

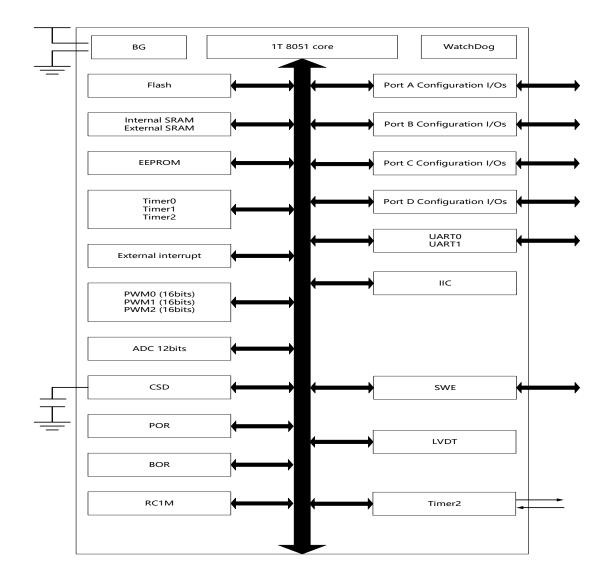
1. BF7412AMXX-XJLX MCU General Description

1.1. Features

- > Core: 1T 8051
- Operating frequency: 6MHz, 3MHz, 2MHz, 1MHz
- Clock error: ±1% @ -20 ℃ ~65 ℃, 5V
 - ±3% @-40 °C ~105 °C, 5V
- > Memory
- FLASH: 16K bytes
- EEPROM: 256 bytes
- SRAM: 256 bytes(data)+512 bytes(xdata)
- Clock source, reset
- Internal low-speed clock LIRC: 32kHz
 Clock error: ±20% @25 ℃, 5V
 - ±35% @-40 °C ~105 °C, 5V
- Internal high-speed RC oscillator: 1MHz
- External crystal oscillator: 32768Hz
- 7 resets, including brown-out reset, brown-out reset
 2.8V/3.3V/3.7V/4.2V optional
- Low voltage detection: 3.0V/3.3V/3.6V/3.9V/4.2V optional
- > IO
- PB0~PB7 built-in pull-up/pull-down resistor 28k, other IO built-in pull-up resistor 4.7k
- High current sink port (PB0~PB7)
- Support device peripheral function multiplexing
- All IO ports support external interrupt function, INT0~2 (rising-edge, falling-edge, dual-edge), INT3 shared interrupt source (rising-edge, falling-edge)
- Communication Module
- 2*UART communication, support IO mapping
- IIC slave mode, support 100/400kHz

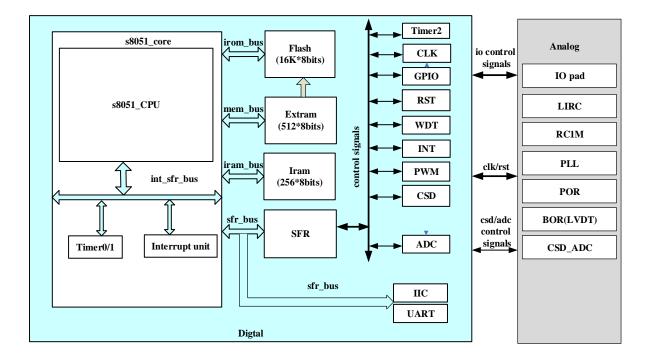
- > Operating Voltage: 2.7 V~ 5.5V
- > Operating Temperature: -40 $^{\circ}$ C ~ 105 $^{\circ}$ C
- Enhanced industrial grade, in line with JESD industrial grade reliability certification standards
- > 16-bit PWM
- PWM0 supports multiple groups up to 4 channels, the same frequency, different duty cycle output
- PWM1/2 support 1 channel output and mapping
- > 12-bit High-speed ADC
- Up to 26 analog input channels
- > Interrupt
- Two-level interrupt priority capablity
- ADC, CSD, INT0/1/2/3, LVDT, Timer0~2, WDT, UART0/1, IIC interrupt
- > Timer
- 2 16-bit Timer0/1, 1 32-bit Timer2
- Timer2 clock source is internal low-speed clock LIRC 32k or XTAL 32768Hz
- Watchdog timer, overflow time 18ms to 2.304s
- Low power mode
- Idle mode and sleep mode
- Deep sleep, power consumption 18µA @5V typical
- ≻ СТК
- The key sensitivity is set independently
- Capacitive keys can be reused as GPIO
- Two-wire programming, single-wire debugging simulation interface
- Package
- SOP16/SOP20/SOP28/TSSOP20/TSSOP28

1.2. Overview


The BF7412AMXX-XJLX uses the high speed 8051 core with 1T instruction cycle, compared to the standard 8051 (12T) instruction cycle, has the quicker running speed, compatibility standard 8051 instruction.

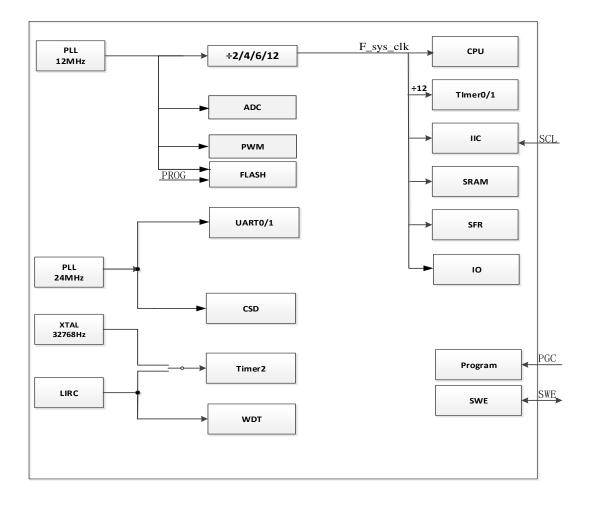
The BF7412AMXX-XJLX includes a watchdog, key detection, IIC, UART, low voltage detection, power down reset, l6-bit PWM, Timer0, Timer1, Timer2, 12-bit successive approximation ADC, low power mode.

The BF7412AMXX-XJLX integrated capacitance channels, which can be used to detect proximity sensing or touch, its built-in MCU, can be flexible configurated, through the configuration can be implemented keys, rollers, sliders and other applications. A key can be run independently, and each key can be adjusted by corresponding special function registers to adjust the sensitivity.



1.3. System Architecture

System Architecture



System bus frame diagram

1.4. Clock Diagram

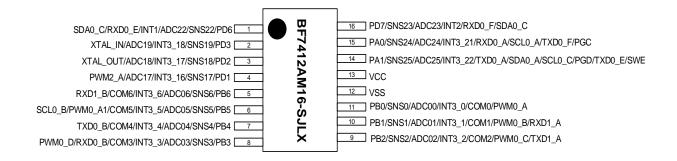
Clock Diagram

1.5. Selection List

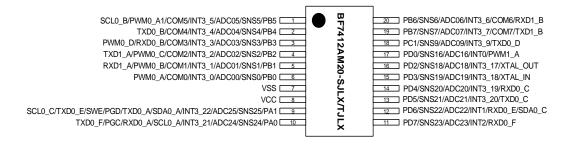
Туре	BF7412AM16-SJLX	BF7412AM20-SJLX/TJLX	BF7412AM28-SJLX/TJLX
Operating Voltage (V)	2.7~5.5	2.7~5.5	2.7~5.5
Core	1T 8051	1T 8051	1T 8051
Operating Frequency	6M	6M	6M
ROM (Byte)	16K	16K	16K
RAM (Byte)	256+512	256+512	256+512
EEPROM (Byte)	256	256	256
GPIO	14	18	26
KEY	14	18	26
ADC	14	18	26
Timer	3	3	3
PWM	2(4+0+1)	2(4+1+0)	3(4+1+1)
СОМ	7	8	8
INT	14	18	26
IIC	1	1	1
UART	2	2	2
Package	SOP16	SOP20/TSSOP20	SOP28/TSSOP28

Selection list

Note: PWM module


- BF7412AM16-SJLX: 2(4+0+1)
 2 represents 2 independent PWM modules, (4+0+1) represents the maximum number of output channels of PWM0+PWM1+PWM2;
- 2. BF7412AM20-SJLX/TJLX: 2(4+1+0)
 2 represents 3 independent PWM modules, (4+1+0) represents the maximum number of output channels of PWM0+PWM1+PWM2;
- 3. BF7412AM28-SJLX/TJLX: 3(4+1+1)

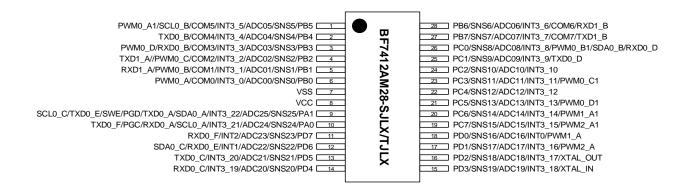
3 represents 3 independent PWM modules, (4+1+1) represents the maximum number of output channels of PWM0+PWM1+PWM2.


1.6. Pin Assignment

1.6.1. SOP16

BF7412AM16-SJLX Pin Diagram

1.6.2. SOP20



BF7412AM20-SJLX/TJLX Pin Diagram

1.6.3. SOP28

BF7412AM28-SJTX/TJLX Pin Diagram

1.7. Pin Description

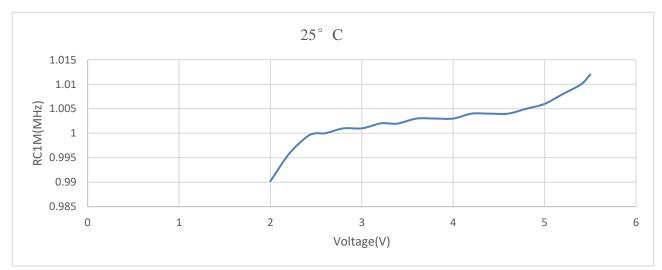
BF7412AM28-SJLX/TJLX	BF7412AM20-SJLX/TJLX	BF7412AM16-SJLX	Function description		
1	1		Default function: GPIO <pb5> Other function: SNS5: Touch key channel 5 ADC05: ADC channel 05 INT3_5: External interrupt 3_5 COM5: Large current sink port PWM0_A1: PWM0_A1 output port SCL0_B: Serial clock line of IIC</pb5>		
2	2	7	Default function: GPIO <pb4> Other function: SNS4: Touch key channel 4 ADC04: ADC channel 04 INT3_4: External Interrupt 3_4 COM4: Large current sink TXD0_B: serial pot transmission</pb4>		
3	3	8	Default function: GPIO <pb3> Other function: SNS3: Touch key channel 3 ADC03: ADC channel 03 INT3_3: External Interrupt 3_3 COM3: Large current sink PWM0_D: PWM0_D output port RXD0_B: serial pot reception</pb3>		
4	4	9	Default function: GPIO <pb2> Other function: SNS2: Touch key channel 2 ADC02: ADC channel 02 INT3_2: External interrupt 3_2 COM2: Large current sink port PWM0_C: PWM0_C output port TXD1_A: Serial port transmission</pb2>		
5	5	10	Default function: GPIO <pb1> Other function: SNS1: Touch key channel1 ADC01: ADC channel 01</pb1>		

6 6 11 COM1: Large current sink port PWM0_B: PWM0_C output port RXD1_A: serial port receiving 6 6 11 Default function: GPIO <pb0> Other function: SNS0: Touch key channel0 ADC00: ADC channel 00 INT3_0: External interrupt 3_0 COM0: Large current sink port PWM0_A: PWM0_A output port 7 7 12 Default function: GND <vss> 8 8 13 Default function: OPIO <pa1> Other function: SNS25: Touch key channel 25</pa1></vss></pb0>					
6 6 11 PWM0_B: PWM0_C output port RXD1_A: serial port receiving 6 6 11 Default function: GPIO <pb0> Other function: SNS0: Touch key channel0 ADC00: ADC channel 00 INT3_0: External interrupt 3_0 COM0: Large current sink port PWM0_A: PWM0_A output port 7 7 12 Default function: GND <vss> 8 8 13 Default function: Power supply <vcc> 0 Default function: GPIO <pa1> Other function: SNS25: Touch key channel 25</pa1></vcc></vss></pb0>					INT3_1: External interrupt 3_1
6 6 11 RXD1_A: serial port receiving 6 6 11 Default function: GPIO <pb0> 0 0ther function: SNS0: Touch key channel0 ADC00: ADC channel 00 INT3_0: External interrupt 3_0 COM0: Large current sink port PWM0_A: PWM0_A output port 7 7 12 Default function: GND <vss> Default function: GPIO <pa1> 0 Default function: GPIO <pa1> 0 Other function: SNS25: Touch key channel 25</pa1></pa1></vss></pb0>					
6 6 11 Default function: GPIO <pb0> Other function: SNS0: Touch key channel0 ADC00: ADC channel 00 INT3_0: External interrupt 3_0 COM0: Large current sink port PWM0_A: PWM0_A output port 7 7 12 Default function: GND <vss> 8 8 13 Default function: Power supply <vcc> Default function: GPIO <pa1> Other function: SNS25: Touch key channel 25</pa1></vcc></vss></pb0>					1 I
6611Other function:SNS0: Touch key channel0 ADC00: ADC channel 00 INT3_0: External interrupt 3_0 COM0: Large current sink port PWM0_A: PWM0_A output port7712Default function: GND <vss>8813Default function: Power supply <vcc>0Default function: GPIO <pa1> Other function:Other function: SNS25: Touch key channel 25</pa1></vcc></vss>					
6 6 11 ADC00: ADC channel 00 INT3_0: External interrupt 3_0 COM0: Large current sink port PWM0_A: PWM0_A output port 7 7 12 Default function: GND <vss> 8 8 13 Default function: Power supply <vcc> 0 Default function: GPIO <pa1> Other function: SNS25: Touch key channel 25</pa1></vcc></vss>					
6 6 11 INT3_0: External interrupt 3_0 COM0: Large current sink port PWM0_A: PWM0_A output port 7 7 12 Default function: GND <vss> 8 8 13 Default function: Power supply <vcc> Default function: GPIO <pa1> Other function: SNS25: Touch key channel 25</pa1></vcc></vss>					
Image:	6	6	11		
PWM0_A: PWM0_A output port 7 7 7 7 8 8 13 Default function: OND <vss> Default function: Power supply <vcc> Default function: GPIO <pa1> Other function: SNS25: Touch key channel 25</pa1></vcc></vss>					
7 7 12 Default function: GND <vss> 8 8 13 Default function: Power supply <vcc> Default function: GPIO <pa1> Other function: SNS25: Touch key channel 25</pa1></vcc></vss>					0 1
8 8 13 Default function: Power supply <vcc> Default function: GPIO <pa1> Other function: SNS25: Touch key channel 25</pa1></vcc>					
Default function: GPIO <pa1> Other function: SNS25: Touch key channel 25</pa1>					
Other function: SNS25: Touch key channel 25	8	8	13		
ADC25: ADC channel 25					-
					ADC25: ADC channel 25
INT3_22: External interrupt 3_22					INT3_22: External interrupt 3_22
9 9 14 SDA0_A: Serial data line of IIC	9	9	14		SDA0_A: Serial data line of IIC
TXD0_A: Serial port transmission			17		TXD0_A: Serial port transmission
TXD0_E: Serial port transmission					TXD0_E: Serial port transmission
SCL0_C: Serial clock line of IIC					SCL0_C: Serial clock line of IIC
SWE: Single-wire simulation port					SWE: Single-wire simulation port
PGD: programming port					PGD: programming port
Default function: GPIO <pa0></pa0>				Default function:	GPIO <pa0></pa0>
Other function: SNS24: Touch key channel 24				Other function:	SNS24: Touch key channel 24
ADC24: ADC channel 24					ADC24: ADC channel 24
10 10 15 INT3_21: External interrupt 3_21	10	10	15		INT3_21: External interrupt 3_21
RXD0_A: serial port receiving	10	10	15		RXD0_A: serial port receiving
TXD0_F: serial port transmission					TXD0_F: serial port transmission
SCL0_A: Serial clock line of IIC					SCL0_A: Serial clock line of IIC
PGC: programming port					PGC: programming port
Default function: GPIO <pd7></pd7>				Default function:	GPIO <pd7></pd7>
Other function: SNS23: Touch key channel 23				Other function:	SNS23: Touch key channel 23
11 11 16 ADC23: ADC channel 23	11	11	16		ADC23: ADC channel 23
INT2: External interrupt 2					INT2: External interrupt 2
RXD0_F: serial port receiving					RXD0_F: serial port receiving
Default function: GPIO <pd6></pd6>				Default function:	GPIO <pd6></pd6>
Other function: SNS22: Touch key channel 22				Other function:	SNS22: Touch key channel 22
12 12 1 ADC22: ADC channel 22	12	10	1		ADC22: ADC channel 22
IZ IZ I IIIIIIIIIIIIIIIIIIIIIIIIIIIIII	12	14	T		INT1: External interrupt 1
SDA0_C: Serial data line of IIC					SDA0_C: Serial data line of IIC
RXD0_E: serial port receiving					RXD0_E: serial port receiving

Default function: GPIO <pd5> Other function:Default function: SNS21: Touch key channel 21 ADC21: ADC channel 21 INT3_20: External interrupt 3_20</pd5>	
13 13 ADC21: ADC channel 21	
INT3 20: External interrupt 3 20	
TXD0_C: Serial port transmission	
Default function: GPIO <pd4></pd4>	
Other function: SNS20: Touch key channel 20	
14 14 ADC20: ADC channel 20	
INT3_19: External interrupt 3_19	
RXD0_C: serial port receiving	
Default function: GPIO <pd3></pd3>	
Other function: SNS19: Touch key channel 19	
15 15 2 ADC19: ADC channel 19	
INT3_18: External interrupt 3_18	
XTAL_IN: External crystal oscillator input	
Default function: GPIO <pd2></pd2>	
Other function: SNS18: touch key channel 18	
16 16 3 ADC18: ADC channel 18	
INT3_17: External interrupt 3_17	
XTAL_OUT: External crystal oscillator output	
Default function: GPIO <pd1></pd1>	
Other function: SNS17: Touch key channel 17	
17 17 4 ADC17: ADC channel 17	
INT3_16: External interrupt 3_16	
PWM2_A: PWM2_A output port	
Default function: GPIO <pd0></pd0>	
Other function: SNS16: Touch key channel 16	
18 ADC16: ADC channel 16	
INTO: External interrupt 0	
PWM1_A: PWM1_A output port	
Default function: GPIO <pc7></pc7>	
Other function: SNS15: Touch key channel 15	
19 ADC15: ADC channel 15	
INT3_15: External interrupt 3_15	
PWM2_A1: PWM2_A1 output port	
Default function: GPIO <pc6></pc6>	
Other function: SNS14: Touch key channel 14	
20 ADC14: ADC channel 14	
INT3_14: External interrupt 3_14	
PWM1_A1: PWM1_A1 output port	
21 Default function: GPIO <pc5></pc5>	

			Other function:	5
				ADC13: ADC channel 13
				INT3_13: External interrupt 3_13
				PWM0_D1: PWM0_D1 output port
			Default function	
22			Other function:	
				ADC12: ADC channel 12
				INT3_12: External interrupt 3_12
			Default function	
			Other function:	SNS11: Touch key channel 11
23				ADC11: ADC channel 11
				INT3_11: External interrupt 3_11
				PWM0_C1: PWM0_C1 output port
			Default function	: GPIO <pc2></pc2>
24			Other function:	SNS10: Touch key channel 10
24				ADC10: ADC channel 10
				INT3_10: External interrupt 3_10
			Default function	: GPIO <pc1></pc1>
			Other function:	SNS9: Touch key channel 9
25	18			ADC09: ADC channel 09
				INT3_9: External interrupt 3_9
				TXD0_D: serial port transmission
			Default function	: GPIO <pc0></pc0>
			Other function:	SNS8: Touch key channel 8
				ADC08: ADC channel 08
26				INT3_8: External interrupt 3_8
				PWM0_B1: PWM0_B1 output port
				SDA0_B: Serial data line of IIC
				RXD0_D: serial port receiving
			Default function	: GPIO <pb7></pb7>
			Other function:	SNS7: Touch key channel 7
27	19			ADC07: ADC channel 07
27	19			INT3_7: External interrupt 3_7
				COM7: Large current sink port
				TXD1_B: Serial port transmission
			Default function	: GPIO <pb6></pb6>
			Other function:	SNS6: Touch key channel 6
18	20	5		ADC06: ADC channel 06
10	20	5		INT3_6: External interrupt 3_6
				COM6: Large current sink port
				RXD1_B: serial port receiving
				age pin correspondence diagram

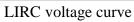
Package pin correspondence diagram

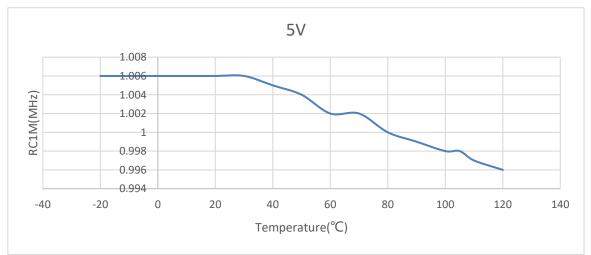


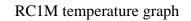
2. Electrical Characteristics

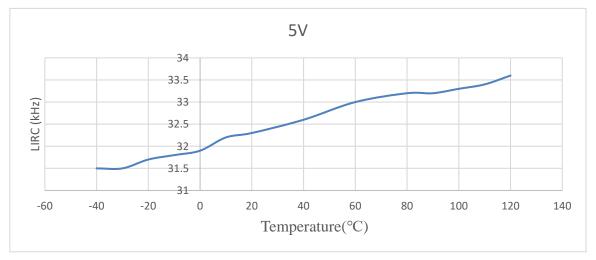
2.1. AC Characteristics

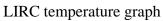
Parameter	Symbol	Condition	Clock skew	Unit
		Ambient temperature 25 °C, @5V		
RC	RC1M	Ambient temperature -20 °C ~65 °C, @5V	±1%	
ĸĊ	KCIM	Ambient temperature -40 °C ~105 °C, @5V	±3%	
		VCC 2.7V~5.5V, ambient temperature 25 $^{\circ}$ C	±1%	MHz
		Ambient temperature 25 °C, @5V	±1%	MHZ
System alsoly	F_sys_clk	Ambient temperature -20 °C ~65 °C, @5V	±1%	
System clock		Ambient temperature -40 °C ~105 °C, @5V	±3%	
		VCC 2.7V~5.5V, ambient temperature 25 $^{\circ}$ C	±1%	
		Ambient temperature 25 °C, @5V	±20%	
WDT clock	LIRC	Ambient temperature -40 °C ~105 °C, @5V	±35%	kHz
		VCC 2.7V~5.5V, ambient temperature 25 $^{\circ}$ C	±35%	


AC characteristics parameters table




RC1M voltage curve





2.2. DC Characteristics

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Operating voltage	VCC	-	2.7	-	5.5	V
		@5V, system clock 6M, operating current	-	2.1	2.7	mA
		@5V, system clock 3M, operating current	-	1.3	1.8	mA
		@5V, system clock 2M, operating current	-	1.1	1.5	mA
	A .:	@5V, system clock 1M, operating current	-	0.8	1.1	mA
	Active	@3.3V, system clock 6M, operating current	-	1.5	1.9	mA
		@3.3V, system clock 3M, operating current	-	0.9	1.3	mA
		@3.3V, system clock 2M, operating current	-	0.8	1.0	mA
		@3.3V, system clock 1M, operating current	-	0.6	0.8	mA
		@5V, system clock 6M, IO output low, enter	-	0.5	-	mA
	Wait	Wait mode, turn off other functions				
		@3.3V, system clock 6M, IO output low, enter	-	0.4	-	mA
		Wait mode, turn off other functions				
		@5V, WDT_CTRL=7, WDT interrupt 2s wake				
		up, 2ms working time, IO output low, turn off	-	20	26	μA
		other functions				
		@5V, Timer2 external crystal oscillator 2s				
Working		wake up, 2ms working time, IO output low,	-	20	26	μΑ
mode		turn off other functions				
		@3.3V, WDT_CTRL=7, WDT interrupt 2s	-	18.5	23	
		wake up, 2ms working time, IO output low,				μΑ
	Idle	turn off other functions				
		@3.3V, Timer2 external crystal oscillator 2s				
		wake up, 2ms working time, IO output low,	-	18.5	23	μΑ
		turn off other functions				
		@5V, CSD parallel mode, WDT interrupt 2s				
		wake up, 2ms working time, IO output low,	-	20	26	μΑ
		turn off other functions				
		@3.3V, CSD parallel mode, WDT interrupt 2s				
		wake-up, 2ms working time, IO output low,	-	18.5	23	μA
		turn off other functions		10.5	25	
		@5V PCON = 0x01, turn off BOR, IO set to				
		low, turn off other functions.	-	18	23	μΑ
	Sleep	@3.3V PCON = 0x01, turn off BOR, IO set to				
		low, turn off other functions.	-	17	22	μA
Input low level	V _{IL}	VCC=2.7~5.5V	_	-	0.3*VCC	V

