3	2	1	0
	COM7	COM6	COM5	COM4	COM3	COM2	COM1	COM0
1000H	SEG0							
1001H	SEG1							
1002H	SEG2							
1003H	SEG3							
1004H	SEG4							
1005H	SEG5							
1006H	SEG6							
1007H	SEG7							
1008H	SEG8							
1009H	SEG9							
100AH	SEG10							
100BH	SEG11							
100CH	SEG12							
100DH	SEG13							
100EH	SEG14							
100FH	SEG15							
1010H	SEG16							
1011H	SEG17							
1012H	SEG18							
1013H	SEG19							
1014H	SEG20							
1015H	SEG21							
1016H	SEG22							
1017H	SEG23							
1018H	SEG24							
1019H			SEG25	SEG25	SEG25	SEG25	SEG25	SEG25
101AH			SEG26	SEG26	SEG26	SEG26	SEG26	SEG26
101BH					SEG27	SEG27	SEG27	SEG27

LCD drive mode corresponding display configuration:

SEGx means to choose whether to light up, 0: no light, 1: light;

LCD drive mode corresponding display configuration table

15.3.3. LCD Registers

	SFR register								
Address	Name	RW	Reset Value	Description					
0xAF	SCAN_START	RW	0x00	LCD, LED scan open register					
0xB1	DP_CON	RW	0x00	LCD, LED control register					
0xB2	DP_MODE	RW	0x00	LCD, LED mode register					
0xB3	SCAN_WIDTH	RW	0x00	LED cycle configuration register					
0xB9	DP_CON1	RW	0x00	LCD contrast Configuration Register					

	Secondary bus register							
Address	Name	RW	Reset Value	Description				
0x1F	LCD IO SEL 1	RW	0x00	LCD_SEG0-7 port selection				
UXIF	LCD_IO_SEL_1	ĸw	0x00	configuration register				
021	LCD IO SEL 2	DW	000	LCD_SEG16-23 port selection				
0x21	LCD_IO_SEL_3	RW	0x00	configuration register				
0x22	LCD IO SEL 4	RW	000	LCD_SEG24-27 port selection				
0X22	LCD_IO_SEL_4	ĸw	0x00	configuration register				
0x2D	PD_ANA	RW	0xFF	Analog module switch register				
SCAN ST	ART(AFH) I CD I	FD scan	onen register					

SCAN_START(AFH) LCD, LED scan open register

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	-	-	-	-
R/W	-	-	-	-	-	-	-	R/W
Reset value	-	-	-	-	-	-	-	0

Bit number	Bit symbol	Description
0		LCD, LED scan on register
0		1: Scan on; 0: Scan off

DP_CON (B1H) LCD, LED control register

Bit number	7	6	5	5 4 3 2 1		0		
Symbol	-	IO_ON	DI	JTY_S	EL	DPSEL	SCAN_MODE	COM_MOD
R/W	-	R/W		R/W		R/W	R/W	R/W
Reset value	-	0	0	0	0	0	0	0

Bit number	Bit symbol	Description
		LCD/LED scanning corresponds to the total control bit of all
6	IO_ON	IO ports
		0: Close IO; 1: Open IO
5.2	DUTY CEI	LCD drive mode duty cycle configuration register
5~3	DUTY_SEL	000: 1/4 duty cycle, 1/3 bias (4 COM X 16 SEG)

		COM port: COM0-3
		SEG port: SEG0-7, SEG16-23
		001: 1/8 duty cycle, 1/4 bias (8 COM X 16 SEG)
		COM port: COM0-7
		SEG port: SEG0-7, SEG16-23
		010: 1/4 duty cycle, 1/3 bias (4 COM X 20 SEG)
		COM port: COM0-3
		SEG port: SEG0-7, SEG16-23,
		COM4-7 shared as SEG24-27
		011: 1/5 duty cycle, 1/3 bias (5 COM X 19 SEG)
		COM port: COM0-4
		SEG port: SEG0-7, SEG16-23,
		COM5-7 shared as SEG25-27
		100: 1/6 duty cycle, 1/3 bias (6 COM X 18 SEG)
		COM port: COM0-5
		SEG port: SEG0-7, SEG16-23,
		COM6-7 shared as SEG26-SEG27
		101: 1/6 duty cycle, 1/4 bias (6 COM X 18 SEG)
		COM port: COM0-5
		SEG port: SEG0-7, SEG16-23,
		COM6-7 shared as SEG26-SEG27
		Others: 1/4 duty cycle, 1/3 bias (4 COM X 16 SEG)
		COM port: COM0-3
		SEG port: SEG0-7, SEG16-23
		LCD, LED selection control bit
2	DPSEL	0: Select LCD driver, LED driver is invalid
		1: Select LED driver, LCD driver is invalid
		LCD, LED scan mode configuration
1	SCAN_MODE	1: Cycle scan mode
		0: Interrupt scan mode
		High current sink IO port drive enable
		1: As a high current sink IO port;
0		0: Can be configured for other functions;
U	COM_MOD	When used as a high current sink IO port, by configuring the
		GPIO register to output the drive timing, the LED/LCD scan
		configuration is invalid

DP_MODE(B2H) LCD, LED mode register

Bit number	7	6	5	4	3	2	1	0
Symbol	LED_MOD	LCD_CKSEL		LCD_RSEL	LCD_FCSEL		LCD_RMOD	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Reset value 0 <th< th=""><th></th><th></th><th>-</th><th>-</th><th></th><th></th><th>-</th><th>-</th><th></th></th<>			-	-			-	-	
	Reset value	0	0	0	0	0	0	0	0

Bit number	Bit symbol	Description
		LCD clock selection register
6~5	LCD CKSEL	10/11: select RC1M
0~3	LCD_CKSEL	01: select XTAL 32768Hz
		00: select LIRC
		LCD bias resistance selection control bit
4	LCD_RSEL	0: The sum of LCD bias resistance is 225k; 1: The sum of LCD
		bias resistance is 900k
		Charge time control bit
3~2	LCD_FCSEL	00: 1/8 LCD com period; 01: 1/16 LCD com period;
		10: 1/32 LCD com period; 11: 1/64 LCD com period
		Drive mode selection bit
		00: Traditional resistance mode (slow charging mode), the total
		bias resistance is 225k/900k, when LCD_RSEL = 0, the total LCD
		bias resistance is 225K, when LCD_RSEL = 1, the total LCD bias
1~0	LCD RMOD	resistance is 900K
1~0		01: Traditional resistance mode (fast charging mode), the total
		bias resistance is 60k
		10/11: Fast and slow charging automatic switching mode, the total
		bias resistance is automatically switched between 60k and
		225k/900k

SCAN WIDTH (B3H) LED period configuration register

		1	U	0				
Bit number	7	6	5	4	3	2	1	0
Symbol		_ · · · · · · · · · · · · · · · · · · ·						
R/W		R/W						
Reset value					0			

Bit number	Bit symbol	Description
		In LCD drive mode, the corresponding single COM port scan time: period=(scan_width+1)*64us, support the configuration range
7~0		0.064~4.096ms, the upper two digits are reserved
		Note: In this mode, this register is only applicable to the LCD
		selection clock CLK_1M mode, the slowest LCD frame rate in
		other clock modes is 64Hz (8*24)

LED2_WIDTH (B4H) LED dot matrix drive mode cycle configuration register

Bit number	7	6	5	4	3	2	1	0
Symbol		-						
R/W					R/W			

Reset value

Bit number	Bit symbol	Description
		In the LED dot matrix drive mode, the corresponding single
		lamp lighting time configuration register-the second stage of
		lamp cycle configuration
7~0		period=(led2_width+1)*16us
		Note: This register is only applicable to LED dot matrix
		drive mode: when the on time 1 is greater than the on time 2,
		the scan time of this group is on time 1.