Unless otherwise stated, typical values are test values at 25° C

	1					
Input high level	V _{IH}	VCC=2.7~5.5V	0.7*VCC	-	-	V
INT Input low level	V _{INTL}	VCC=2.7~5.5V	-	-	0.3*VCC	V
INT Input high level	VINTH	VCC=2.7~5.5V	0.7*VCC	-	-	V
I/O Output Low level	V _{OL}	$I_{OL}=4mA@VCC=2.7V,$ $I_{OL}=10mA@VCC=5V$	-	-	0.1*VCC	v
I/O Output High level	V _{OH}	I _{OH} =4mA@VCC=2.7V, I _{OH} =10mA@VCC=5V	0.9VCC	-	-	V
IO Sink current	IOL	V _{OL} =0.1VCC, @VCC=5V	-	35	-	mA
IO Source current	ЮН	V _{OH} =0.9VCC, @VCC=5V	-	20	-	mA
PB0~PB7 large Sink current	I _{com}	V _{OL} =0.1VCC, @VCC=5V	-	68	-	mA
Input leakage current	I _{Le}	VCC=5V	-	1	5	μΑ
Pull_up resistor	R _{P_u}	VCC=5V	-	4.7	-	kΩ
Pull_up resistor (PB)	R _{P_u}	VCC=5V	19.6	28	36.4	kΩ
Pull_down resistor (PB)	R _{P_d}	VCC=5V	19.6	28	36.4	kΩ
ADC operating current	I _{ADC}	@5V, system clock 6M, no load, IO outputlow, enable ADC, open a channel, GET_ADCscan, turn off other functions	-	0.8	-	mA
LVDT operating current	I _{LVDT}	@5V, system clock 6M, no load, low power consumption mode, IO output low, enable LVDT, turn off other functions	-	7.2	-	μΑ
BOR operating current	I _{BOR}	@5V, system clock 6M, no load, low power consumption mode, IO output low, enable BOR, turn off other functions	-	7.4	-	μΑ
CSD operating current	I _{CSD}	@5V, system clock 6M, no load, IO output low, open six CSD channels and timer0, turn off other functions	-	0.6	-	mA
PWM operating current	I _{PWM}	@5V, system clock 6M, no load, IO output low , enable PWM0, turn off other functions	-	0.06	_	mA
EEPROM	I _{EEP_E}	@5V, system clock 6M, no load, IO output	-	1.8	-	mA

Erase current	low , enable EEPROM, only erase EEPROM					
		in while, turn off other functions				
EEPROM Write current		@5V, system clock 6M, no load, low IO				
	I _{EEP_W}	output, enable EEPROM, write one byte in	-	1.9	-	mA
		while, turn off all other functions				

DC characteristics parameters table

2.3. ADC Characteristics

Unless otherwise stated, typical values are test values at 25 $^{\circ}{\rm C}$

ADC electrical characteristics VDD=Vmin-5.5V, GND=0V, TA=+25 °C							
ADC electrical ch	aracteristics	VDD=Vmin-5	5.5V, GN	D=0V, TA	=+25 ℃		
Parameter	Symbol	Condition	Min	Typical	Max	Unit	
Supply voltage	V _{AD}	-	2.7	-	5.5	V	
Precision	N _R	-	-	9	10	Bit	
A/D input voltage	VAIN	-	VSS	-	VREF	V	
A/D input resistance	RAIN	-	-	6.5	17.5	KΩ	
A/D working current	I _{AD}	-	-	0.8	-	mA	
A/D input current	Iadin	-	-	-	1	μΑ	
Differential nonlinearity error	DNL	VDD=5.0V	-	<u>+4</u>	<u>±6</u>	LSB	
Integral nonlinearity error	INL	VDD=5.0V	-	<u>+4</u>	±6	LSB	
ADC sampling time	TAD	-	1.33	-	-	μs	
ADC conversion time	TCON	-	7	-	-	μs	
Resolution	ADCRESO	-		12		Bit	
Input channel	-	-	_	-	30	Channel	

ADC characteristics parameters table

2.4. Limit Parameters

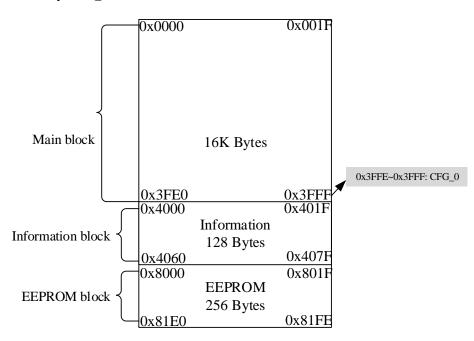
Parameter	Symbol	Min	Тур	Max	Unit
Supply voltage when working	VCC	VSS+2.7	-	VSS+5.5	V
Storage temperature	Tstg	-40	-	125	C
Operating temperature	Totg	-40	-	105	C
I/O input voltage	Vin	VSS-0.5	-	VCC+0.5	V
IOL total current	IOLA		-130		mA
IOH total current	IOHA		130		mA
Port electrostatic discharge voltage	ESD(HBM)	-2	-	2	kV

Limit parameters characteristics parameters table

Notes: Exceed the limit parameters may cause damage to the chip, unable to expect the chip work outside the above indicated range. If you work under conditions outside the marked range for a long time, it may affect the reliability of the chip.

3. RAM, FLASH and SFR

3.1. Flash


Features:

- Main block 16KB, can be divided into 8 sectors, each sector 64 pages, 32 Bytes per page
- Information part: 128 Bytes, divided into 4 pages, each page of 32 Bytes
- EEPROM: 256 Bytes, divided into 16 pages, each page of 16 Bytes
- The EEPROM address is 0x8000+2*i (i = 0x00-0xFF)
- In ICP mode, the main block supports block/sector/page erasing, byte writing
- EEPROM supports page erasing and byte writing
- Program/erase times: Program area: at least 10000 times@25°C

EEPROM: at least 100000 times@25°C

• Data retention: 100 years @25 °C

20 years@85°C

Flash Storage Architecture

Main block is mainly used to store the chip program, the address range is 0x0000~0x3FFD, and the configuration word 0 is stored in 0x3FFE~0x3FFF.

The main function of Information block is used to store configuration words, the address range is 0x4000~0x407F.

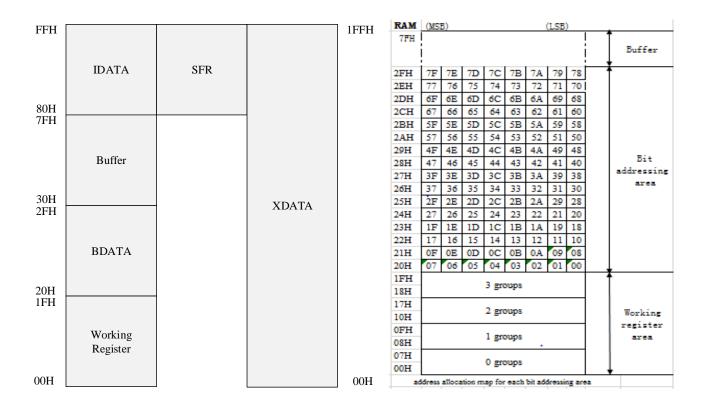
Steps to read the unique identification code (UID) of the chip:

- 1. Turn off the interrupt;
- 2. Read CODE absolute address 0x4072~0x407D corresponding to product ID1~ID12;
- 3. Restore the interrupt setting.

3.2. RAM

There are 256 Bytes internal, the address is 00H~FFH, including working registers group, bit addressing areas, buffers and SFR, the buffer contain the stack area.

Internal low 128 Bytes, 00H~7FH has 128 Bytes. Read and write data by immediate addressing or indirect addressing.


Internal high 128 Bytes, 80H~FFH has 128 Bytes. Read and write data only by immediate addressing or indirect addressing.

Special function register SFR: the address is 80H~FFH, Read and write data only by direct addressing.

Xdata has 512 Bytes, the address is 0000H~01FFH, users can use this area completely. To read and write data through the data pointer or working registers group addressing mode.

Note reserved stack space when writing a program, in order to avoid stack overflow and program goes wrong. Stack first address automatically assigned by program, when programming with C language, but it must be stored in data or idata. KEIL stack can be set in the first address in STARTUP.A51.

RAM address space allocation map:

The following table	lists the methods to	get value in the th	ree parts of RAM:
The following tuble	mous the methods to	Set value in the ti	nee puits of it min.

	MOV	A, direct	
	MOV	direct, A	
D.4.77.4	MOV	direct, #data	
DATA	MOV	direct1, direct2	
	MOV	Rn, direct	
	MOV	direct, Rn	
	MOV	A, @Ri	
	MOV	@Ri, A	
IDATA	MOV	direct, @Ri	
	MOV	@Ri, direct	
	MOV	@Ri, #data	
VDATA	MOVX @DPTR, A		
XDATA	MOVX A, @DPTR		

RAM value instruction set

Notes: n: 0~7, i: 0~1.

3.3. SFR Table

Addr	Name	R/W	Por	Function description	
0x80	DATAB	RW	1111_1111b	PB data register	
0x81	SP	RW	0000_0111b	Stack pointer register	
0x82	DPL	RW	0000_0000Ь	Data pointer register0 low 8-bit	
0x83	DPH	RW	0000_0000b	Data pointer register0 high 8-bit	
0x84	SYS_CLK_CFG	RW	xxxx_x001b	Clock control register	
0x85	INT_PE_STAT	RW	xxxx_xx00b	WDT/Timer2 interrupt status register	
0x86	INT_POBO_STAT	RW	xxxx_xx00b	LVDT boost/LVDT buck interrupt status register	
0x87	PCON	RW	xxxx_xxx0b	Low-power mode select register	
0x88	TCON	RW	0000_0x0xb	Timer control register	
0x89	TMOD	RW	xx00_xx00b	Timer mode register	
0x8A	TL0	RW	0000_0000b	Timer 0 counter low 8 bits	
0x8B	TL1	RW	0000_0000b	Timer 1 counter low 8 bits	
0x8C	TH0	RW	0000_0000b	Timer 0 counter high 8 bits	
0x8D	TH1	RW	0000_0000b	Timer 1 counter high 8 bits	
0x8E	SOFT_RST	RW	0000_0000b	Soft reset register	
0x90	DATAC	RW	1111_1111b	PC port data register	
0x91	WDT_CTRL	RW	xxxx_x000b	WDT timing overflow control register	
0x92	WDT_EN	RW	0000_0000b	WDT timing enable register	
0x93	TIMER2_CFG	RW	xxxx_0000b	TIMER2 CFG register	
0x94	TIMER2_SET_H	RW	0000_0000b	TIMER2 count value configuration register, high 8 bits	
0x95	TIMER2_SET_L	RW	0000_0000b	TIMER2 count value configuration register, low 8 bits	
0x98	DATAD	RW	1111_1111b	PD port data register	
0x99	PWM1_L_L	RW	0000_0000b	PWM1 low level control register (low 8 bits)	
0x9A	PWM1_L_H	RW	0000_0000b	PWM1 low level control register (high 8 bits)	
0x9B	PWM1_H_L	RW	0000_0000b	PWM1 high level control register (low 8 bits)	
0x9C	PWM1_H_H	RW	0000_0000b	PWM1 high level control register (high 8 bits)	
0x9D	PWM2_L_L	RW	0000_0000b	PWM2 low level control register (low 8 bits)	
0x9E	PWM2_L_H	RW	0000_0000b	PWM2 low level control register (high 8 bits)	
0x9F	PWM2_H_L	RW	0000_0000b	PWM2 high level control register (low 8 bits)	
0xA0	P2_XH	RW	1111_1111b	MOVX @Ri,A operation xdata address high 8 bits	
0xA1	PWM2_H_H	RW	0000_0000b	PWM2 high level control register (high 8 bits)	
0xA2	PWM_EN	RW	xx00_0000b	PWM control register	

比亚迪半导体 Semiconductor

BF7412AMXX-XJLX

0xA3	PWM0_CH_CTRL	RW	0000_0000b	PWM0 control register		
0/110		IC ()	0000_00000	PWM0 channel 0 count value configuration		
0xA4	PWM0_CH0_CNT_L	RW	0000_0000b	register low 8 bits		
				PWM0 channel 0 count value configuration		
0xA5	PWM0_CH0_CNT_H	RW	0000_0000b	register high 8 bits		
				PWM0 channel 1 count value configuration		
0xA6	PWM0_CH1_CNT_L	RW	0000_0000b	register low 8 bits		
				PWM0 channel 1 count value configuration		
0xA7	PWM0_CH1_CNT_H	RW	0000_0000b	register high 8 bits		
0xA8	IEN0	RW	0xxx_0000b	Interrupt enable register		
0/1110		IC ()	0.00000	PWM0 channel 2 count value configuration		
0xA9	PWM0_CH2_CNT_L	RW	0000_0000b	register low 8 bits		
				PWM0 channel 2 count value configuration		
0xAA	PWM0_CH2_CNT_H	RW	0000_0000b	register high 8 bits		
				PWM0 channel 3 count value configuration		
0xAB	PWM0_CH3_CNT_L	RW	0000_0000b	register low 8 bits		
				PWM0 channel 3 count value configuration		
0xAC	PWM0_CH3_CNT_H	RW	0000_0000b	register high 8 bits		
0xAD	PWM0_MOD_L	RW	0000_0000b	PWM0 cycle configuration register low 8 bits		
0xAE	PWM0_MOD_H	RW	0000_0000b	PWM0 cycle configuration register high 8 bits		
0xB1	UART_IO_SEL	RW	xxxx_0000b	UART select enable register		
UKD I		IC W		PWM channel selection IO configuration		
0xB2	PWM_IO_SEL	RW	xx00_0000b	register		
0xB3	LVDT_SEL	RW	xx11_1000b	LVDT control register		
0xB4	ADC_SPT	RW	0000_0000b	ADC sample time configure register		
0xB5	 ADC_SCAN_CFG	RW	 xx00_0000b	ADC scan control register		
0xB6	ADCCKC	RW	 xxxx_0000b	ADC clock control register		
0xB8	IPL0	RW	xxxx_0000b	Interrupt priority register 0		
0xB9	ADC_RDATAH	R	 xxxx_0000b	ADC scan result register high 4 bits		
0xBA	ADC_RDATAL	R	 0000_0000b	ADC scan result register low 8 bits		
0xBB	ADC_CFG1	RW	 0000_0000b	ADC sampling timing control register 1		
0xBC	ADC_CFG2	RW	 xx00_0111b	ADC sampling timing control register 2		
0xBD	UART0_BDL	RW	0000_0000b	UART0 Baudrate control registe		
0xBE	UART0_CON1	RW	0000_0000b	UART0 control register 1		
0xBF	UART0_CON2	RW	0000_1100b	UART0 control register 2		
0xC0	UART0_STATE	RO/RW	x000_0000b	UART0 status flag register		
0xC1	UART0_BUF	RW	1111_1111b	UART0 data register		
0xC2	PERIPH_IO_SEL3	RW	x000_0000b	INT3 select enable register 3		
0xC3	PERIPH_IO_SEL2	RW	0000_0000b	INT3 select enable register 2		
		I				

比亚迪半导体 Semiconductor

BF7412AMXX-XJLX

0xC4	PERIPH_IO_SEL1	RW	0000_0000b	INT3 select enable register 1
0xC5	UART1_BDL	RW	0000_0000b	UART1 baud rate control register
0xC6	UART1_CON1	RW	0000_0000b	UART1 control register 1
0xC7	UART1_CON2	RW	xxx0_1100b	UART1 control register 2
0xC8	UART1_STATE	RO/RW	x000_0000b	UART1 status flag register
0xC9	UART1_BUF	RW	1111_1111b	UART1 data register
0xCA	CSD_START	RW	xxxx_xxx0b	CSD scan open register
0xCB	SNS_SCAN_CFG1	RW	x000_0000b	Touch key scan configuration register 1
0xCC	SNS_SCAN_CFG2	RW	x100_0000b	Touch key scan configuration register 2
0xCD	SNS_SCAN_CFG3	RW	x111_0000b	Touch key scan configuration register 3
0xCE	CSD_RAWDATAL	R	0000_0000b	CSD counter, low 8-bit
0xCF	CSD_RAWDATAH	R	0000_0000b	CSD counter, high 8-bit
0xD0	PSW	R/RW	0000_0000Ь	Program status register
0xD1	PULL_I_SELA_L	RW	0000_0000b	CSD pull-up current source selection register
0xD2	SNS_ANA_CFG	RW	xx10_1101b	CSD scan parameter configuration register
0xD3	SNS_IO_SEL1	RW	0000_0000b	SNS channel select register 1
0xD4	SNS_IO_SEL2	RW	0000_0000b	SNS channel select register 2
0xD5	SNS_IO_SEL3	RW	0000_0000b	SNS channel select register 3
0xD6	SNS_IO_SEL4	RW	xxxx_xx00b	SNS channel select register 4
0xD7	RST_STAT	RW	x000_0010b2	Reset flag register
0xD8	PD_PB	RW	0000_0000b	PB port pull-down resistor enable register
0xD9	ADC_IO_SEL1	RW	0000_0000b	ADC function selection register 1
0xDA	ADC_IO_SEL2	RW	0000_0000b	ADC function selection register 2
0xDB	ADC_IO_SEL3	RW	0000_0000b	ADC function selection register 3
0xDC	ADC_IO_SEL4	RW	xxxx_xx00b	ADC function selection register 4
0xDD	PU_PA	RW	xxxx_xx00b	PA port pull-up resistor enable register
0xDE	PU_PB	RW	0000_0000Ь	PB port pull-up resistor enable register
0xDF	PU_PC	RW	0000_0000ь	PC port pull-up resistor enable register
0xE0	ACC	RW	0000_0000ь	Accumulator
0xE1	IRCON2	RW	xxxx_x000b	Interrupt flag register 2
0xE2	PU_PD	RW	0000_0000b	PD port pull-up resistor enable register
0xE3	IICADD	RW	0000_000xb	IIC address register
0xE4	IICBUF	RW	0000_0000ь	IIC transmit and receive data register
0xE5	IICCON	RW	xx01_0000b	IIC configuration register
0xE6	IEN1	RW	0000_00xxb	Interrupt enable register 1
0xE7	IEN2	RW	xxxx_x000b	Interrupt enable register 2
0xE8	IICSTAT	RO/RW	0100_0100b	IIC status register
0xE9	IICBUFFER	RW	0000_0000b	IIC transmit and receive data buffer register
0xEA	TRISA	RW	xxxx_xx11b	PA port direction register

				· · · · · · · · · · · · · · · · · · ·
0xEB	TRISB	RW	1111_1111b	PB port direction register
0xEC	TRISC	RW	1111_1111b	PC port direction register
0xED	TRISD	RW	1111_1111b	PD port direction register
0xEE	COM_IO_SEL	RW	0000_0000b	COM port selection configuration register
0xEF	ODRAIN_EN	RW	xxxx_x000b	PA0/PA1/PD6 port open drain enable register
0xF0	В	RW	0000_0000b	B register
0xF1	IRCON1	RW	0000_00xxb	Interrupt flag register 1
0xF2	PERIPH_IO_SEL	RW	x100_0000b	IIC /INT function control register
0xF4	IPL2	RW	xxxx_x000b	Interrupt priority register 2
0xF6	IPL1	RW	0000_00xxb	Interrupt priority register 1
0xF7	EXT_INT_CON	RW	x001_0101b	External interrupt polarity control register
0xF8	DATAA	RW	xxxx_xx11b	PA data register
0xFA	SPROG_ADDR_L	RW	0000_0000b	EEPROM address control register
0xFB	SPROG_DATA	RW	xxxx_0000b	EEPROM data register
0xFC	SPROG_CMD	RW	0000_0000b	EEPROM command register
0xFD	SPROG_TIM	RW	xxxx_0001b	EEPROM erase time control register
0xFE	PD_ANA	RW	xxxx_0111b	Module switch control register
0xFF	BOR_SEL	RW	xxx1_1000b①	BOR control register

SFR register summary

Note:

- 1. Registers whose addresses end with 8 or 0 can be bit-operated, such as register addresses 0x80, 0x88.
- 2. RO/R: only read. RW: read and write.
- 3. 'x' : Indefinite state
- 4. ①: The reset value is the default value after the power reset, and the value after the global reset is the factory calibration value.
- 5. **Q**: Power on reset: RST_STAT register reset value 0x02; Other mode reset: The reset flag bit corresponding to the RST_STAT register is 1, and the other reset flag bits remain in the original state.

3.4. Secondary Bus Register Table

The BF7412AMXX-XJLX series supports expanded secondary bus registers for expanding more register functions. You only need to write the address of the secondary bus register to be accessed into REG_ADDR, and then access the corresponding secondary bus register through the REG_DATA register. It is recommended that when reading and writing secondary bus registers, first EA = 0, and then EA = 1 after the operation is completed. Prevent other interrupts or operations from modifying the address or data of the secondary bus register.

Addr	Name	Bit	R/W	Por	Function description
0x96	REG_ADDR	<5:0>	RW	xx00_0000b	Secondary bus address configuration register
0x97	REG_DATA	<7:0>	RW	0000_0000b	Secondary bus data read and write register

Addr	Name	R/W	Por	Function description	
0x00	CFG0_REG	R	1111_111b①	Configuration word register 0	
0x01	CFG1_REG	R	0001_1111b①	Configuration word register 1	
0x02	CFG2_REG	R	0011_1111b①	Configuration word register 2	
0x03	CFG3_REG	R	1111_111b①	Configuration word register 3	
0x04	CFG4_REG	R	0001_0000b①	Configuration word register 4	
0x05	CFG5_REG	RW	1111_111b①	Configuration word register 5	
0x06	CFG6_REG	R	1111_111b①	Configuration word register 6	
0x07	CFG7_REG	R	0000_0011b①	Configuration word register 7	
0x08	CFG8_REG	R	1111_111b①	Configuration word register 8	
0x09	CFG9_REG	R	1111_111b①	Configuration word register 9	
0x0A	CFG10_REG	R	1111_111b①	Configuration word register 10	
0x0B	CFG11_REG	R	0000_0011b①	Configuration word register 11	
0x0C	CFG12_REG	R	1111_111b①	Configuration word register 12	
0x0D	CFG13_REG	R	1111_111b①	Configuration word register 13	
0x0E	CFG14_REG	R	1111_111b①	Configuration word register14	
0x0F	CFG15_REG	R	0000_0001b①	Configuration word register15	
0x10	CFG30_REG	R	1111_111b①	Configuration word register30	
0x1C	OSC_SFR_SEL	RW	xxxx_xx00b	ADJ_OSC selection register	

Note:

1.'①': The reset value is the default value after power-on reset, and the value after the global reset is completed is the factory calibration value;

2.'x': Unsteady state;

3.'R': Read only;

4.'RW': Read and write.

4. Register Summary

4.1. SFR Register Detailed Description

DATAB	(80H) PB	port data register
-------	----------	--------------------

Bit number	7	6	5	4	3	2	1	0
Symbol	PB7	PB6	PB5	PB4	PB3	PB2	PB1	PB0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset value	1	1	1	1	1	1	1	1

Bit number	Bit symbol	Description
7~0		The output level of the PB group can be configured as the GPIO port. The read value is the level state of the current IO
		port or the configured output value.