DP_CON1 (B9H) LCD contrast configuration register

	/	0 0		
Bit number	7	6	5	4
Symbol	-	TRI_COM_INV	MATRIX_MOD	PD_LCD_POWER
R/W	-	R/W	R/W	R/W
Reset value	-	0	0	0
Bit number	3	2	1	0
Symbol		V	OL	
R/W	R/W	R/W	R/W	R/W
Reset value	0	0	0	0

Bit number	Bit symbol	Description
		LCD contrast control enable bit
4	PD_LCD_POWER	0: Turn off LCD contrast control;
		1: Turn on LCD contrast control
		LCD contrast control bit
	VOL	0000: VLCD = 0.53VDD; 0001: VLCD = 0.56VDD;
		0010: VLCD = 0.59VDD; 0011: VLCD = 0.63VDD;
		0100: VLCD = 0.66VDD; 0101: VLCD = 0.69VDD;
3~0		0110: VLCD = 0.72VDD; 0111: VLCD = 0.75VDD;
		1000: VLCD = 0.78VDD; 1001: VLCD = 0.81VDD;
		1010: VLCD = 0.84VDD; 1011: VLCD = 0.88VDD;
		1100: VLCD = 0.91VDD; 1101: VLCD = 0.94VDD;
		1110: VLCD = 0.97VDD; 1111: VLCD = 1.00VDD.

LCD secondary bus register:

LCD_IO_SEL_1 (1FH) LCD_SEG0-7 port selection configuration register

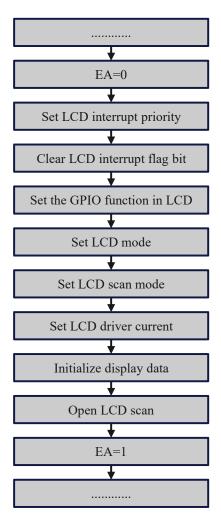
Bit number	7	6	5	4	3	2	1	0	
Symbol		_							
R/W		R/W							
Reset value		0							

BF7515BM44-LJTX

Bit number	Bit sy	'mbol	Description						
7~0			LCD_SEG0-7 port selection configuration register						
71-0			1: select SEGMENT port mode; 0: select IO port mode						
LCD_IO_SEL_3 (21H) LCD_SEG16-23 port selection configuration register									
Bit number	7	6	5 4 3 2 1 0					0	
Symbol		-							
R/W	R/W								
Reset value		0							

Bit number	Bit symbol		Description						
7~0				LCD_SEG16-23 port selection configuration register					
/~0			1: select S	1: select SEGMENT port mode; 0: select IO port mode					
LCD_IO_SEL_4 (22H) LCD_SEG24-27 port selection configuration register									
Bit number	7	6	5	4	3	2	1	0	
Symbol	-	-	-	-	-	-	-	-	
R/W	-	-	- R/W R/W R/W R/W R/W						
Reset value	-	-	-	0	0	0	0	0	

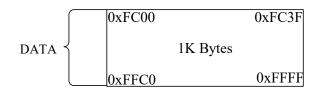
Bit number	Bit symbol	Description
		LCD_SEG24-27 port selection configuration register,
		reserved in non-sharing mode, shared mode COM4~COM7
4~0		is LCD_SEG24-27
		1: Select SEG24~SEG27 port/COM3~COM7;
		0: Select IO port mode.


PD_ANA (2DH) Module switch control register

Bit number	7	6	5	4
Symbol	-	PD_LVDT	PD_BOR	PD_XTAL_32K
R/W	-	R/W	R/W	R/W
Reset value	-	1	1	1
Bit number	3	2	1	0
Symbol	-	-	-	PD_ADC
R/W	-	-	-	R/W
Reset value	_	-	_	1

Bit number	Bit symbol	Description
4	PD_XTAL_32K	PA port crystal oscillator circuit (32768Hz) control register
		1: closed, 0: open, closed by default

15.3.4.LCD Configuration Process


LCD configure process

16. DATA Area

When $EEP_SELECT = 0$, select address $0xFC00\sim0xFFFF$ as DATA area, one page. When using, it needs to perform page erasing, and then perform byte write operation, which can only be written once after erasing, the erased states are all ones.

 $\label{eq:sprog_ADDR_H[1:0], SPROG_ADDR_L[7:0]} The logical address (0~1023) corresponds to the physical address (0xFC00~0xFFFF).$

When EEP_SELECT = 1, select NVR3 and NVR4 as the DATA area, each block of 512Bytes is a page, and the address is $(0x10400 \sim 0x107FF)$. When using, it needs to perform page erasing, and then perform byte write operation, which can only be written once after erasing, the erased states are all ones.

	0x10400	0x1043F
DATA(NVR3)	0.5K By	rtes
	0x105C0	0x105FF
	0x10600	0x1063F
DATA(NVR4)	0.5K By	/tes
	0x107C0	0x107FF

NVR3: {SPROG_ADDR_H, SPROG_ADDR_L} The logical address $(0x4400+(0\sim511))$ corresponds to the physical address $(0x10400\sim0x105FF)$.

NVR4: {SPROG_ADDR_H, SPROG_ADDR_L} The logical address $(0x4600+(0\sim511))$ corresponds to the physical address $(0x10600\sim0x107FF)$.

16.1. Related Register

	SFR register							
Address	Name	RW	Reset value	Description				
0xCE	SPROG_ADDR_H	RW	0x00	Address control register				
0xCF	SPROG_ADDR_L	RW	0x00	Address control register low 8 bits				
0xD1	SPROG_DATA	RW	0x00	Write data register				
0xD2	SPROG_CMD	RW	0x00	Command register				
0xD3	SPROG_TIM	RW	0xDD	Erase time control register				

Secondary bus register							
AddressNameRWReset valueDescription							
0x5B	EEP_SELECT	RW	0x00	DATA area selection register			

16.2. Register Details

SPROG ADDR	H (CEH) Address contro	l register

Bit number	7	6	5	4	3	2	1	0	
Symbol		_							
R/W		R/W							
Reset value		0							

Bit number Bit symbol Description	
Bit number Bit symbol Description In non-Flash_Boot upgrade mode: Bit[7:6]: block selection when reading data indirectly 10: Select system block, multiplex to read data indirectly 10: Select information block, multiplexed to read data in (SPROG_CMD=0x88) 01: Select information block, multiplexed to read data in (SPROG_CMD=0x88); other: invalid; Bit[6:2]: DATA area (0xFC00~0xFFFF) selection enable 00000: select DATA area enable; other: invalid; 1. DATA area (0xFC00~0xFFFF): config {SPROG_ADDR_H[1:0], SPROG_ADDR_L[7:0] 3. When SPROG_ADDR_H[2]=0, select NVR4: config {SPROG_ADDR_H[0], SPROG_ADDR_L[7:0] 3. When SPROG_ADDR_H[0], SPROG_ADDR_L[7:0] 3. When SPROG_ADDR_H[0], SPROG_ADDR_L[7:0]	ndirectly le 0]}

Reset value

In Flash_Boot upgrade mode: {SPROG_ADDR_H, SPROG_ADDR_L} are multiplexed into all
space addresses in the CODE area.

SPROG ADDR L(CFH) Address control register low 8 bits

_								
Bit number	7	6	5	4	3	2	1	0
Symbol				-	-			
R/W				R/	W			
Reset value				()			

Bit number	Bit sym	bol	Description						
7~0		lov	lower 8 bits of address						
SPROG_DATA	(D1H) Wr	Write data register							
Bit number	7	6	5	4	3	2	1	0	
Symbol				-	-				
R/W				R/	W				

0

Bit number	Bit sy	mbol	Description					
7~0	-	-	data to be written					
SPROG_CMD(SPROG CMD(D2H) Command register							
Bit number	7	6	5	4	3	2	1	0
Symbol					-			
R/W		R/W						
Reset value				()			

Bit number	Bit symbol	Description
		Write 0x96: page erase
		Write 0x69: byte burn
		Write 0x88: read data indirectly;
		When continuously writing data 0x12, 0x34, 0x56, 0x78, 0x9A,
7~0		enter the Flash Boot upgrade mode;
		When continuously writing data 0xFE, 0xDC, 0xBA, 0x98,
		0x76, exit the Flash Boot upgrade mode
		When CFG_BOOT_SEL = 3 or the program is running in a
		non-BOOT space, the BOOT upgrade mode cannot be entered.

SPROG_TIM(D3H) Erase time control register

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	-	-	-	-
R/W	-	-	-	R/W	R/W	R/W	R/W	R/W
Reset value	-	-	-	1	1	1	0	1

Bit number	Bit symbol	Description
7~5		Byte write fixed time is 23.5us
		4~9: Erase time=5~10ms (step 1ms) +0.13ms;
		Other: Reserved.
4~0		Note: When EEP_SELECT = 1 or FLASH_BOOT_EN = 1,
		9: Erase time=4.63ms;
		Other: Reserved.

Secondary bus register:

EEP SELECT (5BH) DATA area selection register

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	-	-		-
R/W	-	-	-	-	-	-		R/W
Reset value	-	-	-	-	-	-		0

Bit number	Bit symbol	Description
		1: Select NVR3 and NVR4 as DATA area
0	0	When SPROG_ADDR_H[2]=1, select NVR4;
0		When SPROG_ADDR_H[2]=0, select NVR3
		0: Select address (0xFC00~0xFFFF) as DATA area, 1 page

16.3. Page Erase Step

When $EEP_SELECT = 0$, select the address (0xFC00~0xFFFF) as the DATA area, 1 page. When $EEP_SELECT = 1$, select NVR3/4 as DATA area, NVR3 is 1 page, NVR4 is 1 page.

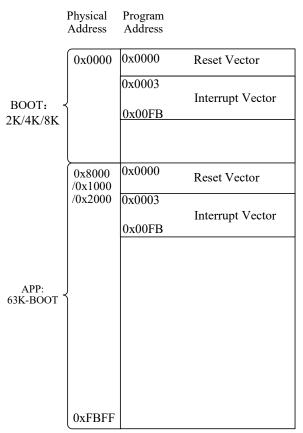
- 1. SPROG_TIM[4:0] = 0~9 (suggest 5ms), byte write time is fixed at 23.5us, The main() program function is only configured once;
- 2. Close interrupt;
- 3. EEP_SELECT select;
- 4. Configure SPROG_ADDR_H, SPROG_ADDR_L, select to erase the page;
- 5. Configure SPROG_CMD = 0x96;
- 6. Write 4 NOP instructions;
- Start erasing, the CPU turns off the clock f_{SYS}, and turns on the clock f_{SYS} after erasing is completed;
- 8. Need to continue to erase data, jump to step 3;
- 9. Configure SPROG_ADDR_L=0x00, SPROG_ADDR_H=0x00;
- 10. Configuration REG_ADDR = 0, REG_DATA = 0;
- 11. Restore interrupt settings.

16.4 Byte Write Step

When EEP_SELECT = 0, select the address (0xFC00~0xFFFF) as the DATA area, 1 page. When EEP_SELECT = 1, select NVR3/4 as DATA area, NVR3 is 1 page, NVR4 is 1 page.

- SPROG_TIM[4:0] = 0~9(suggest 5ms), byte write time is fixed at 23.5us, The main() program function is only configured once;
- 2. Close interrupt;
- 3. EEP_SELECT select;
- 4. Configure SPROG_ADDR_H, SPROG_ADDR_L, byte write address;
- 5. Configure SPROG_DATA;
- 6. Configure SPROG_CMD = 0x69;
- 7. Write 4 NOP instructions;
- 8. Start writing, the CPU turns off the clock f_{SYS} , and turns on the clock f_{SYS} after completion;
- 9. Need to continue to write data, jump to step 3;
- 10. Configure SPROG_ADDR_L=0x00, SPROG_ADDR_H=0x00;
- 11. Configuration REG_ADDR = 0, REG_DATA = 0;
- 12. Restore interrupt settings.

16.5. DATA Area Read


DATA area (0xFC00~0xFFFF) read: directly read the CODE absolute address (0xFC00+0~1023). NVR3 and NVR4 read:

- 1. Turn off the interrupt;
- 2. Configure SPROG_CMD = 0x88;
- Configure SPROG_ADDR_H, SPROG_ADDR_L, the address to be read; NVR3: {SPROG_ADDR_H, SPROG_ADDR_L} The logical address (0x4400+(0~511)) corresponds to the physical address (0x10400~0x105FF). NVR4: {SPROG_ADDR_H, SPROG_ADDR_L} The logical address (0x4600+(0~511)) corresponds to the physical address (0x10600~0x107FF);
- 4. Read SPROG_RDATA data;
- 5. Need to continue to read data, jump to step 2 and 3;
- 6. After reading SPROG_RDATA data, configure SPROG_CMD = 0x00;
- 7. Configure SPROG_ADDR_L=0x00, SPROG_ADDR_H=0x00;
- 8. Restore interrupt settings.

17. IAP operation

CFG_11: [7:6] When CFG_BOOT_SEL is not equal to 3, Flash supports the IAP BOOT upgrade function, by sending IAP operation commands to realize the jump between the BOOT area and the APP area, BOOT comes with storage and write protection, and the size of the BOOT area is set by the configuration word CFG_11:[7:6]- CFG_BOOT_SEL selection: 0: 2K, 1: 4K, 2: 8K.

BOOT and APP partition map

	SFR register										
Address	Name	RW	Reset value	Description							
0xCE	SPROG_ADDR_H	RW	0x00	Address control register							
0xCF	SPROG_ADDR_L	RW	0x00	Address control register low 8 bits							
0xD1	SPROG_DATA	RW	0x00	Write data register							
0xD2	SPROG_CMD	RW	0x00	Command register							
0xD3	SPROG_TIM	RW	0xDD	Erase time control register							

17.1. Flash IAP Related Registers

	Secondary bus register										
Address	Name	Description									
0x5A	FLASH_BOOT_EN	R	0x00	BOOT mode status selection register							
0x6A	BOOT_CMD	RW	0x00	Program space jump instruction register							
0x6B	ROM_OFFSET_L	R	0x00	The low 8 bits of the address offset of the CODE area							
0x6C	ROM_OFFSET_H	R	0x00	The high 8 bits of the address offset of the CODE area							

17.2. Flash IAP Detailed Description

SPROG_ADDR_H (CEH) Address control register

)						
Bit number	7	6	5	4	3	2	1	0
Symbol					-			
R/W				R	/W			
Reset value					0			

Bit number	Bit symbol	Description
Bit number 7~0	Bit symbol	DescriptionIn non-Flash_Boot upgrade mode:Bit[7:6]: block selection when reading data indirectly10: Select system block, multiplex to read data indirectly(SPROG_CMD=0x88)01: Select information block, multiplexed to read data indirectly(SPROG_CMD=0x88);other: invalid;Bit[6:2]: DATA area (0xFC00~0xFFFF) selection enable00000: select DATA area enable;
		other: invalid; 1. DATA area (0xFC00~0xFFFF):

	config {SPROG_ADDR_H[1:0], SPROG_ADDR_L[7:0]}
	2. When SPROG_ADDR_H[2]=1, select NVR4:
	config {SPROG_ADDR_H[0], SPROG_ADDR_L[7:0]}
	3. When SPROG_ADDR_H[2]=0, select NVR3:
	config {SPROG_ADDR_H[0], SPROG_ADDR_L[7:0]}
	In Flash_Boot upgrade mode:
	{SPROG_ADDR_H, SPROG_ADDR_L} are multiplexed into all
	space addresses in the CODE area.

SPROG ADDR L(CFH) Address control register low 8 bits

Bit number								0			
Symbol											
R/W		R/W									
Reset value		0									

Bit number	Bit sym	bol	Description						
7~0		lower 8 bits of address							
SPROG_DATA	(D1H) Wr	D1H) Write data register							
Bit number	7	6	5	4	3	2	1	0	
Symbol					-				
R/W		R/W							
Reset value		0							

Bit number	Bit sy	mbol	Description							
7~0			data to be written							
SPROG_CMD()	D2H) Command register									
Bit number	7 6 5 4 3 2 1 0					0				
Symbol										
R/W		R/W								
Reset value		0								

Bit number	Bit symbol	Description
		Write 0x96: page erase;
		Write 0x69: byte burn;
		Write 0x88: read data indirectly;
		When continuously writing data 0x12, 0x34, 0x56, 0x78, 0x9A,
7~0		enter the Flash Boot upgrade mode;
		When continuously writing data 0xFE, 0xDC, 0xBA, 0x98,
		0x76, exit the Flash Boot upgrade mode
		When CFG_BOOT_SEL = 3 or the program is running in a
		non-BOOT space, the BOOT upgrade mode cannot be entered.