SP (81H) Stack pointer register

SI (8111) Stat		0							
Bit number	7	(6	5	4	3	2	1	0
Symbol		SP[7:0]							
R/W					R/\	N			
Reset value					7				
DPL(82H) Da	ta pointe.	er register	0 low 8-b	it					
Bit number	7	(6	5	4	3	2	1	0
Symbol					DPL[7:0]			
R/W		R/W							
Reset value		0							
DPH (83H) D	DPH (83H) Data pointer register0 high 8-bit								
Bit number	7		6	5	4	3	2	1	0
Symbol					DPH	7:0]			
R/W					R/\	N			
Reset value					0				
SYS_CLK_C	FG (84H	6 (84H) Clock control register							
Bit number	7	6	5	4	3		2	1	0
Symbol	-	-	-	-		WAIT	_MODE	PLL_CL	K_SEL
R/W	_	-	-	-	-	R	/W	R/	W
Reset value	-	-	-	-	-		0	0	1

Bit number	Bit symbol	Description			
7~3		Reserved			
		WAIT mode enable			
2	WAIT_MODE	1: The chip enters WAIT mode;			
		0: The chip exits WAIT mode			
1.0		PLL clock divided selection register			
1~0	PLL_CLK_SEL	00: 6MHz; 01: 3MHz; 10: 2MHz; 11: 1MHz			

INT_PE_STAT(85H)WDT/Timer2 interrupt status register

	· /				1	<u> </u>		
Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	-	-	INT_WDT_STAT	INT_TIMER2_STAT
R/W	-	-	-	-	-	-	R/W	R/W
Reset value	-	-	-	-	-	-	0	0

Bit number	Bit symbol	Description
		WDT interrupt status, set 0, write WDT_CTRL can set 0.
1	INT_WDT_STAT	1: interrupt effective
		0: invalid interrupt
		TIMER2 interrupt status, set 0, write TIMER2_CFG can
0	INT TIMEDO CTAT	set 0.
0	0 INT_TIMER2_STAT	1: interrupt effective
		0: invalid interrupt

INT_POBO_STAT (86H) LVDT boost/LVDT buck interrupt status register

	(,				1	0	
Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	-	-	INT_PO_STAT	INT_BO_STAT
R/W	-	-	-	-	-	-	R/W	R/W
Reset value	-	-	-	-	-	-	0	0

Bit number	Bit symbol	Description
		Lvdt boost interrupt status
1	INT_PO_STAT	1: boost interrupt is valid
		0: boost interrupt is invaild
		Lvdt buck interrupt state
0	INT_BO_STAT	1: buck interrupt is valid
		0: buck interrupt is invalid

PCON(87H) Low-power mode select register

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	-	-		LPM
R/W	-	_	-	-	-	-	-	R/W
Reset value	_	_	_	-	_	_	-	0

Bit number	Bit symbol	Description
		Low power mode control
		1: Low power consumption mode;
0	LPM	0: Normal mode, automatically cleared after waking up
		Note: After waking up, the software delay must be $\geq 100 \mu s$,
		otherwise the wake-up function is abnormal

TCON(88H) Timer control register

Bit number	7	6	5	4	3	2	1	0
Symbol	TF1	TR1	TF0	TR0	IE1	-	IE0	-
R/W	R/W	R/W	R/W	R/W	R/W	-	R/W	-
Reset value	0	0	0	0	0	-	0	-

Bit number	Bit symbol	Description
7	TF1	Timer1 overflow flag. Set to 1 when Timer1 overflows, or
/	111	Timer0's TH0 overflows in mode three.
6	TD 1	Timer1 start enable. When set to 1, enable the Timer1 count
6	TR1	or Timer0 TH0 count in mode 3.
5	TEO	Timer0 overflow flag.
5	TF0	The hardware set 1 when Timer0 overflows.
4	TR0	Timer0 start enable, when set to 1, start Timer0 count.
2	ID1	External interrupt 1.
3	IE1	The hardware set 1, the software is cleared.
1	IEO	External interrupt 0.
1	1 IEO	The hardware set 1, the software is cleared
2, 0		Reserved

TMOD(89H) Timer mode register

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	M1[1:0]		-	-	M0[1:0]	
R/W	-	-	R/W		-	-		R/W
Reset value	-	-	0	0	-	-	0	0

Bit number	Bit symbol	Description
7~6, 3~2		Reserved
		Timer1 mode select bits
		00=mode0 – 13-bit timer
5~4	M1[1:0]	01=mode1 – 16-bit timer
		10=mode2 – 8-bit auto-reload timers
		11=mode3 – Two 8-bit timers

1~0	M0[1:0]		Timer0 mode select bits 00=mode0 – 13-bit timer 01=mode1 – 16-bit timer 10=mode2 – 8-bit auto-reload timers 11=mode3 – Two 8-bit timers					
TL0(8AH) Time	er 0 counte	er 8 bits				1		-
Bit number	7	6	5	4	3	2	1	0
Symbol				TL0	[7:0]			
R/W				R/	W			
Reset value				()			
TL1(8BH) Time	er 1 counte	r low 8 bits	s	•			•	-
Bit number	7	6	5	4	3	2	1	0
Symbol				TL1	[7:0]			
R/W				R/	W			
Reset value				()			
TH0(8CH) Time	er 0 counte	er high 8 bi	ts					
Bit number	7	6	5	4	3	2	1	0
Symbol				TH0	[7:0]			
R/W				R/	W			
Reset value				()			
TH1(8DH) Time	er 1 counte	er high 8 bi	ts					
Bit number	7	6	5	4	3	2	1	0
Symbol				TH1	[7:0]			
R/W				R/	W			
Reset value				()			
SOFT_RST(8EI	H) Soft res	et register						
Bit number	7	6	5	4	3	2	1	0
Symbol					-			
R/W				R/	W			
Reset value				()			

Bit number	Bit symbol	Description
7.0	7~()	Software reset register. Software reset is only generated
/~0		when the register value is 0x55.

DATAC(90H) PC port data register

Bit number	7	6	5	4	3	2	1	0
Symbol	PC7	PC6	PC5	PC4	PC3	PC2	PC1	PC0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset value	1	1	1	1	1	1	1	1

Bit number	Bit symbol	Description
		PC data register. The output level of the PC group can be
7~0		configured as the GPIO port. The read value is the level state
		of the current IO port or the configured output value.

WDT_CTRL(91H) WDT timing overflow control register

				0				
Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	-	WD	T_TIME_	SEL
R/W	-	-	-	-	-		R/W	
Reset value	-	-	-	-	-	0	0	0

Bit number	Bit symbol	Description
		WDT overflow timer register. Timing length is as follows:
7~0		0x00: 18ms; 0x01: 36ms; 0x02: 72ms; 0x03: 144ms;
		0x04: 288ms; 0x05: 576ms; 0x06: 1152ms; 0x07: 2304ms;

WDT_EN(92H) WDT timing enable register

Bit number	7	6	5	4	3	2	1	0
Symbol		WDT_EN						
R/W		R/W						
Reset value				()			

Bit number	Bit symbol	Description		
7.0	WDT EN	WDT timing enable configuration register. WDT is turned		
7~0	WDT_EN	off when the configuration value is 0x55.		

TIMER2_CFG (93H) TIMER2 CFG register

Bit number	7~4	3	2	1	0
Symbol	-	TIMER2_CNT_MOD	TIMER2_CLK_SEL	TIMER2_RLD	TIMER2_EN
R/W	-	R/W	R/W	R/W	R/W
Reset value	-	0	0	0	0

Bit number	Bit symbol	Description
		TIMER2 count step mode select
3	TIMER2_CNT_MOD	register
5		1: count step is 65536 clock.
		0: count step is 1 clock.
		TIMER2 clock select register
2	TIMER2_CLK_SEL	1: select XTAL32768Hz
		0: select LIRC
1	TIMER2_RLD	TIMER2 reload enable control register

		1: automatic reload mode
		0: manual reload mode
		TIMER2 count enable register
		1: turn on timing;
		0: stop timing;
		In manual reload mode, the hardware automatically
0	TIMER2_EN	clears this register after timing is completed, stop count.
		In manual reload mode, will maintain the enable register
		after the count is completed. Automatically re-counting
		from 0, no matter which mode, configuring this register
		to 1 during counting will start counting from 0.

TIMER2_SET_H(94H) TIMER2 count value configuration register, high 8 bits

Bit number	7	6	5	4	3	2	1	0
Symbol				-	-			
R/W		R/W						
Reset value				()			

Bit number	Bit sy	mbol	Description					
7~0			TIMER2 count configuration register, high 8 bits.					
/~0			Configuring this register during the scan will recount.					
TIMER2_SET_L(95H) TIMER2 count value configuration register, low 8 bits								
Bit number	7	6	5	4	3	2	1	0
Symbol				-	-			
R/W		R/W						
Reset value		0						

Bit number	Bit symbol	Description
7~0		TIMER2 count configuration register, low 8 bits.
		Configuring this register during the scan will recount.

DATAD(98H) PD port data register

Bit number	7	6	5	4	3	2	1	0
Symbol	PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset value	1	1	1	1	1	1	1	1

Bit number	Bit symbol	Description
		PD data register. The output level of the PD group can be
7~0		configured as the GPIO port. The read value is the level state
		of the current IO port or the configured output value.

H) PWM1	low level	control re	gister (low	8 bits)		_			
7	6	5	4	3	2	1	0		
PWM1_L_L									
R/W									
0									
AH) PWM	1 low leve	l control re	egister (hig	h 8 bits)					
7	7 6 5 4 3 2 1 0								
			PWM	l_L_H					
			R/	W					
			()					
BH) PWM	1 high leve	el control r	egister (lov	w 8 bits)			-		
7	6	5	4	3	2	1	0		
			PWM	I_H_L					
			R/	W					
			()					
CH) PWM	H) PWM1 high level control register (high 8 bits)								
7	6	5	4	3	2	1	0		
PWM1_H_H									
			R /	W					
			()					
DH) PWM	2 low leve	l control re	gister (low	v 8 bits)					
7	6	5	4	3	2	1	0		
			PWM2	2_L_L					
			R/	W					
			()					
EH) PWM	2 low leve	l control re	gister (hig	h 8 bits)					
7	6	5	4	3	2	1	0		
			PWM2	2_L_H					
			R/	W					
			()					
FH) PWM2	2 high leve	el control r	egister (lov	v 8 bits)			-		
7	6	5	4	3	2	1	0		
			PWM2	2_H_L					
			R/	W					
0									
	7 AH) PWM 7 BH) PWM 7 CH) PWM 7 OH) PWM 7 DH) PWM 7 EH) PWM 7	7 6 AH) PWM1 low leve 7 6 3H) PWM1 high leve 7 6 CH) PWM1 high leve 7 6 OH) PWM2 low leve 7 6 OH) PWM2 low leve 7 6 EH) PWM2 low leve 7 6 FH) PWM2 high leve	765AH) PWM1 low level control re 7653H) PWM1 high level control re 7653H) PWM1 high level control re 765CH) PWM1 high level control re 765OH) PWM2 low level control re 765CH) PWM2 high level control re 765	7 6 5 4 PWM1 PWM1 R/ R/ (1) 7 6 5 4 7 6 5 4 7 6 5 4 9WM1 PWM1 R/ (1) 8H) PWM1 high level control register (low 7 7 6 5 4 9WM1 PWM1 R/ (1) 8H) PWM1 high level control register (low 7 7 6 5 4 9WM1 PWM1 R/ (1) 8H) PWM1 high level control register (high 7 7 6 5 4 9WM2 Iow level control register (low 7 7 6 5 4 9WM2 Iow level control register (high 7 7 6 5 4 9WM2 Iow level control register (high 7 7 6 5 4 9WM2 Iow level control register (low 7	PWM1_L_LPWM1_L_LR/W0AH) PWM1 low level control register (high 8 bits)76543PWM1_L_HR/W0BH) PWM1 high level control register (low 8 bits)7654376543PWM1_H_LR/W0CH) PWM1 high level control register (high 8 bits)76543PWM1_H_HR/W0CH) PWM1 high level control register (high 8 bits)76543PWM1_L_LR/W0CH) PWM2 low level control register (high 8 bits)76543PWM2_L_LR/W0OH) PWM2 low level control register (high 8 bits)76543PWM2_L_LR/W0CH) PWM2 low level control register (high 8 bits)76543PWM2_L_HR/W0CH) PWM2 low level control register (high 8 bits)7654 </td <td>7 6 5 4 3 2 PWM1_L_L R/W 0 MH JELL R/W 0 MH JEL PWM1_L_LH R/W 0 BH PWM1 low level control register (low 8 bits) 7 6 5 4 3 2 PWM1_L_H R/W 0 BH PWM1 high level control register (low 8 bits) 7 6 5 4 3 2 PWM1_H_L R/W 0 CH PWM1_H_H R/W 0 OH PWM2 low level control register (low 8 bits) 7 6 5 4 3 2 PWM2_L_L O O O O O <td>7 6 5 4 3 2 1 PWM1_L_L R/W 0 0 AH) PWM1 low level control register (high 8 bits) 7 6 5 4 3 2 1 PWM1_L_H R/W 0 0 0 0 0 0 3H) PWM1 high level control register (low 8 bits) 7 6 5 4 3 2 1 PWM1_L_H R/W 0 O 3 2 1 PWM1_H_L PWM1_H_L R/W 0 O CHIPMI high level control register (high 8 bits) 7 6 5 4 3 2 1 PWM1_L_H R/W 0 O O O O O O O</td></td>	7 6 5 4 3 2 PWM1_L_L R/W 0 MH JELL R/W 0 MH JEL PWM1_L_LH R/W 0 BH PWM1 low level control register (low 8 bits) 7 6 5 4 3 2 PWM1_L_H R/W 0 BH PWM1 high level control register (low 8 bits) 7 6 5 4 3 2 PWM1_H_L R/W 0 CH PWM1_H_H R/W 0 OH PWM2 low level control register (low 8 bits) 7 6 5 4 3 2 PWM2_L_L O O O O O <td>7 6 5 4 3 2 1 PWM1_L_L R/W 0 0 AH) PWM1 low level control register (high 8 bits) 7 6 5 4 3 2 1 PWM1_L_H R/W 0 0 0 0 0 0 3H) PWM1 high level control register (low 8 bits) 7 6 5 4 3 2 1 PWM1_L_H R/W 0 O 3 2 1 PWM1_H_L PWM1_H_L R/W 0 O CHIPMI high level control register (high 8 bits) 7 6 5 4 3 2 1 PWM1_L_H R/W 0 O O O O O O O</td>	7 6 5 4 3 2 1 PWM1_L_L R/W 0 0 AH) PWM1 low level control register (high 8 bits) 7 6 5 4 3 2 1 PWM1_L_H R/W 0 0 0 0 0 0 3H) PWM1 high level control register (low 8 bits) 7 6 5 4 3 2 1 PWM1_L_H R/W 0 O 3 2 1 PWM1_H_L PWM1_H_L R/W 0 O CHIPMI high level control register (high 8 bits) 7 6 5 4 3 2 1 PWM1_L_H R/W 0 O O O O O O O		

PWM1_L_L (99H) PWM1 low level control register (low 8 bits)

P2_XH (A0H) MOVX @Ri,A operation xdata address high 8 bits

Bit number	7	6	5	4	3	2	1	0
Symbol				-	-			
R/W				R/	W			
Reset value				F	F			

Bit number	Bit symbol	Description
7.0	7~0 P2 XH	When using the MOVX @Ri, A instruction, when operating
/~0		the pdata area, P2_XH need to be clear to 0.

PWM2_H_H (A1H) PWM2 high level control register (high 8 bits)

	,	U		0	<i>,</i>			
Bit number	7	6	5	4	3	2	1	0
Symbol				PWM2	2_H_H			
R/W				R/	W			
Reset value				()			

PWM_EN (A2H) PWM control register

Bit number	7	6	5	4
Symbol			PWM0_CH3_	PWM0_CH2_
Symbol	-	-	CMOD	CMOD
R/W	-	-	R/W	R/W
Reset value	-	_	0	0
Bit number	3	2	1	0
Symbol	PWM0_CH1_CMOD	PWM2_EN	PWM1_EN	PWM0_EN
R/W	R/W	R/W	R/W	R/W
Reset value	0	0	0	0

Bit number	Bit symbol	Description
7~6		Reserved
		PWM0 channel 3 duty cycle mode select register
5	PWM0_CH3_CMOD	1: select channel 0 duty cycle
		0: select its own channel duty cycle
		PWM0 channel 2 duty cycle mode select register
4	PWM0_CH2_CMOD	1: select channel 0 duty cycle
		0: select its own channel duty cycle
		PWM0 channel 1 duty cycle mode select registe
3	PWM0_CH1_CMOD	1: select channel 0 duty cycle
		0: select its own channel duty cycle
	PWMn_EN	PWMn module enable register
2~0	_	1: enable;
	(n=2,1,0)	0: not enable

Bit number	7	6	5	4
Symbol	PWM0_CH3_	PWM0_CH2_	PWM0_CH1_	PWM0_CH0_
Symbol	POLA_SEL	POLA_SEL	POLA_SEL	POLA_SEL
R/W	R/W	R/W	R/W	R/W
Reset value	0	0	0	0
Bit number	3	2	1	0
Symbol	PWM0_CH3_EN	PWM0_CH2_EN	PWM0_CH1_EN	PWM0_CH0_EN
R/W	R/W	R/W	R/W	R/W
Reset value	0	0	0	0

PWM0_CH_CTRL (A3H) PWM0 control register

Bit number	В	Bit symbol		Description							
				Channel 3 polarity selection ch3_pola_sel							
7	PWM0_0	CH3_POL	A_SEL	1: count va	lue overflo	w makes t	he output l	ow			
				0: count va	lue overflo	w makes t	he output h	nigh			
				Channel 2	polarity sel	lection ch2	_pola_sel				
6	PWM0_CH2_POLA_SEL			1: count va	lue overflo	w makes t	he output l	ow			
				0: count va	lue overflo	w makes t	he output h	nigh			
				Channel 1	polarity sel	lection ch1	_pola_sel				
5	PWM0_0	CH1_POL	A_SEL	1: count va	lue overflo	w makes t	he output l	ow			
				0: count va	lue overflo	w makes t	he output l	nigh			
				Channel 0	polarity sel	lection ch0	_pola_sel				
4	PWM0_0	PWM0_CH0_POLA_SEL			1: count value overflow makes the output low						
				0: count value overflow makes the output high							
				Channel 3 enable ch3_en							
3	PWN	M0_CH3_I	EN	1: enable							
				0: not enable							
				Channel 2 enable ch2_en							
2	PWN	M0_CH2_I	EN	1: enable							
				0: not enab	le						
				Channel 1	enable ch1	_en					
1	PWN	M0_CH1_I	EN	1: enable							
		_		0: not enable							
				Channel 0	enable ch0	_en					
0	PWM0_CH0_EN			1: enable							
				0: not enable							
PWM0_CH0_C	NT L(A4	H) PWM0	channel	0 count valu	ue configur	ation regis	ster low 8 h	oits			
Bit number	7	6	5	4	3	2	1	0			
Symbol		PWM0_CH0_CNT_L									

R/W	R/W
Reset value	0

Bit number	Bit sy	mbol	Description					
7~0	PWM0 CH	O CNT I	CNT I Channel 0 count configuration register low 8 bits.					
740		/M0_CH0_CNT_L Configure PWM output duty cycle.						
PWM0_CH0_	PWM0_CH0_CNT_H (A5H) PWM0 channel 0 count value configuration register high 8 bits							
Bit number	7	6	5	4	3	2	1	0
Symbol			l	PWM0_CH	I0_CNT_F	ł		
R/W		R/W						
Reset value				()			

Bit number	B	it symbol		Description						
7~0	PWM0 CH0 CNT H			Channel 0 count configuration register high 8 bits.						
				Configure PWM output duty cycle.						
PWM0_CH1_CNT_L (A6H) PWM0 channel 1 count value configuration register low 8 bits										
Ditnumbor	7	6	5	4	2	2	1	0		

Bit number	7	6	5	4	3	2	1	0	
Symbol	PWM0_CH1_CNT_L								
R/W	R/W								
Reset value	0								

Bit number	Bit symbol			Description						
7~0	PWM0_CH1_CNT_L			Channel 1 count configuration register low 8 bits.						
/~0				Configure PWM output duty cycle.						
PWM0_CH1_CNT_H (A7H) PWM0 channel 1 count value configuration register high 8 bits										
Bit number	7	6	5	4	3	2	1	0		
Symbol	PWM0_CH1_CNT_H									
R/W	R/W									
Reset value	0									

Bit number	Bit s	ymbol		Description						
7~0	PWM0_C	H1_CNT_I		Channel 1 count configuration register high 8 bits. Configure PWM output duty cycle.						
IEN0(A8H) Interrupt enable register										
Bit number	7	6	5	4	3	2	1	0		
Symbol	EA	-	-	-	ET1	EX1	ET0	EX0		
R/W	R/W	_	_	-	R/W	R/W	R/W	R/W		
Reset value	0	_	_	_	0	0	0	0		

Bit number	Bit symbol	Description
		Interrupt enable bit
		0: Mask all interrupts (EA has priority over the respective
7	E A	interrupt enable bits of the interrupt sources);
7	EA	1: The interrupt is turned on. Whether the interrupt request
		of each interrupt source is allowed or forbidden is
		determined by the respective enable bit.
6~4		Reserved
		Timer1 interrupt enable bit
3	ET1	0: Disable timer 1 to apply for interrupt;
		1: Allow timer 1 flag bit to apply for interrupt.
		INT_EXT1 enable bit
2	EX1	0: Disable INT_EXT1 to apply for interrupt;
		1: Allow INT_EXT1 to apply for interrupt.
		Timer 0 interrupt enable bit
1	ET0	0: Disable timer 0 (TF0) to apply for interrupt;
		1: Allow TF0 flag bit to request interrupt.
		INT_EXT0 enable bit
0	EX0	0: Disable INT_EXT0 to apply for interrupt;
		1: Allow INT_EXT0 to apply for interrupt.

PWM0_CH2_CNT_L (A9H) PWM0 channel 2 count value configuration register low 8 bits

Bit number	7	6	5	4	3	2	1	0
Symbol		PWM0_CH2_CNT_L						
R/W		R/W						
Reset value	0							

Bit number	Bit	symbol		Description					
7~0	PWM0_C	CH2_CNT_	L Chan	Channel 2 count configuration register low 8 bits.					
			Confi	Configure PWM output duty cycle.					
PWM0_CH2_CNT_H (AAH) PWM0 channel 2 count value configuration register high 8 bits									
Bit number	7	6	5	4	3	2	1	0	
Symbol			Ι	PWM0_CH	I2_CNT_F	ł			
R/W		R/W							
Reset value				()				

Bit number	Bit symbol	Description
7.0	DUMO CUO CNIT U	Channel 2 count configuration register high 8 bits.
7~0	PWM0_CH2_CNT_H	Configure PWM output duty cycle.

PWM0_CH3_CNT_L (ABH) PWM0 channel 3 count value configuration register low 8 bits

Bit number	7	6	5	4	3	2	1	0	
Symbol		PWM0_CH3_CNT_L							
R/W		R/W							
Reset value		0							

Bit number	Bit symbol	Description					
7.0	DWMO CU2 CNT I	Channel 3 count configuration register low 8 bits.					
7~0	PWM0_CH3_CNT_L	Configure PWM output duty cycle.					
PWM0_CH3_CNT_H (ACH) PWM0 channel 3 count value configuration register high 8 bits							

Bit number	7	7 6 5 4 3 2 1 0								
Symbol		PWM0_CH3_CNT_H								
R/W		R/W								
Reset value	0									

Bit number	Bit	symbol		Description						
7.0	DWMO (TU2 CNT	LI Chan	Channel 3 count configuration register low 8 bits.						
/~0	7~0 PWM0_CH3_CNT_		- ^{II} Conf	Configure PWM output duty cycle.						
PWM0_MOD_L (ADH) PWM0 cycle configuration register low 8 bits										
Bit number	7	6	5	4	3	2	1	0		
Symbol		PWM0_MOD_L								
R/W		R/W								
Reset value		0								

Bit number	Bit sy	mbol		Description						
7~0	PWM0_	MOD_L	PWM0 count cycle configuration register low 8 bits.							
PWM0_MOD_H (AEH) PWM0 cycle configuration register high 8 bits										
Bit number	7	7 6 5 4 3 2 1 0					0			
Symbol		PWM0_MOD_H								
R/W		R/W								
Reset value		0								

Bit number	Bit symbol	Description
7.0		PWM0 count cycle configuration register high 8 bits.
7~0	PWM0_MOD_H	Configure PWM output duty cycle.

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	UART1_IO_SEL	UA	RT0_IO_	SEL
R/W	-	-	-	-	R/W	R/W	R/W	R/W
Reset value	-	-	-	-	0	0	0	0

UART_IO_SEL (B1H) UART select enable register

Bit number	Bit symbol	Description
7~4		Reserved
3	UART1_IO_ SEL	UART1 port selection enable 0: PB1/2 (RXD1_A/TXD1_A) port select UART1 port function 1: PB6/7 (RXD1_B/TXD1_B) port select UART1 port function
2~0	UART0_IO_ SEL	UART0 port selection enable 000: PA0/1 (RXD0_A/TXD0_A) port select UART0 port function 001: PB3/4 (RXD0_B/TXD0_B) port select UART0 port function 010: PD4/5 (RXD0_C/TXD0_C) port select UART0 port function 011: PC0/1 (RXD0_D/TXD0_D) port select UART0 port function 100: PD6/PA1 (RXD0_E/TXD0_E) port select UART0 port function 101: PD7/PA0 (RXD0_F/TXD0_F) port select UART0 port function

PWM IO SEL(B2H) PWM channel selection IO configuration register

<u>1 mm_10_01</u>	wwi_io_stel(b2ii) i www.enamer.selection io configuration register							
Bit number	7	6	5	4				
Symbol	-	-	PWM2_CH_SEL	PWM1_CH_SEL				
R/W	-	-	R/W	R/W				
Reset value	-	-	0	0				
Bit number	3	2	1	0				
Symbol	PWM0_CH3_SEL	PWM0_CH2_SEL	PWM0_CH1_SEL	PWM0_CH0_SEL				
R/W	R/W	R/W	R/W	R/W				
Reset value	0	0	0	0				

Bit number	Bit symbol	Description
		PWM2 channel selection IO port configuration
5	PWM2_CH_SEL	0: PD1 port selects PWM2 function;
		1: PC7 port selects PWM2 function
		PWM1 channel selection IO port configuration
4	PWM1_CH_SEL	0: PD0 port selects PWM1 function;
		1: PC6 port selects PWM1 function
2	PWM0_CH3_SEL	PWM0 channel 3 select IO port configuration
3		0: PB3 port selects PWM0_CH3 function;

		1: PC5 port selects PWM0_CH3 function
		PWM0 channel 2 selects IO port configuration
2	2 PWM0_CH2_SEL	0: PB2 port selects PWM0_CH2 function;
		1: PC3 port selects PWM0_CH2 function
		PWM0 channel 1 select IO port configuration
1	PWM0_CH1_SEL	0: PB1 port selects PWM0_CH1 function;
		1: PC0 port selects PWM0_CH1 function
		PWM0 channel 0 select IO port configuration
0	PWM0_CH0_SEL	0: PB0 port selects PWM0_CH0 function;
		1: PB5 port selects PWM0_CH0 function

LVDT_SEL(B3H) LVDT control register

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	PD_LVDT	SEL_LVDT_DELAY		SEL_LVDT_VTH		
R/W	-	I	R/W	R/W	R/W	R/W	R/W	R/W
Reset value	-	-	1	1	1	0	0	0

Bit number	Bit symbol	Description
		LVDT control register
3	PD_LVDT	1: close; 0: open, close by default
		Select signal, select LVDT power-down delay; default 11
4~3	SEL_LVDT_DELAY	0: Delay time 1; 1: Delay time 2;
		2: Delay time 3; 3: Delay time 4
		LVDT threshold selection
2~0	SEL_LVDT_VTH	000/001: reserved; 010: 3.0V; 011: 3.3V; 100: 3.6V; 101:
		3.9V; 11x: 4.2V

ADC_SPT (B4H) ADC sample time configure register

			U	0						
Bit number	7	6	5	4	3	2	1	0		
Symbol		ADC_SPT								
R/W		R/W								
Reset value				()					

Bit number	Bit symbol	Description
7~0	ADC SPT	ADC sample time configure register
/~0	ADC_511	<pre>sample time: sample_Timer = (ADC_SPT+1)*4Tadc_clk</pre>

ADC_SCAN_CFG (B5H) ADC scan control register

Bit number	7	6	5	4	3	2	1	0
Symbol	_	-		A	ADC_START			
R/W	-	-			R/W			
Reset value	_	-			0			

Bit number	Bit symbol	Description
		ADC channel address selection register
		00000: corresponds to ADC0;
		00001: corresponding to ADC1;
5~1	ADC_ADDR	
		11001: corresponding to ADC25;
		11010: ADC26_VREF;
		Other values: reserved
		ADC scan enable register
		0: ADC module does not scan;
		1: ADC module starts scanning
		ADC_START is set from 0 to 1, ADC starts to scan, after
0	ADC_START	scanning once, ADC_START hardware is automatically set
		to 0, corresponding to the ADC interrupt flag bit, the ADC
		interrupt flag bit needs to be cleared by software
		Note: ADC_START is not allowed to be configured during
		scanning

ADCCKC (B6H) ADC clock control register

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	ADCCKV		ADCCK	
R/W	-	-	-	-	R/W		R/W	
Reset value	-	-	-	-	0	0	0	0

Bit number	Bit symbol	Description						
7~4		Reserved						
3~2	ADCCKV	ADC comparator offset cancellation analog input clock.						
5~2	ADCCKV	0: 12MHz 1: 6MHz 2: 3MHz 3: 2MHz						
1.0	ADCCV	ADC_CLK frequency division selection.						
1~0	ADCCK	0: 3MHz 1: 2MHz 2: 1.5MHz 3: 1MHz						

IPL0 (B8H) Interrupt priority register 0

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	PT1	PX2	PT0	PX0
R/W	-	-	-	-	R/W	R/W	R/W	R/W
Reset value	-	-	-	-	0	0	0	0

Bit number	Bit symbol	Description
7~4	_	Reserved
3	PT1	TF1(Timer1 interrupt) priority selection bit.

		0: TF1(Timer1 interrupt) is low priority.
		1: TF1(Timer1 interrupt) is high priority.
		INT_EXT1 interrupt priority selection bit.
2	PX2	0: INT_EXT1 is low priority.
		1: INT_EXT1 is high priority.
		TF0(Timer0 interrupt) priority selection bit.
1	PT0	0: TF0(Timer0 interrupt) is low priority.
		1: TF0(Timer0 interrupt) is high priority.
		INT_EXT0 interrupt priority selection bit.
0	PX0	0: INT_EXT0 is low priority.
		1: INT_EXT0 is high priority.

ADC_RDATAH (B9H) ADC scan result register high 4 bits

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	ADC_RAWDATA<11:8>			
R/W	-	-	-	-	R			
Reset value	-	-	-	-			0	

Bit number	Bit symbol	Description
3~0	ADC_RAWDATA<11:8>	ADC scan result register

ADC_RDATAL(BAH) ADC scan result register low 8 bits

Bit number	7	6	5	4	3	2	1	0
Symbol	ADC_RAWDATA<7:0>							
R/W		R						
Reset value	0							

Bit number	Bit symbol	Description
7~0	ADC_RAWDATA<7:0>	ADC scan result register

ADC_CFG1(BBH) ADC sampling timing control register 1

Bit number	7	6	5	4	3	2	1	0
Symbol		А	DCWNU	SAMBG	SAN	IDEL		
R/W	R/W					R/W	R	/W
Reset value	0					0		0

Bit number	Bit symbol	Description
7~3	ADCWNUM	Selection of distance conversion interval after sampling
		3+ADCWNUM(ADC_CLK)
2	SAMBG	Sampling timing and comparison timing interval selection
		0: interval 0; 1: interval 1 (ADC_CLK)
1~0	SAMDEL	Sampling delay time selection
		0:0; 1:2; 2:4; 3:8 (ADC_CLK)

	-) - F O	8		
Bit number	7	6	5	4
Symbol	-	-	VREF_IN	_ADC_SEL
R/W	-	-	R/W	R/W
Reset value	-	-	0	0
Bit number	3	2	1	0
Symbol	FILTER_R_SEL	ADC_	I_SEL	CTRL_SEL
R/W	R/W	R/W	R/W	R/W
Reset value	0	1	1	1

ADC_CFG2 (BCH) ADC sampling timing control register 2

Bit number	Bit symbol	Description
5~4	VDEE IN ADC SEL	ADC26 internal input voltage selection
3~4	VREF_IN_ADC_SEL	00: 1.378V; 01: 2.271V; 10: 3.168V; 11: 4.06V
3	EILTED D CEL	Input signal filter selection
3	FILTER_R_SEL	0 means no RC filter, 1 means RC filter
		ADC bias current size selection register
2	ADC_I_SEL[1]	Op amp bias current selection signal
		0 is 1uA; 1 is 2uA
		ADC bias current size selection register
1	ADC_I_SEL[0]	Comparator bias current selection signal
		0 is 1uA; 1 is 2uA
		ADC comparator offset cancellation selection signal
0	CTRL_SEL	0: First sampling and then offset elimination;
		1: All switches are disconnected together

UART0_BDL (BDH) UART0 Baudrate control register

				<u> </u>				
Bit number	7	6	5	4	3	2	1	0
Symbol	-							
R/W		R/W						
Reset value		0						

Bit number	Bit symbol	Description
		Baud rate control register.
		Baud rate modules divisor register lower 8 bits,
7~0		bandrate={UART0_BDH[1:0], UART0_BDL},
		bandrate=0, does not generate baud rate clock.
		bandrate=1~1023, bandrate = BUSCLK/(16xbandrate)

UART0_CON1 (BEH) UART0 control register 1

Bit number	7	6	5	4
Grundhal	UART0_	TRANS_	RECEIVE_	MULTI_
Symbol	ENABLE	ENABLE	ENABLE	MODE
R/W	R/W	R/W	R/W	R/W
Reset value	0	0	0	0
Bit number	3	2	1	0
Symbol	STOP_MODE	DATA_MODE	PARITY_EN	PARITY_SEL
R/W	R/W	R/W	R/W	R/W
Reset value	0	0	0	0

Bit number	Bit symbol	Description		
		Module enable.		
7	UART0_ENABLE	1: module enable;		
		0: module off.		
		Transmitter enable		
6	TRANS_ENABLE	1: transmitter is on;		
		0: transmitter is off		
		Receiver enable.		
5	RECEIVE_ENABLE	1: receiver open;		
		0: receiver off.		
		Multiprocessor communication mode.		
4	MULTI_MODE	1: mode enable;		
		0: mode disable.		
3	STOP_MODE	Stop bit width selection.		
		1: 2 bit; 0: 1 bit.		
		Data mode select.		
2	DATA_MODE	1: 9bit mode;		
		0: 8bit mode.		
		Parity enable.		
1	PARITY_EN	1: parity enable;		
		0: parity disable.		
		Parity select.		
0	PARITY_SEL	1: odd parity;		
		0: even parity.		

UART0_CON2 (BFH) UART0 control register 2

Bit number	7	6	5	4	3	2	1 0	
Symbol	-	-	-	PAD_CHANGE	TX_EMPTY_IE	RX_FULL_IE	UART0_BDI	H
R/W	-	-	-	R/W	R/W	R/W	R/W	

Reset value	-	-	-	0	1	1	0	0

Bit number	Bit symbol	Description
		Txd/rxd pin interchange
4	PAD_CHANGE	1: pin interchange;
		0: the pins are not interchangeable
		Send interrupt enable.
3	TX_EMPTY_IE	1: interrupt enable;
		0: interrupt disable (used in polling mode)
		Received interrupt enable
2	RX_FULL_IE	1: interrupt enable;
		0: interrupt disable (used in polling mode)
1~0	UART0_BDH	Baud rate modulus divisor register high 2bit.

UART0_STATE (C0H) UART0 status flag register

Bit number	7	6	5	4
Symbol	-	UART0_R8	UART0_T8	TIO
R/W	-	R	R/W	R/W
Reset value	-	0	0	0
Bit number	3	2	1	0
Symbol	RI0	UART0_RO	UART0_F	UART0_P
R/W	R/W	R/W	R/W	R/W
Reset value	0	0	0	0

Bit number	Bit symbol	Description				
6	UART0_R8	Receiver's ninth data, read only.				
5	UART0_T8	Transmitter's ninth data, read only when parity is enabled.				
		Send interrupt flag.				
4	TIO	1: send buffer is empty;				
		0: send buffer is full, software write 0 clear 0, write 1 invalid.				
		Receive interrupt flag.				
2	RIO	1: receive buffer is full;				
3		0: receive buffer is empty, software write 0 clear 0, write 1				
		invalid.				
		Receive overflow flag;				
2	UART0_RO	1: receive overflow (lost new data);				
		0: no overflow, software write 0 clear 0, write 1 invalid.				
		Framing error flag.				
1	UART0_F	1: framing error flag;				
		0: no framing error flag, software write 0 clear 0, write 1				

Reset value

			invalid.						
	Parity error	r flag.							
0	UAR	Г0_Р	1: receiver parity error;						
				0: parity is correct, software write 0 clear 0, write 1 invalid.					
UART0_BUF (C1H) UAR	T0 data r	register						
Bit number	7	6	5	4	3	2	1	0	
Symbol		-							
R/W		R/W							

Bit number	Bit symbol	Description
		Data register
7~0		Read returns read-only receive data buffer contents, write
		into write-only send data buffer.

FF

PERIPH_IO_SEL3(C2H) INT3 select enable register 3

Bit number	7	6	5	4
Symbol	-	INT3_22_IO_SEL	INT3_21_IO_SEL	INT3_20_IO_SEL
R/W	-	R/W	R/W	R/W
Reset value	-	0	0	0
Bit number	3	2	1	0
Symbol	INT3_19_IO_SEL	INT_3_18_IO_SEL	INT3_17_IO_SEL	INT3_16_IO_SEL
R/W	R/W	R/W	R/W	R/W
Reset value	0	0	0	0

Bit number	Bit symbol	Description
6~0	INT3_n_IO_SEL	INT3_n port selection enable
	(n=22~16)	1: Select INT function;
		0: Do not select INT function

PERIPH_IO_SEL2(C3H) INT3 select enable register 2

Bit number	7	6	5	4
Symbol	INT3_15_IO_SEL	INT3_14_IO_SEL	INT3_13_IO_SEL	INT3_12_IO_SEL
R/W	R/W	R/W	R/W	R/W
Reset value	0	0	0	0
Bit number	3	2	1	0
Symbol	INT3_11_IO_SEL	INT3_10_IO_SEL	INT3_9_IO_SEL	INT3_8_IO_SEL
R/W	R/W	R/W	R/W	R/W
Reset value	0	0	0	0

Bit number	Bit symbol	Description
7~0	INT3_n_IO_SEL	INT3_n port selection enable
	(n=15~8)	1: Select INT function;
		0: Do not select INT function

PERIPH_IO_SEL1(C4H) INT3 select enable register 1

Bit number	7	6	5	4	
Symbol	INT3_7_IO_SEL	INT3_6_IO_SEL	INT3_5_IO_SEL	INT3_4_IO_SEL	
R/W	R/W	R/W	R/W	R/W	
Reset value	0	0	0	0	
Bit number	3	2	1	0	
Symbol	INT3_3_IO_SEL	INT3_IO_2_SEL	INT3_1_IO_SEL	INT3_0_IO_SEL	
R/W	R/W	R/W	R/W	R/W	
Reset value	0	0	0	0	

Bit number	Bit symbol	Description	
7~0	INT3_n_IO_SEL	INT3_n port selection enable	
	(n=7~0)	(n=7~0) 1: Select INT function;	
		0: Do not select INT function	
	IADT1 DDI (CSII) UADT1 havd note control register		

UART1_BDL(C5H) UART1 baud rate control register

Bit number	7	6	5	4	3	2	1	0
Symbol	-							
R/W		R/W						
Reset value	0							

Bit number	Bit symbol	Description
		UART1 baud rate control register
		The lower 8 bits of the baud rate modulus divisor register,
7.0		Baud_Mod={UART1_BDH[1:0], UART1_BDL},
7~0	-	When Baud_Mod=0, the baud rate clock is not generated,
		when Baud_Mod= $1 \sim 1023$, the baud rate =
		BUSCLK/(16xBaud_Mod)

UART1_CON1 (C6H) UART1 control register 1

Bit number	7	6	5	4
0 1 1	UART1_	TRANS_	RECEIVE_E	MULTI_
Symbol	ENABLE	ENABLE	NABLE	MODE
R/W	R/W	R/W	R/W	R/W
Reset value	0	0	0	0
Bit number	3	2	1	0
Symbol	STOP_MODE	DATA_MODE	PARITY_EN	PARITY_SEL

BF7412AMXX-XJLX

R/W	R/W	R/W	R/W	R/W
Reset value	0	0	0	0

Bit number	Bit symbol	Description
7	LIADTI ENIADIE	Module enable
/	UART1_ENABLE	1: module enable; 0: module close
6	TRANS_ENABLE	Transmitter enable
0	IKANS_ENADLE	1: transmitter is on; 0: transmitter is off
5	RECEIVE_ENABLE	Receiver enable
5	KECEIVE_EINADLE	1: receiver is on; 0: receiver is off
4	MULTI_MODE	Multiprocessor communication mode
4	MOLTI_MODE	1: mode enable; 0: mode disable
3	STOP_MODE	Stop bit width selection
3	STOP_MODE	1: 2 bits; 0: 1 bit
2	DATA_MODE	Data mode selection
		1: 9-bit mode; 0: 8-bit mode
		Parity check enable
1	PARITY_EN	1: parity check is enabled;
		0: parity check is disabled
0	WAVE SEI	Parity selection
0	0 WAKE_SEL	1: odd parity; 0: even parity

UART1_CON2(C7H) UART1 control register 2

Bit number	7	6	5	4
Symbol	-	-	-	PAD_CHANGE
R/W	-	-	-	R/W
Reset value	-	-	-	0
Bit number	3	2	1	0
Symbol	TX_EMPTY_IE	RX_FULL_IE	UART	1_BDH
R/W	R/W	R/W	R/W	R/W
Reset value	1	1	0	0

Bit number	Bit symbol	Description	
		Txd/rxd pin interchange	
4	PAD_CHANGE	1: pin interchange;	
		0: the pins are not interchangeable	
		Transmit interrupt enable	
3	TX_EMPTY_IE	1: interrupt enable;	
		0: interrupt disabled (used in polling mode)	
2	RX_FULL_IE Receive interrupt enable		

		1: interrupt enable;					
		0: interrupt disabled	0: interrupt disabled (used in polling mode)				
1~0	UART1_BDH	Baud rate modulus divisor register high 2 bits					
UART1_STAT	TE (C8H) UART1 sta	atus flag register					
Bit number	7	6	5	4			
Symbol	-	UART1_R8	UART1_T8	TI1			
R/W	-	R	R/W	R/W			
Reset value	-	0	0	0			
Bit number	3	2	1	0			
Symbol	RI1	UART1_RO	UART1_F	UART1_P			
R/W	R/W	R/W	R/W	R/W			
Reset value	0	0	0	0			

Bit number	Bit symbol	Description	
6	UART1_R8	The 9th data of the receiver, read only	
5	UART1_T8	The 9th data of the transmitter, read only during parity check	
		Send buffer empty interrupt flag	
4	TI1	1: The sending buffer is empty;	
		0: Send buffer is full, software write 0 to clear	
		Receive interrupt flag	
3	RI1	1: The receive buffer is full;	
		0: Receive buffer is empty, software write 0 to clear	
		Receive overflow flag	
2	UART1_RO	1: Receive overflow (new data is lost);	
		0: No overflow, software writes 0 to clear	
		Frame error flag	
1	UART1_F	1: A frame error is detected;	
		0: No frame error is detected, software writes 0 to clear	
		Parity error flag	
0	UART1_P	1: Receiver parity error;	
		0: Parity check is correct, software writes 0 to clear	
UART1_BUF (C9H) UART1 data re	egister	

Bit number	7	6	5	4	3	2	1	0			
Symbol		_									
R/W		R/W									
Reset value		FF									

Bit number	Bit symbol	Description
7~0	-	Read returns the contents of the read-only receive data

		buffer, writes to the write-only send data buffer.								
CSD_START(CAH) CSD scan open register										
Bit number	7	6	5	4	3	2	1	0		
Symbol	-	-	-	-	-	-	-	-		
R/W	-	-	-	-	-	-	-	R/W		
Reset value	-	-	_	_	_	-	-	0		

Bit number	Bit symbol	Description
		1: CSD scanning is on;
		0: CSD scan stops
		Write 1 in CSD_START to start scanning. After one scan,
		the hardware will automatically set to 0. If you want to start
		the next scan, you need to set it to 1 again by software; if
0		CSD_START=0 during the scan, the scan will stop
0	-	immediately, and the module will have related internal
		signals Reset
		Note: Must be used in accordance with the process
		configuration: CSD_START=1, if interruption is detected,
		configure CSD_START=0. CSD_START is not allowed to
		be configured during scanning

SNS_SCAN_CFG1 (CBH) Touch key scan configuration register 1

	,	· · ·	<u> </u>					
Bit number	7	6	5	4	3	2	1	0
Symbol	-	SW_PRE_OFF	PRS_DIV					
R/W	-	R/W	R/W					
Reset value	_	0	0					

Bit number	Bit symbol	Description
		Front-end charge and discharge clock switch control.
6	SW_PRE_OFF	1: close sw_clk;
		0: open sw_clk
		Front-end charge and discharge clock frequency selection
		register:
		0~61: fixed frequency: F=F24m/2/(PRS_DIV+4) (12M~193K);
5~0	PRS_DIV	62: highest frequency 4M, lowest frequency 1M, center
		frequency 1.5M, normal distribution;
		63: highest frequency 4M, lowest frequency 1M, center
		frequency 1.5M, normal distribution.

SNS_SCAN_CFG2 (CCH) Touch key scan configuration register 2

Bit number	7	6	5	4 3 2 1 0				
Symbol	-	PULL_I_SELA_H	PARALLEL_EN		CSD_ADDR			
R/W	-	R/W	R/W	R/W				
Reset value	-	1	0			0		

Bit number	Bit symbol	Description
6	PULL_I_SELA_H	CSD pull-up current source configuration highest bit.
5	PARALLEL_EN	SNS channel shunt enable register.1: multi-channel parallel;0: signal channel.
4~0	CSD_ADDR	The address of the detection channel 0~25 corresponds to the channel number 0~25

SNS_SCAN_CFG3(CDH) Touch key scan configuration register 3

		· · ·			5	0 0		U	
	Bit number	7	6	5	4	3	2	1	0
	Symbol	-	ŀ	RESO	C	CSD	_DS	PRE_CHRG_SEL	INIT_DISCHRG_SEL
ſ	R/W	-		R/W	T	R/	W	R/W	R/W
	Reset value	-	1	1	1	0	0	0	0

Bit number	Bit symbol	Description						
		Counter bit select register.						
6~4	RESO	000: 9 bits; 001: 10 bits; 010: 11 bits;						
0~4	KESU	011: 12bits; 100: 13 bits; 101: 14 bits;						
		110: 15 bits; 111: 16 bits.						
3~2		Count clock frequency selection register.						
3~2	CSD_DS	00: 24M; 01: 12M; 10: 6M; 11: 4M; default 0.						
1	DDE CUDC CEL	Pre-charge time selection						
1	PRE_CHRG_SEL	0: 20µs; 1: 40µs.						
		Pre-discharge time selection						
0	INIT_DISCHRG_SEL	0: 2µs; 1: 10µs.						

CSD_RAWDATAL (CEH) CSD counter, low 8-bit

Bit number	7	6	5	4	3	2	1	0			
Symbol		RAWDATA<7:0>									
R/W		R									
Reset value		0									

CSD_RAWDATAH (CFH) CSD counter, high 8-bit

Bit number	7	6	5	4	3	2	1	0
Symbol		RAWDATA<15:8>						
R/W		R						

Reset value		0						
PSW(D0H) Program status register								
Bit number	7	6	5 4 3 2 1 0				0	
Symbol	CY	AC	F0	RS[1:0]		OV	F1	Р
R/W	R/W	R/W	R/W	R/W		R/W	R/W	R/W
Reset value	0	0	0	0	0	0	0	0

Bit number	Bit symbol	Description					
7	СҮ	Carry flag. Set when the addition generates a carry or subtracts a borrow, otherwise clears. Set when the first operand of CJNE is less than the second operand, cleared by MUL or DIV instruction. Also affected by mouse commands (RLC, RRC) and bitwise instructions.					
6	AC	Auxiliary carry flag Set when the addition is borrowed from the third to fourth bits of the accumulator, or when the subtraction is borrowed from the third to fourth bits, otherwise cleared.					
5	F0	0 flag bit. Universal label for users.					
4~3	RS[1:0]	Working register group:Select a valid working register group:RS[1:0]BankRAM Area000000x00-0x07;0110x08-0x0F;1020x10-0x17;1130x18-0x1F					
2	1130x18-0x1FOverflow flag bitOverflow flag bitWhen the addition produces a different carry of accumulator bits 4 and 7, or subtraction produces a borrow of accumulator bits 6 and 7, otherwise cleared. The OV flag indicates that the signed 8-bit result is out of bounds (greater than 127 or less than -128). The overflow flag is also set when the multiplication result is greater than 255 or an attempt is made to divide by 0.						
1	F1 I flag bit. Universal label for users.						
0	Р	Parity flag. Always contains the sum of Form 2 of all the bits in the accumulator.					
PULL_I_SELA	_L (D1H) CSI	D pull-up current source selection register					
Bit number	7	6 5 4 3 2 1 0					

Symbol	PULL_I_SEL<7:0>
R/W	R/W
Reset value	0

Bit number	Bit symbol	Description
7~0	DITT I SEL 7.0	CSD pull up current source size selection switch. The
	PULL_I_SEL<7:0>	default is 0.

SNS_ANA_CFG (D2H) CSD scan parameter configuration register

Bit number	7	6	5	4	3	2	1	0	
Symbol	-	-		RB_SEL		VTH_SEL			
R/W	-	-	R/W				R/W		
Reset value	-	-	1	0	1	1	0	1	

Bit number	Bit symbol	Description
5~4	RB_SEL	Rb resistance size selection. 100: 60k; 101: 80k; Other: reserved Need to read Rb80K calibration value from chip flash when using: CBYTE [0x401E] k/80k, proportional calculation normalization sensitivity.
2~1	VTH_SEL	VTH voltage selection signal 000: 1.4V, 001: 2.1V; 010: 2.5V; 011: 2.8V; 100: 3.2V; 101: 3.5V; 110: 3.9V; 111: 4.1V.