SPROG_TIM(D3H) Erase time control register

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	-	-	-	-
R/W	-	-	-	R/W	R/W	R/W	R/W	R/W
Reset value	-	-	-	1	1	1	0	1

Bit number	Bit symbol	Description
7~5		Byte write fixed time is 23.5us
4~0		4~9: Erase time=5~10ms (step 1ms) +0.13ms;Other: Reserved. Note: When EEP_SELECT = 1 or FLASH_BOOT_EN = 1,
		9: Erase time=4.63ms;Other: Reserved.

Secondary bus register:

FLASH_BOOT_EN (5AH) BOOT mode status register

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	-	-	-	FLASH_BOOT_EN
R/W	-	-	-	-	-	-	-	R
Reset value	-	-	-	-	-	-	-	0

Bit number	Bit symbol	Description
0	FLASH_BOOT_EN	 Indicates that the Flash BOOT upgrade mode has been entered, indicates that the Flash BOOT upgrade mode has been exited. Note: In Flash BOOT upgrade mode, SPROG_ADDR_H, SPROG_ADDR_L, SPROG_DATA, SPROG_CMD, SPROG_TIM are reused as BOOT upgrade function. {SPROG_ADDR_H, SPROG_ADDR_L} are multiplexed into all Flash space addresses from 0x0000 to 0xFFFF.

BOOT_CMD (6AH) Program space jump instruction register

	<i>,</i>	1 0	_						
Bit number	7	6	5	4	3	2	1	0	
Symbol	-								
R/W		R/W							
Reset value	0								

Bit number	Bit symbol	Description
7~0		Configure the space jump instruction of the program, write 5 groups of data (0xFF, 0x00, 0x88, 0x55, 0xAA) continuously, and jump into the main program space; Continuously write 5 sets of data (0x37, 0xC8, 0x42, 0x9A,

BF7515BM44-LJTX

	0x65), jump into the Boot program space; the value read out
	is the most recently written byte.

ROM OFFSET L (6BH) Address offset of CODE area (low 8 bits)

Bit number	7	6	5	4	3	2	1	0
Symbol	-							
R/W		R						
Reset value	0							

Bit number	Bit symbol		Description					
7~0			Address offset of CODE area (low 8 bits)					
ROM_OFFSET	_H (6CH)	H (6CH) Address offset of CODE area (high 8 bits)						
Bit number	7	6	5	4	3	2	1	0
Symbol		-						
R/W		R						
Reset value		0						

Bit number	Bit symbol	Description
7~0		Address offset of CODE area (high 8 bits)

Address correspondence in BOOT upgrade mode					
SPROG_ADDR_H[7:1]	OG_ADDR_H[7:1] Block Byte write physical address corresponding range (
4	4	00000800	>	000009FF	
5	5	00000A00	>	00000BFF	
6	6	00000C00	>	00000DFF	
7	7	00000E00	>	00000FFF	
8	8	00001000	>	000011FF	
9	9	00001200	>	000013FF	
10	10	00001400	>	000015FF	
11	11	00001600	>	000017FF	
12	12	00001800	>	000019FF	
13	13	00001A00	>	00001BFF	
14	14	00001C00	>	00001DFF	
15	15	00001E00	>	00001FFF	
16	16	00002000	>	000021FF	
17	17	00002200	>	000023FF	
18	18	00002400	>	000025FF	
19	19	00002600	>	000027FF	
20	20	00002800	>	000029FF	
21	21	00002A00	>	00002BFF	

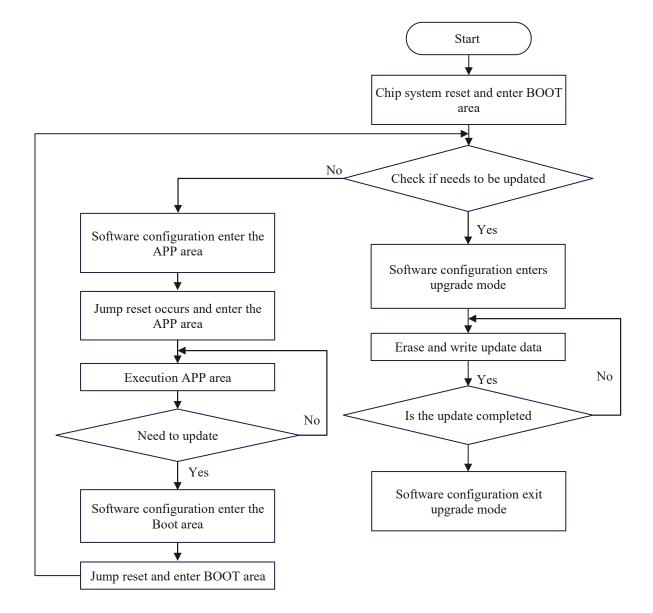
22	22	00002C00	>	00002DFF
23	23	00002E00	>	00002FFF
24	24	00003000	>	000031FF
25	25	00003200	>	000033FF
26	26	00003400	>	000035FF
27	27	00003600	>	000037FF
28	28	00003800	>	000039FF
29	29	00003A00	>	00003BFF
30	30	00003C00	>	00003DFF
31	31	00003E00	>	00003FFF
32	32	00004000	>	000041FF
33	33	00004200	>	000043FF
34	34	00004400	>	000045FF
35	35	00004600	>	000047FF
36	36	00004800	>	000049FF
37	37	00004A00	>	00004BFF
38	38	00004C00	>	00004DFF
39	39	00004E00	>	00004FFF
40	40	00005000	>	000051FF
41	41	00005200	>	000053FF
42	42	00005400	>	000055FF
43	43	00005600	>	000057FF
44	44	00005800	>	000059FF
45	45	00005A00	>	00005BFF
46	46	00005C00	>	00005DFF
47	47	00005E00	>	00005FFF
48	48	00006000	>	000061FF
49	49	00006200	>	000063FF
50	50	00006400	>	000065FF
51	51	00006600	>	000067FF
52	52	00006800	>	000069FF
53	53	00006A00	>	00006BFF
54	54	00006C00	>	00006DFF
55	55	00006E00	>	00006FFF
56	56	00007000	>	000071FF
57	57	00007200	>	000073FF
58	58	00007400	>	000075FF
59	59	00007600	>	000077FF

60	60	00007800	>	000079FF
61	61	00007A00	>	00007BFF
62	62	00007C00	>	00007DFF
63	63	00007E00	>	00007FFF
64	64	00008000	>	000081FF
65	65	00008200	>	000083FF
66	66	00008400	>	000085FF
67	67	00008600	>	000087FF
68	68	00008800	>	000089FF
69	69	00008A00	>	00008BFF
70	70	00008C00	>	00008DFF
71	71	00008E00	>	00008FFF
72	72	00009000	>	000091FF
73	73	00009200	>	000093FF
74	74	00009400	>	000095FF
75	75	00009600	>	000097FF
76	76	00009800	>	000099FF
77	77	00009A00	>	00009BFF
78	78	00009C00	>	00009DFF
79	79	00009E00	>	00009FFF
80	80	0000A000	>	0000A1FF
81	81	0000A200	>	0000A3FF
82	82	0000A400	>	0000A5FF
83	83	0000A600	>	0000A7FF
84	84	0000A800	>	0000A9FF
85	85	0000AA00	>	0000ABFF
86	86	0000AC00	>	0000ADFF
87	87	0000AE00	>	0000AFFF
88	88	0000B000	>	0000B1FF
89	89	0000B200	>	0000B3FF
90	90	0000B400	>	0000B5FF
91	91	0000B600	>	0000B7FF
92	92	0000B800	>	0000B9FF
93	93	0000BA00	>	0000BBFF
94	94	0000BC00	>	0000BDFF
95	95	0000BE00	>	0000BFFF
96	96	0000C000	>	0000C1FF
97	97	0000C200	>	0000C3FF
L	1	1	1	·

98	98	0000C400	>	0000C5FF
99	99	0000C600	>	0000C7FF
100	100	0000C800	>	0000C9FF
101	101	0000CA00	>	0000CBFF
102	102	0000CC00	>	0000CDFF
103	103	0000CE00	>	0000CFFF
104	104	0000D000	>	0000D1FF
105	105	0000D200	>	0000D3FF
106	106	0000D400	>	0000D5FF
107	107	0000D600	>	0000D7FF
108	108	0000D800	>	0000D9FF
109	109	0000DA00	>	0000DBFF
110	110	0000DC00	>	0000DDFF
111	111	0000DE00	>	0000DFFF
112	112	0000E000	>	0000E1FF
113	113	0000E200	>	0000E3FF
114	114	0000E400	>	0000E5FF
115	115	0000E600	>	0000E7FF
116	116	0000E800	>	0000E9FF
117	117	0000EA00	>	0000EBFF
118	118	0000EC00	>	0000EDFF
119	119	0000EE00	>	0000EFFF
120	120	0000F000	>	0000F1FF
121	121	0000F200	>	0000F3FF
122	122	0000F400	>	0000F5FF
123	123	0000F600	>	0000F7FF
124	124	0000F800	>	0000F9FF
125	125	0000FA00	>	0000FBFF
126	126	0000FC00	>	0000FDFF
127	127	0000FE00	>	0000FFFF

Notes:

1. Byte write physical address corresponding register: {SPROG_ADDR_H[7:0], SPROG_ADDR_L[7:0]};


2. 512Bytes per Block;

3. When operating the 2K/4K/8K Block in the area where the BOOT is located, the BOOT is write-protected and the operation is invalid.

4. When the BOOT function is used, the absolute address of all CODE areas of the program needs to be subtracted from the offset address of ROM_OFFSET_H/L (PC - ROM_OFFSET), and then the absolute address of the CODE area is accessed.

17.3. Flash IAP Operating Procedures

17.3.1. Flash IAP Erase Step

In Flash_BOOT upgrade mode:

- 1. SPROG_TIM[4:0] = $0 \sim 9$ (suggest 5ms), the byte write time is fixed at 23.5us, and it is configured only once in the main program main() function initialization;
- 2. Close interrupt;
- 3. Configure SPROG_ADDR_L = 0x00;
- 4. Configure SPROG_ADDR_H([7:1]); select to erase the page;
- 5. Configure SPROG_CMD = 0x96;
- 6. Write 4 NOP instructions;
- Start erasing, the CPU turns off the clock f_{SYS}, and turns on the clock f_{SYS} after erasing is completed;
- 8. Need to continue erasing data, jump to step 3;
- 9. Configure SPROG_ADDR_L=0x00, SPROG_ADDR_H=0x00;
- 10. Restore interrupt settings.

17.3.2. Flash IAP Byte Write Step

In Flash_BOOT upgrade mode:

- 1. SPROG_TIM[4:0] = $0 \sim 9$ (suggest 5ms), the byte write time is fixed at 23.5us, and it is configured only once in the main program main() function initialization;
- 2. Close the interrupt;
- 3. Configure SPROG_ADDR_H, SPROG_ADDR_L, byte write address;
- 4. Configure SPROG_DATA;
- 5. Configure SPROG_CMD = 0x69;
- 6. Write 4 NOP instructions;
- 7. Start writing, the CPU turns off the clock f_{SYS}, and turns on the clock f_{SYS} after completion;
- 8. Need to continue writing data, jump to step 3;
- 9. Configure SPROG_ADDR_L=0x00, SPROG_ADDR_H=0x00;
- 10. Restore interrupt settings.

17.3.3. Flash IAP Operation Instruction

Instruction	Instruction response status	Instruction data
Enter upgrade mode instruction	$FLASH_BOOT_EN = 1$	0x12, 0x34, 0x56, 0x78, 0x9A
Exit upgrade mode instruction	$FLASH_BOOT_EN = 0$	0xFE, 0xDC, 0xBA, 0x98, 0x76
Enter the APP area instruction	ROM_OFFSETH/L	0xFF, 0x00, 0x88, 0x55, 0xAA
Enter the BOOT area instruction	ROM_OFFSETH/L	0x37, 0xC8, 0x42, 0x9A, 0x65

Instructions for operation:

- Enter upgrade mode instruction: SPROG_CMD sequential write: 0x12, 0x34, 0x56, 0x78, 0x9A;
- Exit upgrade mode instruction: SPROG_CMD sequential write: 0xFE, 0xDC, 0xBA, 0x98, 0x76;
- 3. Enter the APP area instruction: BOOT_CMD sequential write: 0xFF, 0x00, 0x88, 0x55, 0xAA;
- 4. Enter the BOOT area instruction: BOOT_CMD sequential write: 0x37, 0xC8, 0x42, 0x9A, 0x65;

Instructions response status:

FLASH_BOOT_EN = 1: Indicates that it has entered Flash BOOT upgrade mode,

FLASH_BOOT_EN = 0: Indicates that the Flash BOOT upgrade mode has been exited,

ROM_OFFSETH/L address offset status:

```
CFG_BOOT_SEL = 3, ROM_OFFSETH/L = 0x0000// No BOOT upgrade function
```

CFG_BOOT_SEL != 3, If you are currently in the APP area:

CFG_BOOT_SEL = 0, ROM_OFFSETH/L = 0x0800,

CFG_BOOT_SEL = 1, ROM_OFFSETH/L = 0x1000,

 $CFG_BOOT_SEL = 2$, $ROM_OFFSETH/L = 0x2000$.

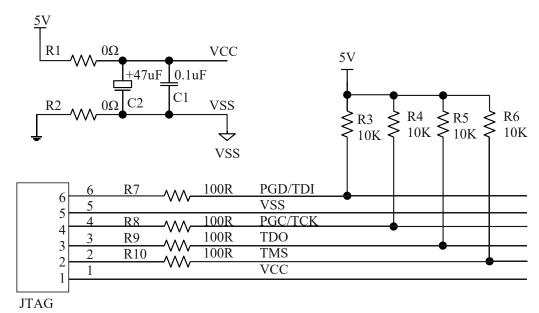
If you are currently in the boot area:

CFG_BOOT_SEL = 0, ROM_OFFSETH/L = 0x0000.

Physical address of program execution = PC + ROM_OFFSETH/L.

Precautions;

- 1. 1. When writing SPROG_CMD, BOOT_CMD instruction data, it must be written in order, otherwise it needs to be written again.
- The working voltage of MCU is 2.5V~5.5V, and the MCU may work abnormally at 1.5V~2.5V, resulting in abnormal update and misoperation. Therefore, it is recommended not to perform IAP operation when the ADC or LVDT detection voltage is lower than 2.7V before IAP operation.
- 3. It is recommended to shield the interrupt during the update process to ensure that the IAP operation will not be affected by the interruption, and resume the interruption after the IAP operation is completed, and perform data verification after updating the data to ensure that the data is updated correctly.



18. Burning and Debugging

18.1. JTAG Circuit Connection

When debugging, you need to connect the TDI, TCK, TMS, TDO, VCC, VSS. In JTAG debug mode, the function of the JTAG port is blocked. It is not recommended to operate other functions that configure the JTAG debug I/O port to avoid affecting the JTAG debug function. Only four lines of TDI, TCK, VCC and VSS are connected during programming.

19. CPU Instruction System

19.1. Instruction Code

The BF7515BM44-LJTX instructions are divided into signal-byte instructions, double-byte instructions and three-byte instructions.

Signal-byte instructions: A signal-byte instruction consists of 8 bit binary code. There are only instruction opcodes in the instruction, no instruction operand or instruction operand is implied in the instruction opcode. There are 49 such instructions.

Double-byte instructions: Consists of two bytes, one for opcode and the other for the operand (or operand address), stored in order in program memory. There are 46 such instructions.

Three-byte instructions: Consists of one byte of instruction opcode and two bytes of operands (or operand address). There are 16 such instructions.