SNS_IO_SEL1(D3H) SNS channel select register 1

Bit number	7 6 5 4 3 2 1							0
Symbol		SNS_IO_SEL1 [7:0]						
R/W		R/W						
Reset value				()			

Bit number	Bit symbol	Description
	7~0 SNS_IO_SEL1 [7:0]	SNS_IO_SEL1 [7:0] corresponds to SNS7~SNS0.
7.0		The corresponding bit is
/~0		1: select SENSOR enable;
		0: do not select SENSOR enable

SNS_IO_SEL2 (D4H) SNS channel select register 2

Bit number	7	6	5	4	3	2	1	0
Symbol		SNS_IO_SEL2 [7:0]						
R/W		R/W						

Reset value

0

Bit number	Bit symbol	Description
		SNS_IO_SEL2[7:0] corresponds to SNS15~SNS8.
7~0	SNS_IO_SEL2	The corresponding bit is
/~0	[7:0]]	1: Select SENSOR to enable;
		0: Do not select SENSOR enable

SNS_IO_SEL3 (D5H) SNS channel select register 3

	, ,							
Bit number	7	6	5	4	3	2	1	0
Symbol		SNS_IO_SEL3 [7:0]						
R/W		R/W						
Reset value		0						

Bit number	Bit symbol	Description
		SNS_IO_SEL3 [7:0] corresponds to SNS23~SNS16.
7.0	CNC 10 CEI 2 [7.0]	The corresponding bit is
7~0	SNS_IO_SEL3 [7:0]	1: Select SENSOR to enable;
		0: Do not select SENSOR enable

SNS_IO_SEL4 (D6H) SNS channel select register 4

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	-	-	-	SNS_IO_SEL4[1:0]
R/W	-	-	-	-	-	-	-	R/W
Reset value	_	-	_	-	-	_	_	0

Bit number	Bit symbol	Description
1.0		SNS_IO_SEL4[1:0] corresponds to SNS25~SNS24. The corresponding bit is
1~0	SNS_IO_SEL4[1:0]	1: select SENSOR enable;
		0: Do not select SENSOR enable

RST_STAT (D7H) Reset flag register

Bit number	7	6	5	4	3	2	1	0
Symbol	-	DEBUG_F	SOFT_F	PROG_F	ADDROF_F	BO_F	PO_F	WDTRST_F
R/W	I	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset value	-	0	0	0	0	0	1	0

Bit number	Bit symbol	Description
7		Reserved
G	DEDLIC E	0: No effect;
0	6 DEBUG_F	1: Trim configuration reset occurred

5	SOFT F	0: No effect;
		1: Software reset occurred
4	PROG F	0: No effect;
+	4 PROG_F	1: A programming reset occurred
2	3 ADDROF_F	0: No effect;
5		1: PC pointer overflow reset occurred
2	DO E	0: No effect;
Z	BO_F	1: Power-down reset occurred
1		0: No effect;
1	PO_F	1: Brown-out reset occurred
	WDTDGT E	0: No effect;
0	WDTRST_F	1: Watchdog timer overflow reset occurred

PD_PB(D8H) PB port pull-down resistor enable register

Bit number	7	6	5	4	3	2	1	0
Symbol	PD_PB7	PD_PB6	PD_PB5	PD_PB4	PD_PB3	PD_PB2	PD_PB1	PD_PB0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset value	0	0	0	0	0	0	0	0

Bit number	Bit symbol	Description
	PD PBn	PB port pull-down resistor enable register
7~0	$(n=7\sim0)$	1: The pull-down resistor is enabled;
	(II-/~0)	0: The pull-down resistor is not enabled

ADC_IO_SEL1 (D9H) ADC function selection register 1

Bit number	7	6	5	4	3	2	1	0	
Symbol		ADC_IO_SEL1[7:0]							
R/W		R/W							
Reset value		0							

Bit number	Bit symbol	Description
		ADC_IO_SEL1[7:0] corresponds to ADC07~ADC00.
7.0		The corresponding bit is
7~0	ADC_IO_SEL1[7:0]	1: Select ADC function;
		0: Do not select ADC function

ADC_IO_SEL2(DAH) ADC function selection register 2

Bit number	7	6	5	4	3	2	1	0		
Symbol		ADC_IO_SEL2[7:0]								
R/W		R/W								
Reset value				()					

Bit number	Bit symbol	Description
		ADC_IO_SEL2[7:0] corresponds to ADC15~ADC08.
7.0		The corresponding bit is
/~0	~0 ADC_IO_SEL2[7:0]	1: Select ADC function;
		0: Do not select ADC function

ADC_IO_SEL3(DBH) ADC function selection register 3

	· /								
Bit number	7	6	5	4	3	2	1	0	
Symbol		ADC_IO_SEL3[7:0]							
R/W		R/W							
Reset value				()				

Bit number	Bit symbol	Description
		ADC_IO_SEL3[7:0] corresponds to ADC23~ADC16.
7~0		The corresponding bit is
/~0	ADC_IO_SEL3[7:0]	1: select ADC function;
		0: The ADC function is not selected

ADC_IO_SEL4(DCH) ADC function selection register 4

Bit number	7	6	5	4	3	2	1	0	
Symbol	-	-	-	-	-	-	ADC_IO_SEL4[1:0]		
R/W	-	-	-	-	-	-	R/W		
Reset value	-	-	-	-	-	-	0		

Bit number	Bit symbol	Description
		ADC_IO_SEL4[1:0] corresponds to ADC25~ADC24.
1.0		The corresponding bit is
1~0	ADC_IO_SEL4[1:0]	1: Select ADC function;
		0: Do not select ADC function

PU_PA (DDH) PA port pull-up resistor enable register

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	-	-	PU_PA1	PU_PA0
R/W	-	-	-	-	-	-	R/W	R/W
Reset value	-	-	-	-	-	-	0	0

Bit number	Bit sy	mbol	Description								
			Port PA pull-up resistor enable register								
1~0		-	1: The pull-up resistor is enabled;								
		0: The pull-up resistor is not enabled									
PU_PB(DEH) P	PU_PB(DEH) PB port pull-up resistor enable register										
Bit number		6	5	4	3	2	1	0			

Symbol	-
R/W	R/W
Reset value	0

Bit number	Bit symbol	Description
7~0		PB port pull-up resistor enable register1: The pull-up resistor is enabled;0: The pull-up resistor is not enabled

PU_PC(DFH) PC port pull-up resistor enable register

Bit number	7	6	5	4	3	2	1	0			
Symbol		_									
R/W		R/W									
Reset value		0									

Bit number	Bit symbol	Description
		PC port pull-up resistor enable register
7~0		1: The pull-up resistor is enabled;
		0: The pull-up resistor is not enabled

ACC(E0H) Accumulator

()											
Bit number	7	6	5	4	3	2	1	0			
Symbol		ACC									
R/W		R/W									
Reset value				()						

Bit number	Bit symbol	Description
7~0	ACC	Accumulator The targe register is suitable for all arithmetic and logic operations.

IRCON2 (E1H) Interrupt flag register 2

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	-	IE10	IE9	IE8
R/W	-	-	-	-	-	R/W	R/W	R/W
Reset value	_	_	_	_	-	0	0	0

Bit number	Bit symbol	Description
7~3		Reserved
		UART1 interrupt flag
2	IE10	1: There is a UART1 interrupt flag;
		0: No UART1 interrupt flag

1	IE9	UART0 interrupt flag 1: There is a UART0 interrupt flag;
1	1 IE9	0: No UARTO interrupt flag
		LVDT interrupt flag
0	IE8	1: There is a LVDT interrupt flag;
		0: No LVDT interrupt flag

PU_PD (E2H) PD port pull-up resistor enable register

Bit number	7	6	5	4	3	2	1	0
Symbol	_							
R/W		R/W						
Reset value		0						

Bit number	Bit symbol	Description
		PD port pull-up resistor enable register
7~0		1: The pull-up resistor is enabled;
		0: The pull-up resistor is not enabled

IICADD (E3H) IIC address register

Bit number	7	6	5	4	3	2	1	0
Symbol		IICADD[7:1]						-
R/W		R/W					-	
Reset value		0					-	
IICBUF (E4H)	IICBUF (E4H) IIC transmit and receive data register							
Bit number	7	6	5	4	3	2	1	0
Symbol				IIC	BUF			
R/W	R/W							
Reset value					0			

Bit number	Bit symbol	Description			
7~0	IICBUF	IIC transmit receive data buffer			
UCCON (ESU) UC configuration register					

IICCON (E5H) IIC configuration register

Bit number	7	6	5	4
Symbol	_	_	IIC_RST	RD_SCL_EN
R/W	-	-	R/W	R/W
Reset value	—	—	0	1
Bit number	3	2	1	0
Symbol	WR_SCL_EN	SCLEN	SR	IIC_EN
R/W	R/W	R/W	R/W	R/W
Reset value	0	0	0	0

Bit number	Bit symbol	Description
7~6		Reserved
		IIC module reset signal
5	IIC_RST	1: IIC module reset operation
		0: IIC module works properly
		Host read pull low clock line control bit.
4	RD_SCL_EN	1: enable the host to read and pull the low clock line function;
		0: disable the host to read and pull the low clock line function.
		Host write pull low clock line control bit.
3	WR_SCL_EN	1: enable the host to write and pull the low clock line function;
		0: disable the host to write and pull the low clock line function.
		IIC clock enable bit
2	SCLEN	1: clock work properly
		0: pull down the clock line.
		IIC conversion rate control bit
		1: conversion rate control is turned off to adapt to the standard
1	SR	speed mode (100K);
		0: conversion rate control is enabled to adapt to fast speed mode
		(400K)
		IIC work enable bit
0	IIC_EN	1: IIC normal work;
		0: IIC not work

IEN1 (E6H) Interrupt enable register 1

Bit number	7	6	5	4	3	2	1	0
Symbol	EX7	EX6	EX5	EX4	EX3	EX2	-	-
R/W	R/W	R/W	R/W	R/W	R/W	R/W	-	-
Reset value	0	0	0	0	0	0	_	-

Bit number	Bit symbol	Description
7		WDT/Timer2 interrupt enable
7	EX7	1: interrupt enable; 0: interrupt disable
E	EX6	External interrupt 3 interrupt enable
6	EAU	1: Interrupt enable; 0: Interrupt disable
F	EX5	CSD interrupt enable
5	EAJ	1: interrupt enable; 0: interrupt disable
4	EX4	ADC interrupt enable
4	EA4	1: interrupt enable; 0: interrupt disable
2	EV2	IIC interrupt enable
3	3 EX3	1: interrupt enable; 0: interrupt disable
2	EX2	External interrupt 2 interrupt enable

			1: interrupt enable; 0: interrupt disable					
1~0		-	Reserved					
IEN2(E7H) Interrupt enable register 2								
Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	-	EX10	EX9	EX8
R/W	-	-	-	-	-	R/W	R/W	R/W
Reset value	_	_	_	_	_	0	0	0

Bit number	Bit symbol	Description
7~3	-	Reserved
		UART1 interrupt enable
2	EX10	1: interrupt enable;
		0: interrupt disable
		UART0 interrupt enable
1	EX9	1: interrupt enable;
		0: interrupt disable
		LVDT interrupt enable
0	EX8	1: interrupt enable;
		0: interrupt disable

IICSTAT (E8H) IIC status register

Bit number	7	6	5	4
Symbol	IIC_START	IIC_STOP	IIC_RW	IIC_AD
R/W	R	R	R	R
Reset value	0	1	0	0
Bit number	3	2	1	0
Symbol	IIC_BF	IIC_ACK	IIC_WCOL	IIC_RECOV
R/W	R	R	R/W	R/W
Reset value	0	1	0	0

Bit number	Bit symbol	Description
		Start signal flag
7	IIC_START	1: boot bit detected;
		0: no boot bit detected
		Stop signal flag
6	6 IIC_STOP	1: stop status detected;
		0: no stop status detected
		Read and write flag.
F		Record the read/write information obtained from the address
5	IIC_RW	byte after the last address match.
		1: read; 0: write.

		Address data flag bit.
4		1: indicates that the most recently received or sent byte is data;
4	IIC_AD	0: indicates that the most recently received or sent byte is
		address.
		IICBUF full flag.
		Received in IIC bus mode:
		1: received successfully, buffer is full;
		0: received successfully, buffer is empty.
3	IIC_BF	Send in IIC bus mode:
		1: data transmission is in progress (does not include the
		acknowledge bit and the stop bit), buffer is full;
		0: data transmission has been completed (does not include the
		acknowledge bit and the stop bit), buffer is empty.
		Answer flag
2	IIC_ACK	1: invalid response signal;
		0: effective response signal.
		Write conflict flag.
		1: when the IIC is transmitting the current data, the new data is
1	IIC_WCOL	attempted to be written to the transmit buffer; new data cannot
		be written to the buffer.
		0: no write conflict
		Receive overflow flag bit
		1: When the previous data received by the IIC has not been
0	IIC_RECOV	taken, new data is received, the new data cannot be received by
		the buffer.
		0: no receive overflow.

IICBUFFER (E9H) IIC transmit and receive data buffer register

Bit number	7	6	5	4	3	2	1	0
Symbol	IICBUFFER							
R/W		R/W						
Reset value		0						

TRISA (EAH) PA port direction register

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	-	-	-	-
R/W	-	-	-	-	-	-	R/W	R/W
Reset value	-	_	_	-	-	_	1	1

Bit number	Bit symbol	Description
1~0		PA direction register,
		0: output; 1: input

TRISB(EBH) PB port direction register

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	-	-	-	-
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset value	1	1	1	1	1	1	1	1

Bit number	Bit symbol	Description
7.0		PB direction register,
/~0	7~0	0: output; 1: input

TRISC(ECH) PC port direction register

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	-	-	-	-
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset value	1	1	1	1	1	1	1	1

Bit number	Bit symbol	Description
7~0		PC direction register,
		0: output; 1: input

TRISD(EDH) PD port direction register

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	-	-	-	-
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset value	1	1	1	1	1	1	1	1

Bit number	Bit symbol	Description
7~0		PD direction register,
		0: output; 1: input

COM_IO_SEL (EEH) COM port selection configuration register

Bit number	7	6	5	4	3	2	1	0
Symbol	COM7	COM6	COM5	COM4	COM3	COM2	COM1	COM0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset value	0	0	0	0	0	0	0	0

Bit number	Bit symbol	Description				
7~0		COM port selection configuration register, PB port				
		corresponds to bit selection				
		1: Select the COM port mode and turn on the high current				
		function;				
		0: select IO port mode				

ODRAIN_EN (EFH) PA0/PA1/PD6 port open drain enable register

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	-	-	-	-
R/W	-	-	-	-	-	R/W	R/W	R/W
Reset value	-	-	-	-	-	0	0	0

Bit number	Bit symbol	Description
2~0		PA0/PA1/PD6 open-drain output enable register
		Bit[0]: PA0, Bit[1]: PA1, Bit[2]: PD6
		1: Open drain output;
		0: CMOS output

B (F0H) B register

Bit number	7	6	5	4	3	2	1	0		
Symbol		В								
R/W		R/W								
Reset value		0								

Bit number	Bit symbol	Description			
7~0	В	B register: the source and destination registers of multiplication and division operations.			
PCON1 (E1H) Interrupt flag register 1					

IRCON1 (F1H) Interrupt flag register 1

Bit number	7	6	5	4	3	2	1	0
Symbol	IE7	IE6	IE5	IE4	IE3	IE2	-	-
R/W	R/W	R/W	R/W	R/W	R/W	R/W	-	-
Reset value	0	0	0	0	0	0	-	-

Bit number	Bit symbol	Description
		WDT/Timer2 interrupt flag
7	IE7	1: There is a WDT/Timer2 interrupt flag;
		0: No WDT/Timer2 interrupt flag
		External interrupt 3 interrupt flag
6	IE6	1: There is a External interrupt 3 interrupt flag;
		0: No External interrupt 3 interrupt flag
		CSD interrupt flag
5	IE5	1: There is a CSD interrupt flag;
		0: No CSD interrupt flag
		ADC interrupt flag
4	IE4	1: There is a ADC interrupt flag;
		0: No ADC interrupt flag
3	IE3	IIC interrupt flag

		1: There is a IIC interrupt flag;
		0: No IIC interrupt flag
		External interrupt 2 interrupt flag
2	IE2	1: There is a INT2 interrupt flag;
		0: No INT2 interrupt flag
1~0	_	Reserved

PERIPH_IO_SEL (F2H) IIC /INT function control register

Bit number	7	6	5	4	3
Symbol	-	IIC_AFIL_SEL	IIC_DFIL_SEL	IIC_IO_SEL	
R/W	-	R/W	R/W	R/W	R/W
Reset value	-	1	0	0	0
Bit number	2	1	0	/	
Symbol	INT2_IO_SEL	INT1_IO_SEL	INT0_IO_SEL		
R/W	R/W	R/W	R/W	/	
Reset value	0	0	0		

Bit number	Bit symbol	Description
		IIC port analog filter selection enable
6	IIC_AFIL_SEL	1: select analog filter function;
		0: do not select analog filter function.
		IIC port digital filter selection enable.
5	IIC_DFIL_SEL	1: select digital filter function;
		0: do not select digital filter function.
		IIC select enable
		0: PA0/PA1 select IIC function;
		1: PB5/PC0 select IIC function;
4~3	IIC_IO_SEL	2: PA1/PD6 select IIC function
4~3		(When PB5/PC0 is used as IIC port, there is no SR control
		function, automatic logic control becomes open-drain
		output, when PB5/PC0 is used as GPIO, there is no
		open-drain output function)
		INT2 select enable, correspond PD7
2	INT2_IO_SEL	1: select INT2 function
		0: not select INT2 function
		INT1 select enable, correspond PD6
1	INT1_IO_SEL	1: select INT1 function
		0: not select INT1 function
		INT0 select enable, correspond PD0
0	INT0_IO_SEL	1: select INTO function
		0: not select INT0 function

IPL2 (F4H) Interrupt priority register 2

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	-	IPL2.2	IPL2.1	IPL2.0
R/W	-	-	-	-	-	R/W	R/W	R/W
Reset value	-	-	-	-	-	0	0	0

Bit number	Bit symbol	Description
7~3		Reserved
2		UART1 interrupt priority.
2	IPL2.2	0: low priority; 1: high priority
1		UART0 interrupt priority.
1	IPL2.1	0: low priority; 1: high priority
0		LVDT interrupt priority.
0	IPL2.0	0: low priority; 1: high priority

IPL1 (F6H) Interrupt priority register 1

Bit number	7	6	5	4	3	2	1	0
Symbol	IPL1.7	IPL1.6	IPL1.5	IPL1.4	IPL1.3	IPL1.2	-	-
R/W	R/W	R/W	R/W	R/W	R/W	R/W	-	-
Reset value	0	0	0	0	0	0	-	-

Bit number	Bit symbol	Description
7	IPL1.7	WDT/Timer 2 interrupt priority.
/	IFL1./	0: low priority; 1: high priority
6	IPL1.6	External interrupt 3 interrupt priority.
0	IFL1.0	0: low priority; 1: high priority
5	IPL1.5	CSD interrupt priority.
3	IPL1.5	0: low priority; 1: high priority
4		ADC interrupt priority.
4	IPL1.4	0: low priority; 1: high priority
2	IDI 1 2	IIC interrupt priority.
3	IPL1.3	0: low priority; 1: high priority
2		External interrupt 2 priority.
2	IPL1.2	0: low priority; 1: high priority
1~0		Reserved

EXT_INT_CON (F7H) External interrupt polarity control register

Bit number	7	6 5		4
Symbol	-	INT3_POLARITY	INT2_POLARITY	
R/W	-	R/W	R/W	R/W
Reset value	-	0	0	1

Bit number	3	2	1	0	
Symbol	INT1_PC	DLARITY	INT0_POLARITY		
R/W	R/W	R/W	R/W	R/W	
Reset value	0	1	0	1	

Bit number	Bit symbol	Description
		External interrupt 3_x trigger polarity selection:
6	INT3_POLARITY	1: Rising edge (high level wake-up in low power mode)
		0: Falling edge (low-level wake-up in low-power mode)
		External interrupt 2 trigger polarity selection:
5~4		01: Falling edge (low-level wake-up in low-power mode)
3~4	INT2_POLARITY	10: rising edge (high level wake-up in low power mode)
		00/11: Double edge (low-level wake-up in low-power mode)
		External interrupt 1 trigger polarity selection:
3~2	INTI DOI ADITY	01: Falling edge (low-level wake-up in low-power mode)
5~2	INT1_POLARITY	10: rising edge (high level wake-up in low power mode)
		00/11: Double edge (low-level wake-up in low-power mode)
		External interrupt 0 trigger polarity selection:
1.0		01: Falling edge (low-level wake-up in low-power mode)
1~0	INT0_POLARITY	10: rising edge (high level wake-up in low power mode)
		00/11: Double edge (low-level wake-up in low-power mode)

DATAA (F8H) PA data register

× /									
Bit number	7	6	5	4	3	2	1	0	
Symbol	-	-	-	-	-	-	PA1	PA0	
R/W	-	-	-	-	-	-	R/W	R/W	
Reset value	-	_	-	-	-	_	1	1	

Bit number	Bit symbol	Description
		PA data register. The output level of the PA group can be
1~0		configured as the GPIO port. The read value is the level state
1~0		of the current IO port (input) or the configured output (output)
		value.

SPROG_ADDR_L(FAH) EEPROM address control register

Bit number	7	6	5	4	3	2	1	0
Symbol				-	-			
R/W		R/W						
Reset value				()			

	EEPROM block address low 8 bits
7~0	 SPROG_ADDR_L [3:0]: select the address in the page,
	SPROG_ADDR_L [7:4]: select the page.

SPROG_DATA(FBH) EEPROM data register

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	-	-	-	-
R/W	-	-	-	-	R/W	R/W	R/W	R/W
Reset value	-	-	_	-	0	0	0	0

Bit number	Bit symbol	Description
3~0		EEPROM programming: the number of data to be written (0~15) (SPROG_NUM*2bytes) When SPROG_NUM=0, it means that only 1 data is programmed

SPROG_CMD(FCH) EEPROM command register

Bit number	7	6	5	4	3	2	1	0
Symbol		_						
R/W		R/W						
Reset value		0						

Bit number	Bit symbol Description		
7~0		Write 0x96: EEPROM page erase;	
		Write 0x69: EEPROM byte programming	

SPROG_TIM (FDH) EEPROM erase time control register

Bit number	7	6	5	4	3	2	1	0
Symbol	Ι	—	_		_	Ι		_
R/W	-	—	_	-	R/W	R/W	R/W	R/W
Reset value	Ι	_	_		0	0	1	0

Bit number	Bit symbol	Description
7~4		Reserved
3~2		0~3 data writing time=1.50~2.25ms (step 0.25ms)
		00: Data writing time=1.50ms;
		01: Data writing time = 1.75ms;
		10: Data writing time=2.00ms;
		11: Data writing time = 2.25ms
		Note: The time for writing single or multiple words is the
		time selected above
1~0		0~3 page erasing time=2.25~3.00ms (step 0.25ms)

	00: page erasing time = 2.25 ms;
	01: Page erasing time=2.50ms;
	10: Page erase time=2.75ms;
	11: Page erase time=3.00ms

PD_ANA (FEH) Module switch control register

Bit number	7~4	3	2	1	0
Symbol	-	PD_OSC_32K	PD_XTAL_32K	PD_CSD	PD_ADC
R/W	-	R/W	R/W	R/W	R/W
Reset value	-	0	1	1	1

Bit number	Bit symbol	Description
2	DD OSC 22V	LIRC control register
3	PD_OSC_32K	1: off; 0: on, default on
		RTC crystal oscillator circuit (32768Hz) control register.
2	2 PD_XTAL_32K	1: close;
		0: open; default close.
		Analog CSD work control register:
1	PD_CSD	0: CSD module works normally;
		1: CSD module does not work
		Analog ADC shutdown control register
0	PD_ADC	0: ADC module works normally;
		1: ADC module does not work

BOR_SEL(FFH) BOR control register

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	PD_BOR	SEL_BOR_DELAY	SEI	L_BOR_V	VTH
R/W	-	-	-	R/W	R/W	/W R/W		
Reset value	-	-	-	1	1		0	

Bit number	Bit symbol	Description
4	PD_BOR	BOR control register
		1: close; 0: open, close by default
		Note: It is recommended to open BOR without delay when
		the program is first initialized
3	SEL_BOR_DELAY	Select the signal, select the power-down delay of BOR
		0: Delay time 1; 1: Delay time 2
2~0	SEL_BOR_VTH	BOR threshold selection
		000: reserved; 001: 2.8V; 010: 3.3V;
		011: 3.7V; 1xx: 4.2V

Note:

1. The reserved register and the reserved bits of the register are forbidden to write operation, otherwise the chip may be abnormal.