19.2. Instruction Set

In order to describe the instructions conveniently, some symbols are used in the instructions. The meanings of these symbols are as follows:

Addr 11	Low 11 bit address
addr 16	16 bit address
direct	Direct addressing, 8 bit internal data and address(including SFR)
bit	Bit address
#data	8 bit immediate
#data16	16 bit immediate
rel	Signed 8 bit relative displacement
n	Number 0~7
Rn	R0~R7 working register of the current register bank
i	Number 0, 1
Ri	working register R0, R1
@	Register indirect addressing
←	Data transfer direction
\land	Logic 'and'
\vee	Logic 'or'
\oplus	Logic 'xor'
\checkmark	Have an effect on the flag
×	No effect on the flag

CPU instruction symbol table

Provides the assembly instructions used, the function of each instruction, the number of bytes occupied, the execution cycle of the instruction, and the effect on the corresponding flags:

8 bit data transfer instruction								
Mnemonic		En etien	Imp		on the	flag	Number	Cycle
		Function	P	OV	AC	CY	of bytes	number
	Rn	A←(Rn)	\checkmark	×	×	×	1	1
	direct	A←(direct)	\checkmark	×	×	×	2	1
MOV A	@Ri	A←((Ri))	\checkmark	×	×	×	1	1
	#data	A←data	\checkmark	×	×	×	2	1
	А	Rn←(A)	×	×	×	×	1	1
MOV Rn	direct	Rn←(direct)	×	×	×	×	2	2
	#data	Rn←data	×	×	×	×	2	1
MON	А	direct1←(A)	×	×	×	×	2	1
MOV diment1	Rn	direct1←(Rn)	×	×	×	×	2	2
direct1	direct2	direct1←(direct2)	×	×	×	×	3	2
MOV	@Ri	direct←((Ri))	×	×	×	×	2	2

direct	#data	direct←data	×	×	×	×	3	2
	A	(Ri)←(A)	×	×	×	×	1	1
MOV @Ri	direct	(Ri)←(direct)	×	×	×	×	2	2
	#data	(Ri)←data	×	×	×	×	2	1
16 bit data t	ransfer instruction	n	1	1	1	1	1	
		The state of the s	Im	Impact on the flag		Number	Cycle	
Mn	emonic	Function		OV	AC	CY	of bytes	number
MOV DPTH	R,#data16	DPTR←data16		×	×	×	3	2
External dat	ta transfer and ta	ole lookup instructions						
Ма		Function	Im	pact or	n the f	lag	Number	Cycle
IVIN	emonic	Function	Р	OV	AC	CY	of bytes	number
MOVX @	DPTR,A	(DPTR)←(A)	×	×	×	×	1	2
MOVC A,	@A+DPTR	$A \leftarrow ((A) + (DPTR))$		×	×	×	1	2
MOVC A,	@A+PC	A←((A)+(PC))		×	×	×	1	2
MOVX A,	@DPTR	A←(DPTR)		×	×	×	1	2
Notes: The	number of cycles	and the number of bytes	of the	e MOV	'X ins	tructio	n can be	
configured t	through registers	CKCON<2:0>.						
Exchange c	lass instruction		_				1	
Mn	emonic	Function	In	Impact on the flag		flag	Number	Cycle
10111		1 [°] unction	P OV	AC	CY	of bytes	number	
	Rn	(Rn)←(A)		×	×	×	1	1
XCH A,	direct	(A)←(direct)		×	×	×	2	1
	@Ri	(A)←((Ri))	×	×	×	×	1	1
XCHD A,@	Ri	(A)3~0~((Ri))3~0		×	×	×	1	1
SWAP A		(A)7-4~(A)3-0		×	×	×	1	1
Arithmetic of	operation instruc	tion	1				1	
Mn	emonic	Function	Im	pact or	the f	lag	Number	Cycle
10111		1 diretion	Р	OV	AC	CY	of bytes	number
	Rn	A←(A)+(Rn)			\checkmark	\checkmark	1	1
ADD A,	direct	$A \leftarrow (A) + (direct)$			\checkmark	\checkmark	2	1
ADD A,	@Ri	A←(A)+((Ri))			\checkmark	\checkmark	1	1
	#data	A←(A)+data			\checkmark	\checkmark	2	1
	Rn	$A \leftarrow (A) + (Rn) + (C)$			\checkmark	\checkmark	1	1
	1	$A \leftarrow (A) + (direct) + (C)$			\checkmark	\checkmark	2	1
	direct	$A \leftarrow (A) + (direct) + (C)$						
ADDC A,	direct @Ri	$A \leftarrow (A) + (\text{direct}) + (C)$ $A \leftarrow (A) + ((Ri)) + (C)$		\checkmark	\checkmark	\checkmark	1	1
ADDC A,							1 2	1
ADDC A,	@Ri	A←(A)+((Ri)) +(C)	\checkmark					
ADDC A, INC	@Ri #data	$A \leftarrow (A) + ((Ri)) + (C)$ $A \leftarrow (A) + data + (C)$		\checkmark	\checkmark	\checkmark	2	1

							1	1
	@Ri	(Ri)←((Ri))+1	×	×	×	×	1	1
	DPTR	DPTR←((DPTR))+1	×	×	×	×	1	2
DA A		BCD code adjustment		×	\checkmark		1	1
	Rn	A←(A)-(Rn)-(C)		×	×	×	1	1
	direct	A←(A)-(direct)-(C)		\checkmark	\checkmark		2	1
SUBB A	@Ri	(A)←(A)-((Ri))-(C)		\checkmark			1	1
	#data	A←(A)-data-(C)		\checkmark	\checkmark		2	1
DEC	A	A←(A)-1		×	×	×	1	1
	Rn	Rn←(Rn)-1		×	×	×	1	1
DEC	direct	direct←(direct)-1	×	×	×	×	2	1
	@Ri	(Ri)←((Ri))-1		×	×	×	1	1
		BA←(A)*(B), after						
		performing the						
		multiplication						
MUL AB		operation, the lower		\checkmark	×	0	1	4
		byte is stored in A and						
		the high byte is stored						
		in B.						
		A←(A)/(B)				0	1	4
DIV AB		B←remainder	N	1	×			

Notes: When the DA instruction is used, the adjustment rules are as follows: if the low 4 bits of accumulator A are greater than 9 or AC=1, then A \leftarrow A+06H; if the high 4 bits of accumulator A are greater than 9 or CY=1, then A \leftarrow A+60H.

Logical operation instruction

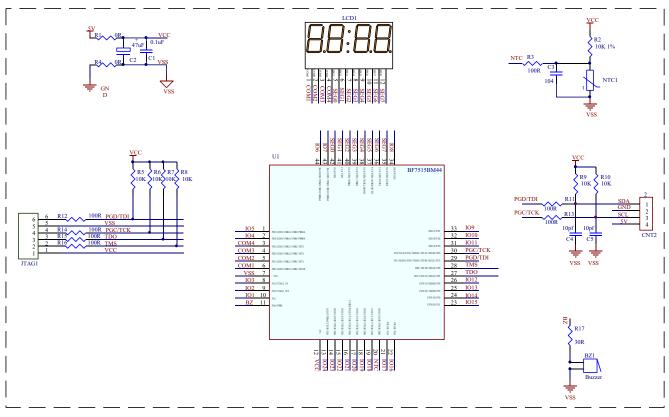
			FunctionImpact on the flagPOVACCY		on the	flag	Number	Cycle
IVI	nemonic	Function			CY	of bytes	number	
CLR A		А←00Н		×	×	×	1	1
CPL A		A←(Ā)	\checkmark	×	×	×	1	1
Rn		A←(A)∧(Rn)		×	×	×	1	1
ANTA	direct	A←(A)∧(direct)		×	×	×	2	1
ANL A,	@Ri	A←(A)∧((Ri))		×	×	×	1	1
	#data	A←(A)∧data		×	×	×	2	1
ANL	Α	direct←(A)∧(direct)	×	×	×	×	2	1
direct,	#data	direct←(direct)∧data	×	×	×	×	3	2
	Rn	$A \leftarrow (A) \lor (Rn)$		×	×	×	1	1
OBLA	direct	$A \leftarrow (A) \lor (direct)$		×	×	×	2	1
ORL A,	@Ri	$A \leftarrow (A) \lor ((Ri))$		×	×	×	1	1
	#data	$A \leftarrow (A) \lor data$		×	×	×	2	1
ORL	Α	direct←(direct)∨(A)	×	×	×	×	2	1
direct,	#data	direct←(direct)∨data	×	×	×	×	3	2

	Rn	$A \leftarrow (A) \oplus (Rn)$		×	×	×	1	1
	direct	$A \leftarrow (A) \oplus (direct)$		×	×	×	2	1
XRL A,	@Ri	$A \leftarrow (A) \oplus ((Ri))$		×	×	×	1	1
#data		$A \leftarrow (A) \oplus data$		×	×	×	2	1
XRL	А	direct \leftarrow (direct) \oplus (A)	×	×	×	×	2	1
direct,	#data	direct←(direct)⊕data	×	×	×	×	3	2
Loop, shift o	class instruction		1	1	1	1	1	
			In	npact o	on the	flag	Number	Cycle
Mn	emonic	Function	Р	OV	AC	CY	of bytes	number
RL A		The content in A is rotated left by one bit.	×	×	×	×	1	1
RLC A		A content with carry left shift one bit.		×	×	\checkmark	1	1
RR A		The content in A is rotated right by one bit.	×	×	×	×	1	1
RRC A		A content with carry right shift one bit.	\checkmark	×	×	\checkmark	1	1
Call, return	class instruction							
Ma	emonic	Function	Impact on the flag			flag	Number	Cycle
IVIII	emonic	Function	P OV AC	AC	CY	of bytes	number	
		(PC)←(PC)+3,						
LCALL add	r16	(SP)←(PC),	×	×	×	×	3	2
		(PC)←addr16						
		(PC)←(PC)+2,						
ACALL add	lr11	(SP)←(PC),	×	×	×	×	2	2
		(PC10~0)←addr11						
RET		(PC)←((SP))	×	×	×	×	1	2
RETI		(PC)←((SP)) return	×	×	×	×	1	2
		from interrupt						
Transfer cla	ss instruction							
Mn	emonic	Function		npact o			Number	Cycle
			P	OV	AC	CY	of bytes	number
	r16	PC←addr15~0	×	×	×	×	3	2
AJMP add		PC10~0←addr10~0	×	×	×	×	2	2
SJMP re		PC←(PC)+rel	×	×	×	×	2	2
JMP @A	A+DPTR	$PC \leftarrow (A) + (DPTR)$	×	×	×	×	1	2
		PC←(PC)+2,						
JZ rel		if(A)=0,	×	×	×	×	2	2
		PC←(PC)+rel						
JNZ rel		PC←(PC)+2,	×	×	×	×	2	2

		· ((A) / ()						
		if(A)≠0,						
		PC←(PC)+rel						
		PC←(PC)+2,						
JC r	el	if(CY)=1,	×	×	×	×	2	2
		PC←(PC)+rel						
		PC←(PC)+2,						
JNC r	el	if(CY)=0,	×	×	×	×	2	2
		PC←(PC)+rel						
		PC←(PC)+3,						
JB b	oit,rel	if(bit)=1,	×	×	×	×	3	2
		PC←(PC)+rel						
		PC←(PC)+3,						
JNB b	oit,rel	if(bit)=0,	×	×	×	×	3	2
		PC←(PC)+rel						
		PC←(PC)+3,						
JBC bit,r	el	if(bit)=1, then bit $\leftarrow 0$,	×	×	×	×	3	2
		PC←(PC)+rel						
		PC←(PC)+3,						
		if(A) \neq direct then						
	A, direct, rel	PC(PC)+rel	×	×	×	×	3	2
	, ,	if(A)<(direct),						
		thenCY←1						
		PC←(PC)+3,						
		if(A) ≠data						
	A,#data,rel	then PC(PC)+rel	×	×	×	×	3	2
		if(A)<(data),						-
		thenCY←1						
CJNE		$PC \leftarrow (PC)+3,$						
		$if(Rn) \neq data$						
	Rn,#data,rel	Then PC←(PC)+rel	×	×	×	×	3	2
		if(Rn)<(data), then					5	2
		CY←1						
		$PC \leftarrow (PC)+3,$						
		$rC \leftarrow (rC) + 3$, if((Ri)) \neq data						
	@Ri,#data,rel	Then $PC \leftarrow (PC)+rel$	×	×	×	×	3	2
		if((Ri))<(data),then					5	<u> </u>
		n((RI))<(data),then CY←1						
דותם	Dr. m ¹	$PC \leftarrow (PC) + 2,$						
DJNZ	Rn,rel	$Rn \leftarrow (Rn)-1, if(Rn) \neq 0,$	×	×	×	×	2	2
		then PC←(PC)+rel						

			Γ		1	1	1		,
			PC←(PC)+3,						
	direct,	,rel (direct)1,		×	×	×	×	3	2
			If (direct)≠0,						
			Then PC←(PC)+rel						
Stack, empty	operat	ion class	instruction					1	
Mnemonic			Function	Im	pact or	the f	lag	Number	Cycle
winemonie				Р	OV	AC	CY	of bytes	number
PUSH dired	ot		$SP \leftarrow (SP)+1,$	×	×	×	×	2	2
			(SP)←(direct)					2	2
POP direc	at		direct←(SP),	×	×	×	×	2	2
FOF dife	Cl		SP←(SP)-1	^				2	2
NOP			empty operation	×	×	×	×	1	1
Bit manipula	tion ins	struction							
Masaaria			Function	Im	pact or	n the f	lag	Number	Cycle
Mnemonic			Function	Р	OV	AC	CY	of bytes	number
MOU	С	C,bit	CY←bit	×	×	×		2	1
MOV	b	it,C	bit←CY	×	×	×	×	2	2
CLR	C		CY←0	×	×	×	\checkmark	1	1
CLK	b	it	bit←0	×	×	×	×	2	1
SETB	C		CY←1	×	×	×	\checkmark	1	1
SEID	b	it	bit←1	×	×	×	×	2	1
CPL	C		$CY \leftarrow (\overline{CY})$	×	×	×	\checkmark	1	1
	b	it	bit←(bit)	×	×	×	×	2	1
ANL	C	C,bit	$C \leftarrow (C) \land (bit)$	×	×	×		2	2
ANL	C	C,/bit	$C \leftarrow (C) \land (\overline{bit})$	×	×	×		2	2
ORL	C	C,bit	$C \leftarrow (C) \lor (bit)$	×	×	×	\checkmark	2	2
	C,/bit		$C \leftarrow (C) \lor (\overline{bit})$	×	×	×		2	2
Pseudo-instru	uction								
Mnemonic		Instructi	on format	F	unctio	n Des	criptio	n	
ORG		tab:	ORG addr16	Γ	Define	the fir	st add	ress of tab	
EQU		tab EQU	data/tab	A	Assign	values	s to lat	pels	
DB		(tab:)	DB item or item tabel	Γ	Define	a-byte	or mu	ulti-byte	
		tok.	DW item or item tabel	1	6 bit v	vord c	ontent	used to de	fine two
DW (tab:		tab:		0	r more	e cells	in mei	mory	
DS		[tab·]	DS expression	S	pecifi	es to le	eave se	everal mem	nory cells
					tarting				
BIT		tab BIT			-			s to a label	
END		-	placed at the end of the ass			guage	progra	to tell th	ie
		assemble	er that the source program	ends	s here.				

CPU instruction set table


CPU related register

	SFR register								
Address	NameRWReset valueDescription			Description					
0x81	SP	RW	0x07	Stack pointer register					
0x82	DPL	RW	0x00	Data pointer register 0 low 8 bit					
0x83	DPH	RW	0x00	Data pointer register 0 high 8 bit					
0x87	PCON	RW	0x00	Idle mode 1 select register					
0xE0	ACC	RW	0x00	Accumulator					
0xF0	В	RW	0x00	B register					

CPU SFR register list

20. Reference Application Circuit

Note: The above schematic is for reference only.