4.2. Secondary Bus Registers Detailed Description

OH) Configuration word register 0								
7	6	5	4	3	2	1	0	
	CFG0_REG[7:0]							
	R							
]	FF				
H) Config	uration wo	ord register	r 1					
7	6	5	4	3	2	1	0	
			CFG1_	REG[7:0]				
				R				
				1F				
02H) Configuration word register 2								
7	6	5	4	3	2	1	0	
	CFG2_REG[7:0]							
	R							
	3F							
H) Config	H) Configuration word register 3							
7	6	5	4	3	2	1	0	
			CFG3_	REG[7:0]				
				R				
]	FF				
H) Config	uration wo	ord register	r 4					
7	6	5	4	3	2	1	0	
	CFG4_REG[7:0]							
				R				
				10				
H) Config	uration wo	ord register	r 5					
7	6	5	4	3	2	1	0	
			CFG5_	REG[7:0]				
				R				
				FF				
	7 H) Config 7	7 6 H) Configuration wo T 6	7 6 5 H) Configuration word registe 7 6 5	7654 $CFG0_{-}$ H) Configuration word register 17654CFG1_H) Configuration word register 27654CFG2_H) Configuration word register 37654CFG3_H) Configuration word register 47654CFG4_CFG4_CFG4_H) Configuration word register 4765765765765765765765765765765765CFG5_	76543 7 6543CFG0_REG[7:0]R76543CFG1_REG[7:0]76543CFG2_REG[7:0]R3FH) Configuration word register 276543CFG2_REG[7:0]R3FH) Configuration word register 376543CFG3_REG[7:0]RFFH) Configuration word register 476543CFG4_REG[7:0]R10H) Configuration word register 476543CFG4_REG[7:0]R10H) Configuration word register 5	7 6 5 4 3 2 CFG0_REG[7:0] R FF H) Configuration word register 1 7 6 5 4 3 2 7 6 5 4 3 2 2 CFG1_REG[7:0] R 1F H) Configuration word register 2 7 6 5 4 3 2 CFG2_REG[7:0] R 3F H) Configuration word register 3 7 6 5 4 3 2 CFG3_REG[7:0] R FF H) Configuration word register 4 7 6 5 4 3 2 CFG4_REG[7:0] R 10 H) Configuration word register 5 7 6 5 4 3 2 CFG4_REG[7:0]	7 6 5 4 3 2 1 CFG0_REG[7:0] R FF H) Configuration word register 1 7 6 5 4 3 2 1 CFG1_REG[7:0] R TF H) Configuration word register 2 7 6 5 4 3 2 1 CFG2_REG[7:0] R 3F H) Configuration word register 3 7 6 5 4 3 2 1 CFG3_REG[7:0] R FF H) Configuration word register 4 7 6 5 4 3 2 1 CFG4_REG[7:0] R 10 H) Configuration word register 5 7 6 5 4 3 2 1	

Bit number	Bit symbol	Description
7~0	-	Configuration word register
		The written value is SFR, the read value is the effective value,

CFG0_REG (00H) Configuration word register 0

			nd the con		word or Sl	FR is selec	ted accord	ing to
CFG6_REG (06	6H) Config	H) Configuration word register 6						
Bit number	7	6	5	4	3	2	1	0
Symbol				CFG6_	REG[7:0]			
R/W					R			
Reset value]	FF			
CFG7_REG (07	7H) Config	uration w	ord register	r 7	_			
Bit number	7	6	5	4	3	2	1	0
Symbol				CFG7_	REG[7:0]			
R/W					R			
Reset value					03			
CFG8_REG (08	BH) Config	uration w	ord register	r 8			1	
Bit number	7	6	5	4	3	2	1	0
Symbol				CFG8_	REG[7:0]			
R/W					R			
Reset value]	FF			
CFG9_REG (09	9H) Config	uration w	ord register	r 9	•			
Bit number	7	6	5	4	3	2	1	0
Symbol		CFG9_REG[7:0]						
R/W	R							
Reset value	FF							
CFG10_REG (0	OAH) Conf	iguration	word regis	ter 10				
Bit number	7	6	5	4	3	2	1	0
Symbol		CFG10_REG[7:0]						
R/W					R			
Reset value]	FF			
CFG11_REG (0)BH) Conf	iguration	word regist	ter 11				
Bit number	7	6	5	4	3	2	1	0
Symbol				CFG11_	REG[7:0]			
R/W		R						
Reset value		03						
CFG12_REG (0	OCH) Conf	iguration	word regist	ter 12				
Bit number	7	6	5	4	3	2	1	0
Symbol				CFG12_	_REG[7:0]			
R/W		R						
Reset value		FF						
CFG13_REG (0	DH) Conf	DH) Configuration word register 13						
Bit number	7	6	5	4	3	2	1	0

Symbol	CFG13_REG[7:0]							
R/W	R							
Reset value				F	F			
CFG14_REG (0	EH) Confi	iguration w	ord registe	er 14				
Bit number	7	6	5	4	3	2	1	0
Symbol				CFG14_I	REG[7:0]			
R/W				I	R			
Reset value				F	F			
CFG15_REG (0	15_REG (0FH) Configuration word register 15							
Bit number	7	6	5	4	3	2	1	0
Symbol	CFG15_REG[7:0]							
R/W	R							
Reset value	01							
CFG30_REG (1	0H) Confi	guration w	ord registe	er 16				
Bit number	7	6	5	4	3	2	1	0
Symbol				CFG30_I	REG[7:0]			
R/W				I	R			
Reset value	FF							
OSC_SFR_SEL	(1CH) ADJ_OSC selection register							
Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	-	-	-	-
R/W	-	-	-	-	-	-	R/W	R/W
Reset value	-	-	-	-	-	-	0	0

Bit number	Bit symbol	Description
1~0		Register ADJ_OSC effective value selection
		10: Select SFR write value;
		Other: select configuration word
		Note: Read the OSC calibration value and control it within
		±10% of the CFG5_REG[7:0] calibration value

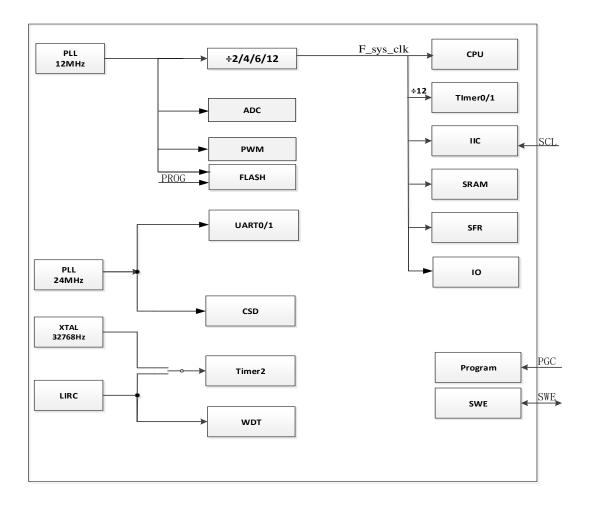
REG_ADDR (96H) Secondary bus address configuration register

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-			REG_AI	DDR[5:0]		
R/W	-	-	R/W	R/W	R/W	R/W	R/W	R/W
Reset value	-	_	0	0	0	0	0	0

Bit number	Bit symbol	Description
5~0	REG_ADDR[5:0]	Secondary bus address configuration register
		When operating the secondary bus register, it is

recommended to read and write the secondary bus register, first $EA = 0$, and then $EA = 1$ after the operation is
completed, to prevent other interrupts or operations from modifying the address or data of the secondary bus register

REG_DATA (97H) Secondary bus data read and write registers


Bit number	7	6	5	4	3	2	1	0
Symbol		REG_DATA[7:0]						
R/W		R/W						
Reset value	0							

Bit number	Bit symbol	Description
7~0	REG_DATA[7:0]	Secondary bus data read and write registers: It is
		recommended to read and write secondary bus registers, first
		EA = 0, and then $EA = 1$ after the operation is completed, to
		prevent other interrupts or operations from modifying the
		secondary bus register address or data

5. Clock, Reset, Work Mode, WDT

5.1. Clock Definition

Clock block diagram

The BF7412AMXX-XJLX series clock is defined as follows:

PLL_12MHz: Frequency 12MHz, gate control module enabled, used as ADC, Flash, PWM control, clock source and system clock after frequency division.

F_sys_clk: Frequency 6MHz/3MHz/2MHz/1MHz, which can be used as a core-related clock.

XTAL32768Hz: external 32768 Hz precision clock, which can be used as Timer2 clock.

RC1MHz: built-in RC oscillator with a frequency of 1MHz and PLL clock.

LIRC: internal low-speed clock, this clock is used as watchdog clock and Timer2 clock.

PLL_24MHz: The frequency is 24MHz, the gating module is enabled, and it is used as the CSD and UART clock source.

SCL: IIC master clock, sent by the IIC Master, as the IIC communication clock.

PGC: Programming clock, download clock when programming and burning programs.

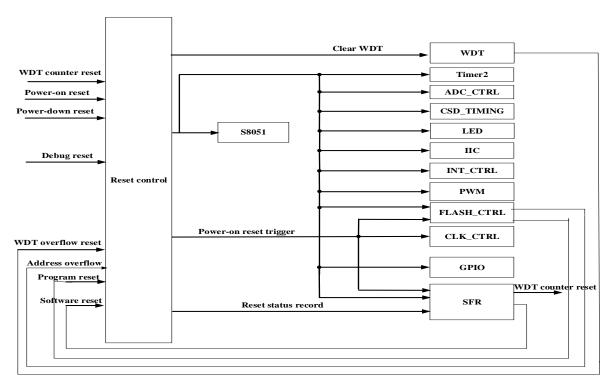
5.2. Clock Related Registers

Bit number	7	6	5	4	3	2	1	0		
Symbol	-	-	-	-	-	WAIT_MODE	PLL_CLK_SEL			
R/W	-	-	-	-	-	R/W	R/W			
Reset value	-	-	-	-	-	0	0	1		

SYS_CLK_CFG (84H) Clock control register

Bit number	Bit symbol	Description			
7~3		Reserved			
		WAIT mode enable			
2	WAIT_MODE	1: The chip enters WAIT mode;			
		0: The chip exits WAIT mode			
		PLL clock divided selection register			
		00: 6MHz;			
1~0	PLL_CLK_SEL	01: 3MHz;			
		10: 2MHz;			
		11: 1MHz			

PD_ANA (FEH) Module switch control register


Bit number	7~4	3	2	1	0
Symbol	-	PD_OSC_32K	PD_XTAL_32K	PD_CSD	PD_ADC
R/W	-	R/W	R/W	R/W	R/W
Reset value	-	0	1	1	1

Bit number	Bit symbol	Description
2	DD OGC 20K	LIRC control register
3	PD_OSC_32K	1: off; 0: on, default on
		RTC crystal oscillator circuit (32768Hz) control register.
2	PD_XTAL_32K	1: close;
		0: open; default close.

5.3. Reset

There are 7 reset modes in BF7412AMXX-XJLX: WDT overflow reset (WDTRST_F), power on reset (PO_F), brown-out reset (BO_F), program reset (PROG_F), debug reset (DEBUG_F), PC pointer overflow reset (ADDROF_F), software reset (SOFT_F). Any one of above reset, global will make chip reset. We can judge the reset flag register which reset happen, the reset must be cleared by software.

Reset block diagram

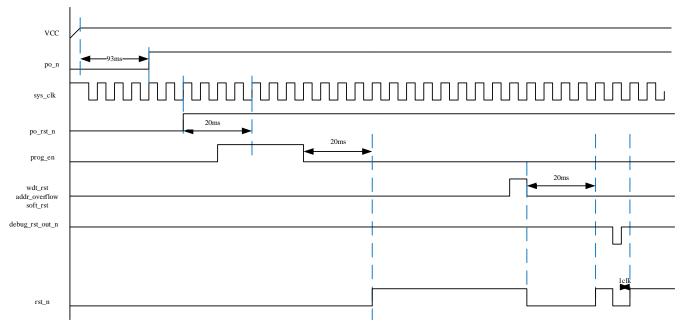
5.3.1. Reset sequence

po_n: Power-on reset, the analog module is generated after the system is powered on, and the system exits the reset mode.

bo_n: Power-down reset, the analog module generates a low-level signal after the system has a power-down reset. When the power-down reset signal is low, the entire chip is in the reset state. After the global reset signal becomes high, the system exits the reset mode after the global reset signal continues to be valid for 20ms.

prog_en: Programming reset. When prog_en is high, it is the programming mode of FLASH. At this time, the global reset signal is valid. After it goes low, the global reset signal continues to be valid for 20ms.

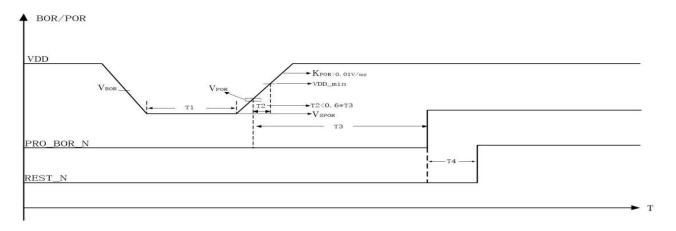
soft_rst: software reset, the soft reset signal is valid by writing SFR, and the global reset signal is valid for 20ms. After 20ms, the system exits the reset mode.


wdt_rst: The watchdog timer overflows and resets. After the watchdog timer overflows, the global

reset is 20ms. After 20ms, the system exits the reset mode.

addr_overflow: PC pointer overflow reset. If the PC pointer exceeds the valid address range of the flash when the MCU addresses the program memory, the addr_overflow signal becomes high, and the sys_clk clock rising edge detects the high level of addr_overflow (requires 1 clock cycle) and resets the global 20ms, the reset signal will clear the addr_overflow signal to zero. After 20ms, the system exits the reset mode.

debug_rst_out_n: trim configuration reset, output a reset signal for the core trim module, low means reset is effective, chip global reset, but there will not be a 20ms initialization process, only delay 1 system clock reset low level.


Reset timing diagram

Reset sequence description:

- 1. The chip has a power-on reset, and the analog POR module delays for 93ms, and po_n is pulled high.
- 2. The programmer sends instructions to make the chip enter the programming mode (prog_en is pulled high), and the system is in a global reset state in the programming mode. After the programming is completed, the programming mode is exited. After a delay of 20ms, rst_n is pulled high and the chip enters normal operation.
- 3. During normal operation, any one of watchdog reset, address overflow reset, and soft reset occurs, rst_n is pulled low, after a delay of 20ms, rst_n is pulled high, and the chip enters normal operation.
- 4. In debug mode, configure debug reset, pull down rst_n, pull up 1 system clock in debug_rst_out_n, pull up rst_n, and the chip enters normal operation.

Power-up/power-down sequence:

Power-on reset diagram

Symbol	Parameter	Min	Тур	Max	Unit
VSPOR	Power on reset start voltage	-	-	300	mV
KPRO	Power on reset voltage rate	0.01	-	-	V/ms
VPOR	Power on reset voltage	1.1	1.5	2.2	V
VBOR	Brownout reset voltage ($\pm 10\%$), hysteresis 0.2V	-	VBOR	-	V
VDD_min	Minimum operating voltage	2.7	-	-	V
T1	VDD keep VSPOR time	0.1	-	-	ms
T2	VPOR from VDD_min time	-	-	0.6*T3	ms
T3	Reset POR_BOR_N duration	55	93	131	ms
T4	Global reset effective time	-	20	-	ms

BOR/POR Parameters:

Note: VBOR voltage is selected by register BOR_SEL[2:0].

When VDD is affected by the load or severely disturbed, if the voltage drops into the voltage dead zone and the chip is not within the working voltage range, it may cause the system to work abnormally, such as EEPROM-like data loss. The function of power-down reset (BOR) is to monitor when VDD drops to the BOR voltage, the MCU can generate a power-down reset in advance to avoid system errors.

Suggestions to prevent entering the voltage dead zone and reduce the probability of system error:

- BOR is turned on when the program is first initialized, and BOR is turned on without delay
- Increase the voltage drop slope

5.3.2. Reset System Register

SFR 寄存器										
地址		名称	名称 读写 复位值 说明							
0x8E	SOI	T_RST	RW	RW 0000_0000b			Soft reset register			
0xD7	RST	[_STAT	RW	RW x000_0010b			Reset flag register			
0xFF	BO	R_SEL	RW	W xxx1_1000b		BOR control register				
SOFT_RS	Г(8EI	H) Soft res	et register							
Bit numl	ber	7	6	5	4	3	2	1	0	
Symbo	ol					-				
R/W					R	/W				
Reset va	lue					0				

Bit number	Bit symbol	Description
7~0		Software reset register. Software reset is only generated
, ,		when the register value is 0x55.

RST_STAT (D7H) Reset flag register

Bit number	7	6	5	4	3	2	1	0		
Symbol	-	DEBUG_F	SOFT_F	PROG_F	ADDROF_F	BO_F	PO_F	WDTRST_F		
R/W	-	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset value	-	0	0	0	0	0	1	0		

Bit number	Bit symbol	Description			
7		Reserved			
6	DEBUG_F	0: No effect;			
0	DEDUG_F	1: Trim configuration reset occurred			
5	SOET E	0: No effect;			
5	SOFT_F	1: Software reset occurred			
4		0: No effect;			
4	PROG_F	1: A programming reset occurred			
3		0: No effect;			
3	ADDROF_F	1: PC pointer overflow reset occurred			
2		0: No effect;			
2	BO_F	1: Power-down reset occurred			
1		0: No effect;			
1	PO_F	1: Brown-out reset occurred			
0	WDTDCT F	0: No effect;			
0	WDTRST_F	1: Watchdog timer overflow reset occurred			

Power-on reset RST_STAT register reset value 0x02; other mode reset: the reset flag bit

corresponding to the RST_STAT register is 1, other reset flag bits keep their original state. BOR_SEL(FFH) BOR control register

Bit number	7	6	5	4	3	2 1		0
Symbol	-	-	I	PD_BOR	SEL_BOR_DELAY	SEL_BOR_VTH		/TH
R/W	-	-	-	R/W	R/W	R/W		
Reset value	-	-	-	1	1	0		

Bit number	Bit symbol	Description
4	PD_BOR	BOR control register
		1: close; 0: open, close by default
		Note: It is recommended to open BOR without delay when
		the program is first initialized
3	SEL_BOR_DELAY	Select the signal, select the power-down delay of BOR
		0: Delay time 1; 1: Delay time 2
2~0	SEL_BOR_VTH	BOR threshold selection
		000: reserved; 001: 2.8V; 010: 3.3V;
		011: 3.7V; 1xx: 4.2V

BOR_SEL register is connected to power-on reset: state is 0x18, other resets will not change the configuration value.

Delay selection		BOR					
Delay selection SEL_BOR_DELAY	SEL_BOR_VTH	Power down	Recovery	Hysteresis	Delay		
SEL_DOK_DELA I		threshold (V)	threshold (V)	(V)	(µs)		
	000	-	-	-	-		
	001	2.8	2.9	0.1	83.9		
0	010	3.3	3.4	0.1	97.6		
	011	3.7	3.8	0.1	107.2		
	1XX	4.2	4.3	0.1	117.2		
	000	-	-	-	-		
	001	2.8	2.9	0.1	167.8		
1	010	3.3	3.4	0.1	195.7		
	011	3.7	3.8	0.1	215.1		
	1XX	4.2	4.3	0.1	235.4		

5.4. Working Mode

The BF7412AMXX-XJLX series has 3 working modes, which can be selected according to different situations.

The BF7412AMXX-XJLX provides the SYS_CLK_CFG register, whose Bit2 can be configured to control the MCU into WAIT mode. The BF7412AMXX-XJLX provides the PCON register, the Bit0 of which can be configured to control the MCU into low power mode.

• Active mode

That is, the normal working mode, the modules keep working normally, and the functions of each module are controlled by the software configuration.

• Wait mode

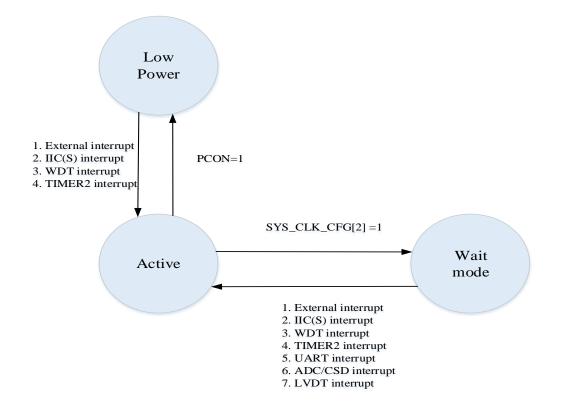
Enter Wait mode by writing 1 to SYS_CLK_CFG.2. Core related modules and PWM0 ~2 modules do not work, other modules can work and exit this mode by interrupt.

• Low_power mode

Enter low power mode by writing 1 to PCON.0. RC1M and PLL off, LIRC working, WDT/Timer2 configurable working. CPU and other digital modules are not working.

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	-	WAIT_MODE	PLL_CLK_SEL	
R/W	_	-	-	-	-	R/W R/W		W
Reset value	-	_	_	_	_	0	0	1

SYS_CLK_CFG (84H) Clock control register


Bit number	Bit symbol	Description
		WAIT mode enable
2	WAIT_MODE	1: The chip enters WAIT mode;
		0: The chip exits WAIT mode

PCON(87H) Low-power mode select register

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	-	-		LPM
R/W	-	-	-	-	-	-	-	R/W
Reset value	-	-	-	-	-	-	-	0

Bit number	Bit symbol	Description			
0	LPM	 Low power mode control 1: Low power consumption mode; 0: Normal mode, automatically cleared after waking up Note: After waking up, the software delay must be ≥100µs, otherwise the wake-up function is abnormal 			

Working mode conversion diagram

Ways to exit Wait mode:

• Enable any one of IIC, External Interrupt0, External Interrupt1, External Interrupt2, External Interrupt3, WDT, Timer2, CSD, ADC, LVDT, UART can wake up the chip, exit the Wait mode, and the CPU executes the interrupt service routine.

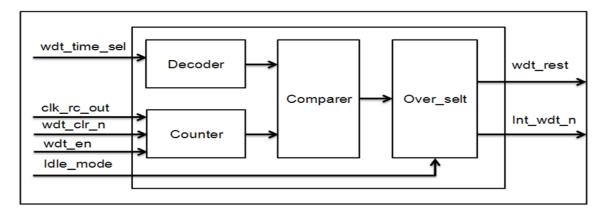
Ways to exit Low_power mode:

• Enable IIC, External Interrupt0, External Interrupt1, External Interrupt2, External Interrupt3, WDT, Timer2, any of them can wake up the chip and exit the Low_power mode. After the interrupt response is generated, the CPU executes the interrupt service routine related to the interrupt vector. And after the RETI return instruction is executed, it returns to the next instruction that causes the CPU to enter the Low_power mode to continue running the program.

Note: PCON = 0x01, BOR off can obtain lower power consumption, but the chip needs to ensure that it is in the normal operating voltage range ($2.7V \sim 5.5V$), if the chip power supply is unstable, resulting in less than 2.7V, it is strongly recommended that BOR be turned on.

Mode	Contions for entering this mode		Effect on the clock
		LIRC	work
A 1777	DCON A	XTAL32K	Depends on software configuration
Active/Wait	PCON=0	RC1M	work
		PLL	work
		LIRC	work
I D	DOON 1	XTAL32K	Depends on software configuration
Low Power	PCON=1	RC1M	close
		PLL	close

Working status table of clock source in each mode


NO	Madula Nama	Clask source		Work status	
NO	Module Name	Clock source	Active	Wait	Low Power
1	s8051	F_sys_clk	\checkmark	×	×
2	UART0~1	PLL_24M	According Configuration	According Configuration	×
3	PWM0~2	PLL_24M	According Configuration	- X	
4	Internal Timer0	F_sys_clk	According Configuration	×	×
5	Internal Timer1	F_sys_clk	According Configuration	×	×
6	External Timer2	LIRC/ XTAL32K	According Configuration	According Configuration	According Configuration
7	WDT	LIRC	According Configuration	According Configuration	According Configuration
8	ADC_CTRL	PLL_48M	According Configuration	According Configuration	×
9	CSD_Timing	PLL_48M	According Configuration	According Configuration	×
10	IIC(S)	F_sys_clk	According Configuration	According Configuration	According Configuration

Status table for each digital module in different modes

5.5. WDT

The WDT timing counting circuit uses the internal low-speed clock LIRC for timing, and the configurable timing time is 2^n*18ms (n=0,1,2,3,4,5,6,7)----- Here n is the configuration value of the timing configuration register.

Classification of WDT overflow signals due to the particularity of the system applications: In normal mode, if the WDT overflow occurs, the overflow signal is the WDT overflow reset signal, the WDT overflow reset affects the global reset. At this point, the system implements a global reset action and reloads the configuration information.

In Low_power mode, if the WDT overflow, the overflow signal is the WDT interrupt signal. Interrupt wake-up chip exits Low_power mode and executes WDT interrupt service function.

The watchdog module is a timing counting module. Its count clock is the internal low-speed clock LIRC. Its timing clear signal is composed of global reset and configuration clear. This signal is synchronously released by the watchdog timing clock in the reset module; The clearing action is generated every time the CPU configures the watchdog timer configuration register (WDT_CTRL), and the watchdog restarts timing; at the same time, the watchdog counter has the watchdog count enable control, when the count enable is valid, After the watchdog generates a timing overflow (reset or interrupt), as long as the watchdog counting enable is not turned off, the watchdog counter will restart counting.