- 1. JTAG debug peripheral circuit is only used for JTAG debugging. If there is a pull-up resistor on the emulator or the interrupt board, no JTAG pull-up resistor is needed.
- The 0Ω resistors in parallel between VCC and GND are replaced with magnetic beads. The EMI test item (RE) can increase the test margin. The recommended parameter is 600Ω@100MHz

MAX 1.60

0.15

1.45

0.69

0.36

0.33

0.17

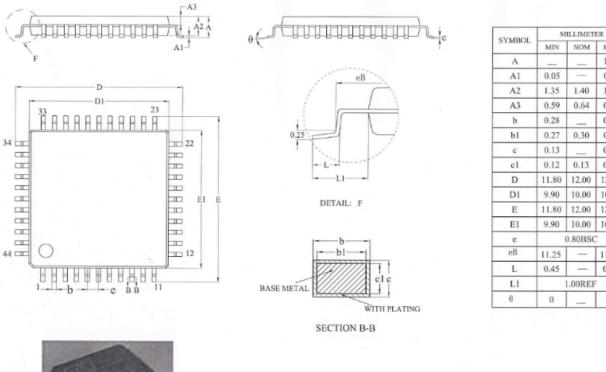
0.14

12.20

10.10

12.20

10.10

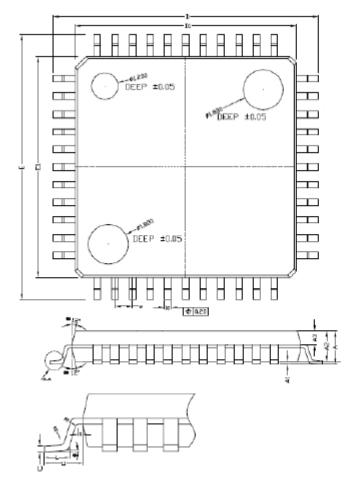

11.45

0.75

 7°

21. Package

Tianshui Huatian:



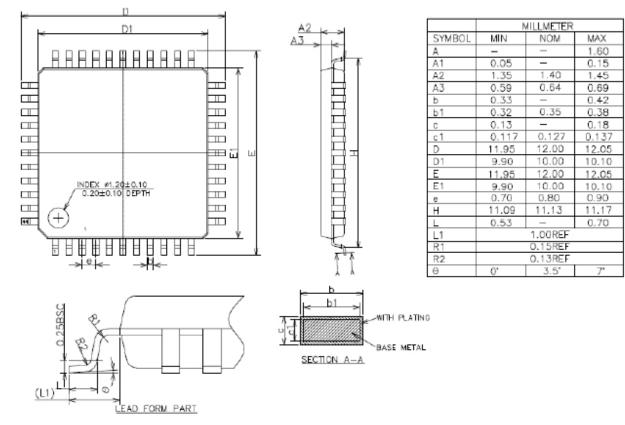
LQFP44 package

BF7515BM44-LJTX

China Rescources AXA:

SYMBOL	MIN	NDM	MAX
A.	-	-	1.60
A1	0.05	-	0.15
A2	1.35	1.40	1.45
A3	0.59	0.64	0.69
k	0,275	0.30	0,325
C	0.13	-	0.18
D	11.80	12.00	12.20
D1	9,90	10,00	10,10
Ε	1180	12,00	12.20
E1	9,90	10.00	10.10
6	0,8	OBSC	
L	0.45	0.60	0.75
L1	1.0	OREF	
R1	0.08	-	-
R2	0.0B	-	0.20
2	0.20	-	-
8	0°	3.5°	7°
0 1	0°	-	-
82	11*	12*	13*
63	11*	12*	13*

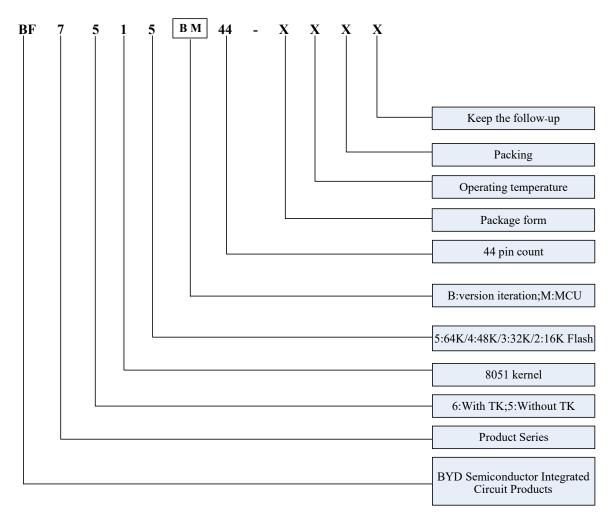
LQFP44 package


BF7515BM44-LJTX

Semiconductor

Tongfuwei:

BYD


LQFP44 package

Ordering information

Package	Operating	g temperature	Package style	Keep the follow-up
S: SOP		A: -40°C~+150°C	B: tap	S: SOP
T: TSSOP	Car grade	B: -40°C∼+125°C	L: feed tube	T: TSSOP
M: MSSOP		C: -40°C∼+105°C	T: tray	M: MSSOP
L: LQFP		D: -40°C∼+85°C	-	L: LQFP
Q: QFN		K: -40°C∼+85°C	-	Q: QFN
B: BGA	Industrial grade	J: -40°C~+105℃	-	B: BGA
D: DIP		L: -40°C~+125°C	-	D: DIP
-	Concernance	P: -25℃~+70℃	-	-
-	Consumer grade	Q: 0°C~+70°C	-	-

For example:

Revision History

Revised date	Revised content	Reviser	Remarks
2021-04-28	V1.0	YNN	V1.0
2021-06-30	 Update the LED/LCD chapter Add secondary bus registers to the EEPROM chapter Update related content of low power consumption mode Update the clock block diagram Update EEPROM erasing and writing steps Update ADC reference voltage Update registers 42H, B2H, B6H, 89H Update BYD logo Update the pull-up resistor range Add step method to read Flash information 	YNN	V1.1
2021-09-16	 Update EEPROM erasing steps Update FLAH IAP operation instructions Update the SPI working mode timing diagram Add BOR description Update FLASH features Update the selection list Introduction to updated features Update the IAP chapter Update registers C3H, 53H~57H, 87H Update work mode 	YNN	V1.2
2022-03-09	 Introduction to update features Update the selection list Update storage description The name of "EEPROM " is updated to "DATA area" Update clock block diagram Update the instruction set Update the BYD logo 	YNN	V1.3
2022-10-20	 Add limit parameter description Delete the maximum and minimum values of high current in DC characteristics Add section '15.2.3. Set COM and SEG" 	YNN	V1.4

	4. Update the description of secondary bus register	
	0x23	
	1. Adding an idle mode 1 Note,Removing external	
	interrupts and IIC(S) interrupts wakes the system	
	up from idle mode 1	
	2. Added E3H register description	
	3. Added the status after "Flash, DATA Area in	
	Section 3.1 and 16" is erased	
2023-01-14	4. Updated the number of instruction set cycles in ZY V1	.5
	section 19.2	
	5. Update Section"1.3. System Architecture"	
	6. Update the 39H / 3AH registers	
	7. Update the DATA area erase and byte write steps	
	8. Added 19.2 Section "CPU related register"	
	description	

Disclaimer

1. The information contained herein is subject to change without notice, see the revision record for details. Please contact FAE or the agent for the latest version.

2. BYD Semiconductor Company Limited exerts the greatest possible effort to ensure high quality and reliability. Nevertheless, due to the inherent characteristics of general semiconductor devices such as electrical sensitivity and vulnerability to external physical damage, our products may malfunction or fail under these conditions. When using our products, users are responsible for designing a safe and stable system environment in compliance with safety rules. Users can avoid possible accidents, fires and public injuries by removing redundant components, failure prevention and fire prevention measures. When the user uses the product, please follow the operating steps specified in the company's latest manual to use the product.

3. The products listed in this document are intended for usage in general electronics applications (computers, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). This company's product cannot and is prohibited from being applied to some special equipment that requires extremely high stability and quality, so as to avoid accidents such as casualties. Products that cannot be used include nuclear energy control equipment, aircraft and aviation devices, transportation equipment, traffic signal equipment, combustion control equipment, medical equipment, and all safety equipment, etc. The company is not responsible for the losses and injuries caused by users in the non-product applications listed above.