5.5.1.WDT Related Registe

	SFR register										
Address	Address	Address	Address	Address							
0x85	INT_PE_STAT	RW	xxxx_xx00b	WDT/Timer2 interrupt status register							
0x91	WDT_CTRL	RW	xxxx_x000b	WDT timeout configugration register							
0x92	WDT_EN	RW	0000_0000b	WDT timing enable register							
0xE6	IEN1	RW	0000_00xxb	Interrupt enable register 1							
0xF1	IRCON1	RW	0000_00xxb	Interrupt flag register 1							
0xF6	IPL1	RW	0000_00xxb	Interrupt priority register 1							
		V	VDT SED list								

WDT SFR list

5.5.2.WDT Register Detailed Description

INT_PE_STAT(85H)WDT/Timer2 interrupt status register

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	-	-	INT_WDT_STAT	INT_TIMER2_STAT
R/W	-	-	-	-	-	-	R/W	R/W
Reset value	-	-	-	-	-	-	0	0

Bit number	Bit symbol	Description
		WDT interrupt status, set 0, write WDT_CTRL can set 0.
1	INT_WDT_STAT	1: interrupt effective
		0: invalid interrupt

WDT_CTRL(91H) WDT timing overflow control register

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	-	WDT_TIME_SEL		
R/W	-	_	-	-	-	R/W		
Reset value	_	_	_	-	_	0	0	0

Bit number	Bit symbol	Description
		WDT overflow timer register. Timing length is as follows:
		0x00: 18ms; 0x01: 36ms;
7~0	WDT_TIME_SEL	0x02: 72ms; 0x03: 144ms;
		0x04: 288ms; 0x05: 576ms;
		0x06: 1152ms; 0x07: 2304ms;

The watchdog uses the internal low-speed clock LIRC to complete the timing function and can achieve timing from 18ms to 2.3s. The timing length is controlled by SFR (WDT_CTRL), as shown in the following table

WDT_EN(92H) WDT timing enable register

Bit number	7	6	5	4	3	2	1	0			
Symbol		WDT_EN									
R/W		R/W									
Reset value		0									

Turn off WDT when writing 0x55, write other values to enable WDT, the WDT always works after the reset is over. Clearing the WDT is done by writing to the WDT_CTRL register. Whichever values is written to this register will clear the WDT.

			-					
Bit number	7	6	5	4	3	2	1	0
Symbol	EX7	EX6	EX5	EX4	EX3	EX2	-	-
R/W	R/W	R/W	R/W	R/W	R/W	R/W	-	-
Reset value	0	0	0	0	0	0	_	-

IEN1 (E6H) Interrupt enable register 1

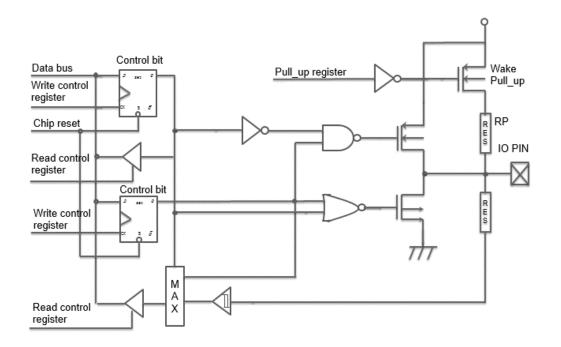
Bit number	Bit symbol	Description
		WDT/Timer2 interrupt enable
7	EX7	1: interrupt enable;
		0: interrupt disable

IRCON1 (F1H) Interrupt flag register 1

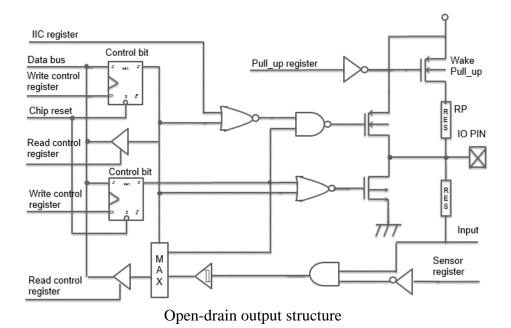
Bit number	7	6	5	4	3	2	1	0
Symbol	IE7	IE6	IE5	IE4	IE3	IE2	-	-
R/W	R/W	R/W	R/W	R/W	R/W	R/W	-	-
Reset value	0	0	0	0	0	0	-	-

Bit number	Bit symbol	Description
		WDT/Timer2 interrupt flag
7	IE7	1: there is a WDT/Timer2 interrupt flag;
		0: no WDT/Timer2 interrupt flag

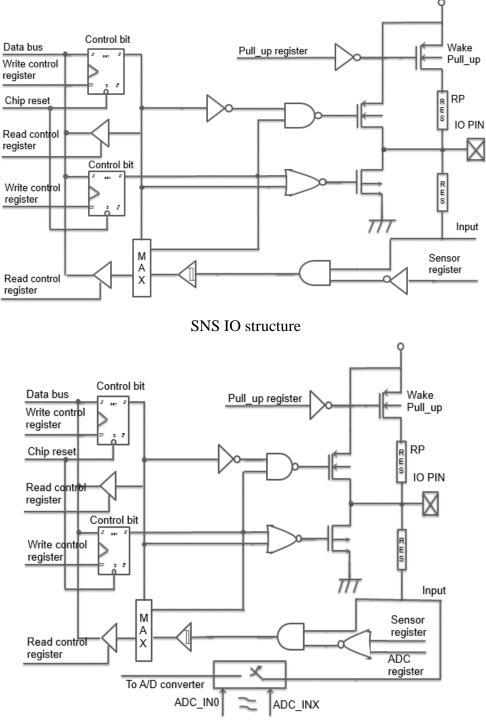
IPL1 (F6H) Interrupt priority register 1


Bit number	7	6	5	4	3	2	1	0
Symbol	IPL1.7	IPL1.6	IPL1.5	IPL1.4	IPL1.3	IPL1.2	-	-
R/W	R/W	R/W	R/W	R/W	R/W	R/W	-	-
Reset value	0	0	0	0	0	0	-	-

Bit number	Bit symbol	Description				
		WDT/Timer 2 interrupt priority.				
7	IPL1.7	0: low priority;				
		1: high priority				



6. GPIO


Some pins of the GPIO port are multiplexed with device peripheral functions, and cannot be configured as multiple clock functions at the same time, otherwise it will cause malfunction. IIC communication port, open-drain output, pull-up resister required.

General IO structure

ADC IO structure

TRISX register (Direction Register): TRISX set to 1 can be configured as input pin, set to 0 can be configured as output pin.

DATAX register (Data Register): DATAX set to 1 the data in DATAX will be configured as high, set to 0 the data in DATAX will be configured as low.

PU_PX register (Pull-up resistance enable register): PU_PX set to 1 corresponding pin pull-up

resistor enable, clear the corresponding pin does not enable pull-up resistor, and pull-up resistor 4.7k(PB port pull-up resistor 28k).

PD_PB register (PB pull-down resistor enable register): Set PD_PB to 1 to enable the corresponding pin pull-down resistor, clear the corresponding pin to disable the pull-down resistor, built-in pull-down resistor 28k.

ODRAIN_EN register: ODRAIN_EN set to 1 corresponding pin will enable open drain output, set to 0 corresponding pin corresponding pin output disenabled, automatically turn on open-drain after enabling IIC function. IIC/UART recommends using external pull-up resistors.

Supports 8 GPIO ports for high current drive functions.

			SFR regi	ster
Address	Name	RW	Reset value	Description
0xF8	DATAA	RW	xxxx_xx11b	PA data register
0x80	DATAB	RW	1111_1111b	PB data register
0x90	DATAC	RW	1111_1111b	PC data register
0x98	DATAD	RW	1111_1111b	PD data register
0xD8	PD_PB	RW	0000_0000b	PB port pull-down resistor enable register
0xDD	PU_PA	RW	xxxx_xx00b	PA port pull-up resistor enable register
0xDE	PU_PB	RW	0000_0000b	PB port pull-up resistor enable register
0xDF	PU_PC	RW	0000_0000b	PC port pull-up resistor enable register
0xE2	PU_PD	RW	0000_0000b	PD port pull-up resistor enable register
0xEA	TRISA	RW	xxxx_xx11b	PA direction register
0xEB	TRISB	RW	1111_1111b	PB direction register
0xEC	TRISC	RW	1111_1111b	PC direction register
0xED	TRISD	RW	1111_1111b	PD direction register
0xEE	COM_IO_SEL	RW	0000_0000b	COM port selection configuration register
0xEF	ODRAIN_EN	RW	xxxx_x000b	PA0/PA1/PD6 port open drain enable register

6.1. GPIO Related Register

Port configuration SFR list

6.2. GPIO Register Detailed Description

6.2.1. Data Register

DATAA (F8H) PA data register

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	-	-	PA1	PA0
R/W	-	-	-	-	-	-	R/W	R/W
Reset value	-	-	-	-	-	-	1	1

Bit number	Bit symbol	Description
1~0		PA data register. The output level of the PA group can be configured as the GPIO port. The read value is the level state of the current IO port (input) or the configured output (output) value.

DATAB(80H)PB data register

Bit number	7	6	5	4	3	2	1	0
Symbol	PB7	PB6	PB5	PB4	PB3	PB2	PB1	PB0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset value	1	1	1	1	1	1	1	1

Bit number	Bit symbol	Description
7~0		PBdata register. The output level of the PB group can be configured as the GPIO port. The read value is the level state of the current IO port (input) or the configured output (output) value.

DATAC(90H) PC data register

Bit number	7	6	5	4	3	2	1	0
Symbol	PC7	PC6	PC5	PC4	PC3	PC2	PC1	PC0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset value	1	1	1	1	1	1	1	1

Bit number	Bit symbol	Description
7~0		PC data register. The output level of the PC group can be configured as the GPIO port. The read value is the level state of the current IO port (input) or the configured output (output) value.

DATAD(98H) PD data register

Bit number	7	6	5	4	3	2	1	0
Symbol	PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset value	1	1	1	1	1	1	1	1

Bit number	Bit symbol	Description
7~0		PD data register. The output level of the PD group can be configured as the GPIO port. The read value is the level state of the current IO port (input) or the configured output
		(output) value.

6.2.2. Pull-up Resistor Enable Register

_ `	<u>/ 1</u>								
Bit number	7	6	5	4	3	2	1	0	
Symbol	-	-	-	-	-	-	PU_PA1	PU_PA0	
R/W	-	-	-	-	-	-	R/W	R/W	
Reset value	-	-	-	-	-	-	0	0	

Bit number	Bit symbol	Description
		Port PA pull-up resistor enable register
1~0		1: The pull-up resistor is enabled;
		0: The pull-up resistor is not enabled

PU_PB(DEH) PB port pull-up resisor enable register

Bit number	7	6	5	4	3	2	1	0
Symbol		-						
R/W		R/W						
Reset value		0						

Bit number	Bit symbol	Description
7~0		PB port pull-up resisor enable register. Set PU_PB to 1 to enable the corresponding pin pull-up resistor, clear the corresponding pin to disable the pull-up resistor, the pull-up resistor is 4.7K.

PU_PC(DFH) PC port pull-up resisor enable register

Bit number	7	6	5	4	3	2	1	0
Symbol		_						
R/W		R/W						
Reset value	0							

Bit number	Bit symbol	Description
	7~0	PCport pull-up resisor enable register.
7.0		Set PU_PC to 1 to enable the corresponding pin pull-up
/~0		resistor, clear the corresponding pin to disable the pull-up
		resistor, the pull-up resistor is 4.7K.

PU_PD (E2H) PD port pull-up resisor enable register

Bit number	7	6	5	4	3	2	1	0
Symbol		-						
R/W		R/W						
Reset value		0						

Bit number	Bit symbol	Description
7~0		PD port pull-up resisor enable register. Set PU_PD to 1 to enable the corresponding pin pull-up resistor, clear the corresponding pin to disable the pull-up resistor, the pull-up resistor is 4.7K.

6.2.3. Direction Register

TRISA (EAH) PA port direction register

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	-	-	-	-
R/W	-	-	-	-	-	-	R/W	R/W
Reset value	_	_	-	_	-	_	1	1

Bit number	Bit symbol	Description
1~0		PA direction register,
1~0		0: output; 1: input

TRISB(EBH) PB port direction register

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	-	-	-	-
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset value	1	1	1	1	1	1	1	1

Bit number	Bit symbol	Description
7~0		PB direction register,
/~0		0: output; 1: input
TRISC(ECH) P	C port direction regis	ter

TRISC(ECH) P	C port dire	ction regis	ter	

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	-	-	-	-
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset value	1	1	1	1	1	1	1	1

Bit number	Bit symbol	Description
7~0		PC direction register
/~0		0: output; 1: input

TRISD(EDH) PD port direction register

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	-	-	-	-
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset value	1	1	1	1	1	1	1	1

Bit number	Bit symbol	Description
7.0		PD direction register
7~0		0: output 1: input

6.2.4. Large Current Sink

COM_IO_SEL (EEH) COM port selection configuration register

Bit number	7	6	5	4	3	2	1	0
Symbol	COM7	COM6	COM5	COM4	COM3	COM2	COM1	COM0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset value	0	0	0	0	0	0	0	0

Bit number	Bit symbol	Description
7~0		COM port selection configuration register, PB port
		corresponds to bit selection
		1: Select the COM port mode and turn on the high current
		function;
		0: select IO port mode

6.2.5. Open Drain Output Enable Register

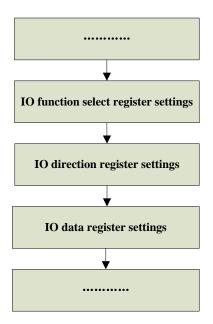
Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	-	-	-	-
R/W	-	-	-	-	-	R/W	R/W	R/W
Reset value	-	_	-	_	-	0	0	0

ODRAIN_EN (EFH) PA0/PA1/PD6 port open drain enable register

Bit number	Bit symbol	Description
2~0		PA0/PA1/PD6 open-drain output enable register
		Bit[0]: PA0, Bit[1]: PA1, Bit[2]: PD6
		1: Open drain output;
		0: CMOS output

6.2.6. Pull-down Resistor Enable Register

Bit number	7	6	5	4	3	2	1	0
Symbol	PD_PB7	PD_PB6	PD_PB5	PD_PB4	PD_PB3	PD_PB2	PD_PB1	PD_PB0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset value	0	0	0	0	0	0	0	0


PD_PB(D8H) PB port pull-down resistor enable register

Bit number	Bit symbol	Description
7~0	PD_PBn (n=7~0)	PB port pull-down resistor enable register1: The pull-down resistor is enabled;0: The pull-down resistor is not enabled

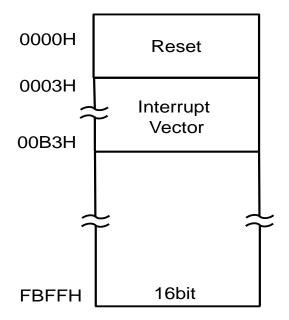
6.3. GPIO Configuration Process

When setting the port to GPIO, the following three sets of registers need to be set accordingly.

IO configuration flow chart

Notes:

The default source current drive capability of the IO port is typically 20mA, the sink current drive capability typically 35mA @5V 0.9VCC.



7. Interrupt

7.1. Interrupt Sources and Entry Address

Interrupt source	Condition	Sign	Enable control	Priority control	Interrupt vector	Query priority	Interrupt number	Flag removal method	Low power wake
INT0	External interrupt 0 condition is met	IE0	IEN0[0]	IPL0[0]	0x0003	1	0	User must clear	Yes
Timer0	Timer0 overflow	TF0	IEN0[1]	IPL0[1]	0x000B	2	1	User must clear	No
INT1	External interrupt 1 condition is met	IE1	IEN0[2]	IPL0[2]	0x0013	3	2	User must clear	Yes
Timer1	Timer1 overflow	TF1	IEN0[3]	IPL0[3]	0x001B	4	3	User must clear	No
INT2	External interrupt 2 condition is met	IE2	IEN1[2]	IPL1[2]	0x004B	5	9	User must clear	Yes
IIC	Accept or send completed	IE3	IEN1[3]	IPL1[3]	0x0053	6	10	User must clear	Yes
ADC	ADC conversion completed	IE4	IEN1[4]	IPL1[4]	0x005B	7	11	User must clear	No
CSD	Counter overflow	IE5	IEN1[5]	IPL1[5]	0x0063	8	12	User must clear	No
INT3	External interrupt 3 condition is met	IE6	IEN1[6]	IPL1[6]	0X006B	9	13	User must clear	No
WDT/ Timer2	WDT/Timer2 overflow	IE7	IEN1[7]	IPL1[7]	0x0073	10	14	User must clear	Yes
LVDT	Voltage conditions meet	IE8	IEN2[0]	IPL2[0]	0x007B	11	15	User must clear	No
UART0	Accept or send completed	IE9	IEN2[1]	IPL2[1]	0x0083	12	16	User must clear	No
UART1	Accept or send completed	IE10	IEN2[2]	IPL2[2]	0x008B	13	17	User must clear	No

List of interrupt information

When the chip generates a reset signal, the program starts from the 0x0000 address. When an interrupt signal occurs, the program will jump to the interrupt vector program address to execute the interrupt service routine.

7.2. Interrupt Function

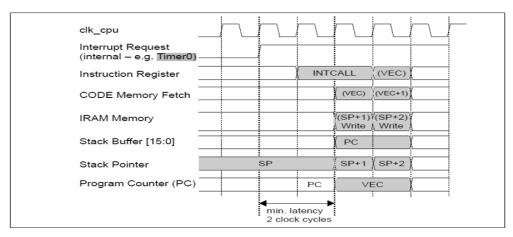
7.2.1. Interrupt Response

When an interrupt request, CPU according to the interrupt vectors determine the type of interrupt service routine (ISR) to run. CPU complete execution ISR, unless a higher priority interrupt source applying for a break. After each ISR has RETI (return from interrupt) instruction. After RETI instruction, CPU continues to execute the program before the interrupt did not happen.

ISR can only be a higher priority interrupt request interrupt. That is, the low-priority ISR can be interrupted by a high-priority interrupt request.

The BF7412AMXX-XJLX responses interrupt request until the current instruction finished. If the RETI instruction is being executed or read IPL, IEN register, after an additional instruction then respond the interrupt request.

7.2.2. Interrupt Priority


The BF7412AMXX-XJLX has two interrupt priority levels: interrupt level and default priority. Interrupt levels (highest, high, and low) take precedence over the default priority. The priority set to high is the first to respond. When the priority is set to the same level, the response will be queued by default. If allowed, the power-down interrupt is the only highest-level interrupt source. Other interrupt sources can be set to high priority or low priority.

Each interrupt source can be assigned a priority level (high or low), and the default priority. The same level of interrupt sources (such as both high priority) the priority is the default priority decision. Interrupt service routine in progress can only be a high-priority interrupt request interrupt.

7.2.3. Interrupt Sampling

Internal modules such as internal timers and serial ports generate interrupt requests through interrupt flag bits in their respective SFRs. At the end of first clock per instruction cycle (C1), at the rising edge of the external interrupt system clock sampling.

To ensure edge-triggered interrupt is detected, the corresponding port must maintain high level for two clocks and maintain low for level two clock.

Interrupt sampling timing diagram

7.2.4. Interrupt Wait

Interrupt response time is determined by current state. Fastest response time is five instruction cycles: one cycle to detect the interrupt request, the other 4 used to execute long call (LCALL) to ISR.

When the system is executing a RETI instruction and is followed by a MUL or DIV instruction, the interrupt waits for the longest time (13 instruction cycles). This 13 instruction cycles are as follows: one cycle to detect the interrupt request, three to complete the RETI, five used to execute DIV or MUL instruction, 4 used to execute long call (LCALL) to ISR. In this case, the response time is 13 clock cycles.

7.3. Interrupt Related Register

	SFR register									
Address	Name	RW	Reset value	Description						
0x85	INT_PE_STAT	RW	xxxx_xx00b	WDT/Timer2 interrupt status register						
0x86	INT_POBO_STAT	RW	xxxx_xx00b	LVDT boost/LVDT buck interrupt status register						
0x88	TCON	RW	0000_0x0xb	Timer control register						
0xA8	IEN0	RW	0xxx_0000b	Interrupt enable register						
0xB8	IPL0	RW	xxxx_0000b	Interrupt priority register 0						
0xC2	PERIPH_IO_SEL3	RW	x000_0000b	INT3 select enable register 3						
0xC3	PERIPH_IO_SEL2	RW	0000_0000b	INT3 select enable register 2						
0xC4	PERIPH_IO_SEL1	RW	0000_0000b	INT3 select enable register 1						
0xE1	IRCON2	RW	xxxx_x000b	Interrupt flag register 2						
0xE6	IEN1	RW	0000_00xxb	Interrupt enable register 1						
0xE7	IEN2	RW	xxxx_x000b	Interrupt enable register 2						
0xF1	IRCON1	RW	0000_00xxb	Interrupt flag register 1						
0xF2	PERIPH_IO_SEL	RW	x100_0000b	IIC /INT function control register						
0xF4	IPL2	RW	xxxx_x000b	Interrupt priority register 2						
0xF6	IPL1	RW	0000_00xxb	Interrupt priority register 1						
0xF7	EXT_INT_CON	RW	x001_0101b	External interrupt polarity control register						

Interrupt SFR list

7.3.1. Interrupt SFR Detailed Description

INT_PE_STAT(85H)WDT/Timer2 interrupt status register

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	-	-	INT_WDT_STAT	INT_TIMER2_STAT
R/W	-	-	-	-	-	-	R/W	R/W
Reset value	-	-	-	-	-	-	0	0

Bit number	Bit symbol	Description
		WDT interrupt status, set 0, write WDT_CTRL can set 0.
1	1 INT_WDT_STAT	1: interrupt effective
		0: invalid interrupt
		TIMER2 interrupt status, set 0, write TIMER2_CFG can
0	INT_TIMER2_STAT	set 0.
0		1: interrupt effective
		0: invalid interrupt

INT_POBO_STAT (86H) LVDT boost/LVDT buck interrupt status register

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	-	-	INT_PO_STAT	INT_BO_STAT
R/W	-	-	-	-	-	-	R/W	R/W
Reset value	-	-	-	-	-	-	0	0

Bit number	Bit symbol	Description
		Lvdt boost interrupt status
1	INT_PO_STAT	1: boost interrupt is valid
		0: boost interrupt is invaild
		Lvdt buck interrupt state
0	INT_BO_STAT	1: buck interrupt is valid
		0: buck interrupt is invalid

TCON(88H) Timer control register

Bit number	7	6	5	4	3	2	1	0
Symbol	TF1	TR1	TF0	TR0	IE1	-	IE0	-
R/W	R/W	R/W	R/W	R/W	R/W	-	R/W	-
Reset value	0	0	0	0	0	_	0	_

Bit number	Bit symbol	Description
2	117.1	External interrupt 1.
3	3 IE1	The hardware set 1, the software is cleared.
1	IEO	External interrupt 0.
1	IE0	The hardware set 1, the software is cleared

IEN0(A8H) Interrupt enable register

Bit number	7	6	5	4	3	2	1	0
Symbol	EA	-	-	-	ET1	EX1	ET0	EX0
R/W	R/W	-	-	-	R/W	R/W	R/W	R/W
Reset value	0	-	-	-	0	0	0	0

Bit number	Bit symbol	Description
7	EA	Interrupt enable bit 0: Mask all interrupts (EA has priority over the respective interrupt enable bits of the interrupt sources); 1: The interrupt is turned on. Whether the interrupt request of each interrupt source is allowed or forbidden is determined by the respective enable bit.
6~4		Reserved
3	ET1	Timer1 interrupt enable bit 0: Disable timer 1 to apply for interrupt;

		1: Allow timer 1 flag bit to apply for interrupt.
		INT_EXT1 enable bit
2	EX1	0: Disable INT_EXT1 to apply for interrupt;
		1: Allow INT_EXT1 to apply for interrupt.
		Timer 0 interrupt enable bit
1	ET0	0: Disable timer 0 (TF0) to apply for interrupt;
		1: Allow TF0 flag bit to request interrupt.
		INT_EXT0 enable bit
0	EX0	0: Disable INT_EXT0 to apply for interrupt;
		1: Allow INT_EXT0 to apply for interrupt.

IPL0 (B8H) Interrupt priority register 0

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	PT1	PX2	PT0	PX0
R/W	-	-	-	-	R/W	R/W	R/W	R/W
Reset value	-	-	-	-	0	0	0	0

Bit number	Bit symbol	Description
7~4	_	Reserved
		TF1(Timer1 interrupt) priority selection bit.
3	PT1	0: TF1(Timer1 interrupt) is low priority.
		1: TF1(Timer1 interrupt) is high priority.
		INT_EXT1 interrupt priority selection bit.
2	PX2	0: INT_EXT1 is low priority.
		1: INT_EXT1 is high priority.
		TF0(Timer0 interrupt) priority selection bit.
1	PT0	0: TF0(Timer0 interrupt) is low priority.
		1: TF0(Timer0 interrupt) is high priority.
		INT_EXT0 interrupt priority selection bit.
0	PX0	0: INT_EXT0 is low priority.
		1: INT_EXT0 is high priority.

PERIPH_IO_SEL3(C2H) INT3 select enable register 3

		<u> </u>		
Bit number	7	6	5	4
Symbol	-	INT3_22_IO_SEL	INT3_21_IO_SEL	INT3_20_IO_SEL
R/W	-	R/W	R/W	R/W
Reset value	-	0	0	0
Bit number	3	2	1	0
Symbol	INT3_19_IO_SEL	INT_3_18_IO_SEL	INT3_17_IO_SEL	INT3_16_IO_SEL
R/W	R/W	R/W	R/W	R/W
Reset value	0	0	0	0

Bit number	Bit symbol	Description
6~0	INT3_n_IO_SEL	INT3_n port selection enable
	(n=22~16)	1: Select INT function;
		0: Do not select INT function

PERIPH_IO_SEL2(C3H) INT3 select enable register 2

		<u> </u>			
Bit number	7	6	5	4	
Symbol	INT3_15_IO_SEL	INT3_14_IO_SEL	INT3_13_IO_SEL	INT3_12_IO_SEL	
R/W	R/W	R/W	R/W	R/W	
Reset value	0	0	0	0	
Bit number	3	2	1	0	
Symbol	INT3_11_IO_SEL	INT3_10_IO_SEL	INT3_9_IO_SEL	INT3_8_IO_SEL	
R/W	R/W	R/W	R/W	R/W	
Reset value	0	0	0	0	

Bit number	Bit symbol	Description
7~0	INT3_n_IO_SEL	INT3_n port selection enable
	(n=15~8)	1: Select INT function;
		0: Do not select INT function

PERIPH_IO_SEL1(C4H) INT3 select enable register 1

		0		
Bit number	7	6	5	4
Symbol	INT3_7_IO_SEL	INT3_6_IO_SEL	INT3_5_IO_SEL	INT3_4_IO_SEL
R/W	R/W	R/W	R/W	R/W
Reset value	0	0	0	0
Bit number	3	2	1	0
Symbol	INT3_3_IO_SEL	INT3_IO_2_SEL	INT3_1_IO_SEL	INT3_0_IO_SEL
R/W	R/W	R/W	R/W	R/W
Reset value	0	0	0	0

Bit number	Bit symbol	Description
7~0	INT3_n_IO_SEL	INT3_n port selection enable
	(n=7~0)	1: Select INT function;
		0: Do not select INT function

IRCON2 (E1H) Interrupt flag register 2

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	-	IE10	IE9	IE8
R/W	-	_	-	-	-	R/W	R/W	R/W
Reset value	-	_	-	-	-	0	0	0

Bit number Bit symbol Description

7~3		Reserved			
		UART1 interrupt flag			
2	IE10	1: There is a UART1 interrupt flag;			
		0: No UART1 interrupt flag			
		UART0 interrupt flag			
1	IE9	1: There is a UART0 interrupt flag;			
		0: No UART0 interrupt flag			
		LVDT interrupt flag			
0	IE8	1: There is a LVDT interrupt flag;			
		0: No LVDT interrupt flag			

IEN1 (E6H) Interrupt enable register 1

Bit number	7	6	5	4	3	2	1	0
Symbol	EX7	EX6	EX5	EX4	EX3	EX2	-	-
R/W	R/W	R/W	R/W	R/W	R/W	R/W	-	-
Reset value	0	0	0	0	0	0	-	-

Bit number	Bit symbol	Description		
		WDT/Timer2 interrupt enable		
7	EX7	1: interrupt enable;		
		0: interrupt disable		
		External interrupt 3 interrupt enable		
6	EX6	1: Interrupt enable;		
		0: Interrupt disable		
		CSD interrupt enable		
5	EX5	1: interrupt enable;		
		0: interrupt disable		
4	EX4	ADC interrupt enable		
4	EA4	1: interrupt enable; 0: interrupt disable		
		IIC interrupt enable		
3	EX3	1: interrupt enable;		
		0: interrupt disable		
		External interrupt 2 interrupt enable		
2	EX2	1: interrupt enable;		
		0: interrupt disable		
1~0	-	Reserved		

IEN2(E7H) Interrupt enable register 2

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	-	EX10	EX9	EX8
R/W	-	-	-	-	-	R/W	R/W	R/W
Reset value	-	-	-	-	_	0	0	0

Bit number	Bit symbol	Description				
7~3	-	Reserved				
		UART1 interrupt enable				
2	EX10	1: interrupt enable;				
		0: interrupt disable				
		UART0 interrupt enable				
1	EX9	1: interrupt enable;				
		0: interrupt disable				
		LVDT interrupt enable				
0	EX8	1: interrupt enable;				
		0: interrupt disable				

IRCON1 (F1H) Interrupt flag register 1

Bit number	7	6	5	4	3	2	1	0
Symbol	IE7	IE6	IE5	IE4	IE3	IE2	-	-
R/W	R/W	R/W	R/W	R/W	R/W	R/W	-	-
Reset value	0	0	0	0	0	0	-	-

Bit number	Bit symbol	Description								
		WDT/Timer2 interrupt flag								
7	IE7	1: There is a WDT/Timer2 interrupt flag;								
		0: No WDT/Timer2 interrupt flag								
		External interrupt 3 interrupt flag								
6	IE6	1: There is a External interrupt 3 interrupt flag;								
		0: No External interrupt 3 interrupt flag								
		CSD interrupt flag								
5	IE5	1: There is a CSD interrupt flag;								
		0: No CSD interrupt flag								
		ADC interrupt flag								
4	IE4	1: There is a ADC interrupt flag;								
		0: No ADC interrupt flag								
		IIC interrupt flag								
3	IE3	1: There is a IIC interrupt flag;								
		0: No IIC interrupt flag								
		External interrupt 2 interrupt flag								
2	IE2	1: There is a INT2 interrupt flag;								
		0: No INT2 interrupt flag								
1~0	_	Reserved								
PERIPH_IO_SE	EL (F2H) IIC /INT f	unction control register								
Bit number	7	ction control register6543								

Symbol	-	IIC_AFIL_SEL	IIC_DFIL_SEL	IIC_IC	D_SEL
R/W	-	R/W	R/W	R/W	R/W
Reset value	-	1	0	0	0
Bit number	2	1	0	/	
Symbol	INT2_IO_SEL	INT1_IO_SEL	INT0_IO_SEL		
R/W	R/W	R/W	R/W	/	
Reset value	0	0	0		

Bit number	Bit symbol	Description
		INT2 select enable, correspond PD7
2	INT2_IO_SEL	1: select INT2 function
		0: not select INT2 function
		INT1 select enable, correspond PD6
1	INT1_IO_SEL	1: select INT1 function
		0: not select INT1 function
		INT0 select enable, correspond PD0
0	INT0_IO_SEL	1: select INTO function
		0: not select INT0 function

IPL2 (F4H) Interrupt priority register 2

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	-	IPL2.2	IPL2.1	IPL2.0
R/W	-	-	-	-	-	R/W	R/W	R/W
Reset value	-	-	-	-	-	0	0	0

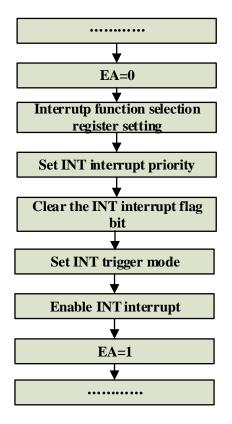
Bit number	Bit symbol	Description
7~3		Reserved
		UART1 interrupt priority.
2 IPL2.2	IPL2.2	0: low priority; 1: high priority
1		UART0 interrupt priority.
1	IPL2.1	0: low priority; 1: high priority
0	IPL2.0	LVDT interrupt priority.
0		0: low priority; 1: high priority

IPL1 (F6H) Interrupt priority register 1

Bit number	7	6	5	4	3	2	1	0
Symbol	IPL1.7	IPL1.6	IPL1.5	IPL1.4	IPL1.3	IPL1.2	-	-
R/W	R/W	R/W	R/W	R/W	R/W	R/W	-	-
Reset value	0	0	0	0	0	0	-	-

Bit number Bit symbol	Description
-----------------------	-------------

7	IPL1.7	WDT/Timer 2 interrupt priority. 0: low priority; 1: high priority	
6	IPL1.6External interrupt 3 interrupt priority. 0: low priority; 1: high priority		
5	IPL1.5 CSD interrupt priority. 0: low priority; 1: high priority		
4	IPL1.4ADC interrupt priority. 0: low priority; 1: high priority		
3	IPL1.3	IIC interrupt priority.0: low priority; 1: high priority	
2	IPL1.2 External interrupt 2 priority. 0: low priority; 1: high priority		
1~0		Reserved	


EXT_INT_CON (F7H) External interrupt polarity control register

	· · · ·		0	
Bit number	7	6	5	4
Symbol	-	INT3_POLARITY INT2_POLARITY		
R/W	-	R/W	R/W	R/W
Reset value	-	0	0	1
Bit number	3	2	1	0
Symbol	INT1_POLARITY		INT0_POLARITY	
R/W	R/W	R/W	R/W	R/W
Reset value	0	1	0	1

Bit number	Bit symbol	Description	
6	INT3_POLARITY	External interrupt 3_x trigger polarity selection:	
		1: Rising edge (high level wake-up in low power mode)	
		0: Falling edge (low-level wake-up in low-power mode)	
5~4 IN	INT2_POLARITY	External interrupt 2 trigger polarity selection:	
		01: Falling edge (low-level wake-up in low-power mode)	
		10: rising edge (high level wake-up in low power mode)	
		00/11: Double edge (low-level wake-up in low-power mode)	
3~2	INT1_POLARITY	External interrupt 1 trigger polarity selection:	
		01: Falling edge (low-level wake-up in low-power mode)	
		10: rising edge (high level wake-up in low power mode)	
		00/11: Double edge (low-level wake-up in low-power mode)	
1~0	INT0_POLARITY	External interrupt 0 trigger polarity selection:	
		01: Falling edge (low-level wake-up in low-power mode)	
		10: rising edge (high level wake-up in low power mode)	
		00/11: Double edge (low-level wake-up in low-power mode)	

Note: INT3 shares an interrupt vector and can only respond to one external interrupt at the same time. When the multi-channel pin external interrupt rising edge or falling edge trigger is enabled, all the enabled external interrupt pins must be released during the detection process to respond to the current trigger signal (when the falling edge is triggered, the release is high. When the rising edge is triggered, the release is low).

7.4. External Interrupt Configuration Process

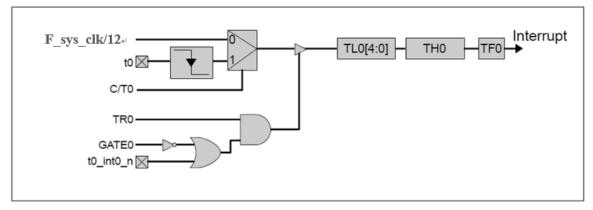
INT0/1/2/3 configuration process chart

8. Timer

The BF7412AMXX-XJLX contains three Timers (Timer0/Timer1/Timer2). Each Timer contains a 16-bit register that appears as two bytes when accessed: a low byte (TL0 or TL1) and a high byte (TH0 or TH1). Timer2 register is low byte TIMER2_SET_L, high byte TIMER2_SET_H.

Timer features:

- 2 16-bit Timers, 1 32-bit Timer;
- Timer0 connection system clock, partial frequency within the clock F_sys_clk/12;
- Timer1 connection system clock, partial frequency within the clock F_sys_clk/12;
- Timer2 optional internal RC or external crystal clock, frequency 32768Hz;
- Timer0 support 8-bit auto-reload timing, 16-bit manual reload timing function;
- Timer1 support 8-bit a auto-reload timing, 16-bit manual reload timing function;
- Timer2 support 32-bit automatic reload timing and manual reload timing, support interrupt wake-up function.

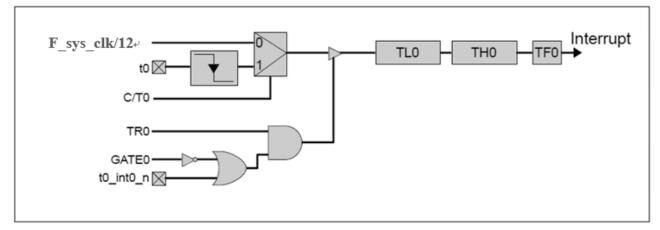

8.1. Timer0 and Timer1

The Timer 0/1 has four operating modes, controlled by TMOD SFR and TCON SFR. Timer0/1 four modes of operation as follows:

- Mode 0: 13-bit timer
- Mode 1: 16-bit timer
- Mode 2: 8-bit auto-reload timer
- Mode 3: Two 8-bit timers

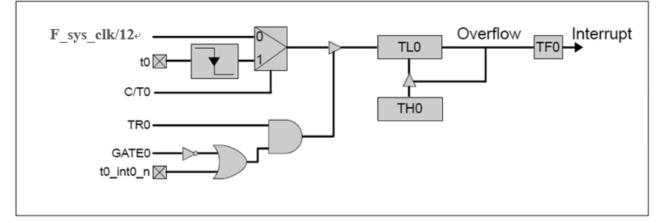
In mode 0/1/2, timer 0 and timer 1 have exactly the same functions. In mode 3, timer 0 and timer 1 have different functions, and only timer 0 can set mode 3.

Mode 0:13-bit timer


Mode 0 logical structure diagram

In mode 0, timer 0 and timer 1 work the same process, at the picture shows. In mode 0, Timer is 13bit counter, bit0-4 is TL0 (or TL1), other 8 bits is TH0 (or TH1). In TCON register (TR0/TR1)

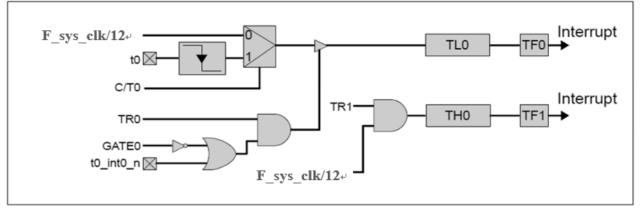
to control timer0/1 start or stop.


The Timer counts the selected clock source(clk/12); When the 13bit counter counts up to all 1, the counter is cleared to 0(all 0) and TF0(or TF1)is set. In mode 0, TL0 (or TL1) high 3bit is not sure. These 3bit should be masked or ignored when reading the count value. t0/t1, C/T0/CT1 all 0, t0_int0_n/t1_int1_n all 1, count enable is only TR0/1.

Mode 1: 16 bit timer

Mode 1 logical structure diagram

In mode 1, timer 0 and timer 1 work the same process. At the picture shows, in mode 1, Timer is 16bit counter, all 8 bits of the LSB register (TL0 or TL1) are used. When the counter count is accumulated to 0xFFFF, the counter is cleared to 0. In addition, mode 1 and mode 2 are the same. t0/t1, C/T0/CT1 all 0, t0_int0_n/t1_int1_n all 1, count enable is only determined by TR0/1. **Mode2: 8-bit auto-reload timer**


Mode 2 logical structure diagram

The modes of Timer0 and Timer1 are the same. In mode 2, the Timer is an 8bit counter with an automatic reload initial value. This counter is the LSB register (TL0 or TL1). The initial value that needs to be reloaded is saved in the MSB register (TL0 or TL1).

At the picture shows, mode 2 counter control is the same as mode 0 and mode 1. But in mode 2, When the TLn count is accumulated to FFh, the value stored in THn is overloaded to TLn. t0/t1, C/T0/CT1 all 0, t0_int0_n/t1_int1_n all 1, count enable is only determined by TR0/1.

Mode3: Two 8-bit timers

Mode 3 logical structure diagram

In mode3, timer0 is two 8bit counter, then timer 1 stop count and save the value. Show as below, TL0 is an 8-bit register controlled by the control bit of Timer0. The counter uses GATE as the enable terminal to control the INT_EXT signal reception.

TH0 is a separate 8-bit counter. TH0 only used to count the clock cycle (12 division). Timer1 control bit and flag bit (TR1 and TF1) used as the TH0's control bit and flag.

When timer0 working in mode3, the use of Timer 1 is limited because Timer 0 uses the Timer 1 control(TR1) and interrupt flags(TF1). Timer 1 can still be used to generate baud rate. The value of TL1 and TH1 is still effective.

When timer0 working in mode 3, though mode control bit of Timer1 to control Timer1. In order to start timer1, need to set Timer 1 to mode 0, 1 or 2. Configure timer1 working in mode3, make timer1 stop. Timer 1 can be used as a Timer (clock is clk/12), However, since TR1 and TF1 are borrowed, overflow interrupts cannot be generated. When timer0 working in mode 3, timer1's GATE is effective. t0/t1, C/T0/CT1 all 0, t0_int0_n/t1_int1_n all 1, count enable is only determined by TR0/1.

	SFR register									
Address	Name	RW	Reset value	Function description						
0x88	TCON	RW	0000_0x0xb	Timer control register						
0x89	TMOD	RW	xx00_xx00b	Timer mode register						
0x8A	TL0	RW	0000_0000b	Timer 0 counter low 8 bits						
0x8B	TL1	RW	0000_0000b	Timer 1 counter low 8 bits						
0x8C	TH0	RW	0000_0000b	Timer 0 counter high 8 bits						
0x8D	TH1	RW	0000_0000b	Timer 1 counter high 8 bits						
0xA8	IEN0	RW	0xxx_0000b	Interrupt enable register						
0xB8	IPL0	RW	xxxx_0000b	Interrupt priority register 0						
0xA8	IEN0	RW RW	0xxx_0000b	Interrupt enable register Interrupt priority register 0						

8.1.1. Timer0/1 Related Register

Timer0/1 SFR list

8.1.2. Timer0/1 Register Detailed Description

Bit number	7	6	5	4	3	2	1	0		
Symbol	TF1	TR1	TF0	TR0	IE1	I	IE0	-		
R/W	R/W	R/W	R/W	R/W	R/W	-	R/W	-		
Reset value	0	0	0	0	0	-	0	_		

TCON(88H) Timer control register

Bit number	Bit symbol	Description				
7	TF1	Timer1 overflow flag. Set to 1 when Timer1 overflows, or Timer0's TH0 overflows in mode three.				
6	TR1	Timer1 start enable.When set to 1, enable the Timer1 count or Timer0 TH0 count in mode 3.				
5	TF0	Timer0 overflow flag. The hardware set 1 when Timer0 overflows.				
4	TR0	Timer0 start enable, when set to 1, start Timer0 count.				

TMOD(89H) Timer mode register

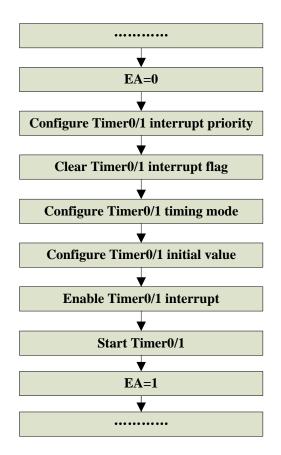
Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	M1[[1:0]	-	-	M0[1:0]	
R/W	-	-	R/W		-	-	R/W	
Reset value	-	_	0	0	_	_	0	0

Bit number	Bit symbol	Description
7~6, 3~2		Reserved
		Timer1 mode select bits
		00=mode0 – 13-bit timer
5~4	M1[1:0]	01=mode1 – 16-bit timer
		10=mode2 – 8-bit auto-reload timers
		11=mode3 – Two 8-bit timers
		Timer0 mode select bits
		00=mode0 – 13-bit timer
1~0	M0[1:0]	01=mode1 – 16-bit timer
		10=mode2 – 8-bit auto-reload timers
		11=mode3 – Two 8-bit timers

TL0(8AH) Timer 0 counter low 8 bits

	filler o counter low 8 bits										
Bit number	7	6	5	4	3	2	1	0			
Symbol	TL0[7:0]										
R/W				R/	W						
Reset value				()						
TL1(8BH) Time	er 1 counte	r 8 bits									
Bit number	7	6	5	4	3	2	1	0			
Symbol				TL1	[7:0]						
R/W				R/	W						
Reset value				()						
TH0(8CH) Time	H0(8CH) Timer 0 counter high 8 bits										
Bit number	7 6 5 4 3 2 1 0										
Symbol		TH0[7:0]									
R/W				R/	W						
Reset value				()						
TH1(8DH) Time	er 1 counte	r high 8 bi	ts								
Bit number	7	6	5	4	3	2	1	0			
Symbol				TH1	[7:0]						
R/W		R/W									
Reset value	0										
IEN0(A8H) Inte	errupt enab	le register									
Bit number	7	6	5	4	3	2	1	0			
Symbol	EA	-	-	-	ET1	EX1	ET0	EX0			
R/W	R/W	-	-	-	R/W	R/W	R/W	R/W			
Reset value	0	-	-	-	0	0	0	0			

Bit number	Bit symbol	Description			
		Interrupt enable bit			
		0: Mask all interrupts (EA has priority over the respective			
7		interrupt enable bits of the interrupt sources);			
7	EA	1: The interrupt is turned on. Whether the interrupt request			
		of each interrupt source is allowed or forbidden is			
		determined by the respective enable bit.			
		Timer1 interrupt enable bit			
3	ET1	0: Disable timer 1 to apply for interrupt;			
		1: Allow timer 1 flag bit to apply for interrupt.			
		Timer 0 interrupt enable bit			
1	ET0	0: Disable timer 0 (TF0) to apply for interrupt;			
		1: Allow TF0 flag bit to request interrupt.			


IPL0 (B8H) Interrupt priority register 0

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	PT1	PX2	PT0	PX0
R/W	-	-	-	-	R/W	R/W	R/W	R/W
Reset value	-	_	-	-	0	0	0	0

Bit number	Bit symbol	Description
		TF1(Timer1 interrupt) priority selection bit.
3	PT1	0: TF1(Timer1 interrupt) is low priority.
		1: TF1(Timer1 interrupt) is high priority.
		TF0(Timer0 interrupt) priority selection bit.
1	PT0	0: TF0(Timer0 interrupt) is low priority.
		1: TF0(Timer0 interrupt) is high priority.

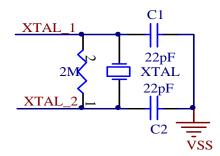
8.1.3. Timer0/1 Configure Process

Timer0/1 configure process

8.2. Timer2

Timer2 module plays a timing role, the internal structure of the Timer2 module is a 32-bit counter. Timed function by counting the input clock, the counting principle of Timer2 is the accumulation counts to the set value. Timer2's count clock can be selected from the external XTAL clock and the internal RC clock. Timer2 has two working modes: signal time mode and automatic reload mode, regardless of the mode, the timing is completed and an interruption occurs.

TIMER2_EN configuration Timer2 function enable, TIMER2_RLD configuration automatic reload mode and manual reload mode. Timing time is determined by registers TIMER2_SET_L and TIMER2_SET_H. The time clock can choose LIRC and XTAL32768Hz, which is determined by the clock selection register. Timer2 support interrupt wake up in low_power mode, software clear interrupt flag is required in the interrupt handler.


Timer2 timing duration formula:

TIMER2_CNT_MOD=0:

TTIMER2=TTIMER2_CLK*({TIMER2_SET_H, TIMER2_SET_L}+1)

TIMER2_CNT_MOD=1:

 $T_{TIMER2}=65536*T_{TIMER2_CLK}*({TIMER2_SET_H, TIMER2_SET_L}+1)$ Note: T_{TIMER2_CLK} = 1/32768 (s)

External crystal oscillator circuit reference

Notes:

- 1. Arbitrary configuration TIMER2_SET_H, TIMER2_SET_L, TIMER2_CFG will clear counter;
- 2. External crystal oscillator circuit is for reference only, actual reference cryatal specifications.

8.2.1. Timer2 Related Register

	SFR register									
Address	Name	RW	Reset value	Function description						
0x85	INT_PE_STAT	RW	xxxx_xx00b	WDT/Timer2 interrupt status register						
0x93	TIMER2_CFG	RW	xxxx_0000b	TIMER2 configuration register						
0x94	TIMER2 SET H	RW	0000 0000b	TIMER2 counter configuration register,						
0X94	0X94 IIMEK2_SEI_H		0000_00008	high 8 bits						
0x95	TIMER2_SET_L	RW	0000 0000b	TIMER2 counter configuration register,						
0.0.95	TIMEK2_SET_L	K W	0000_00000	low 8 bits						
0xE6	IEN1	RW	0000_00xxb	Interrupt enable register 1						
0xF1	IRCON1	RW	0000_00xxb	Interrupt flag register 1						
0xF6	IPL1	RW	0000_00xxb	Interrupt priority register 1						
0xFE	PD_ANA	RW	xxxx_0111b	Module switch control register						
•	•			· · · · ·						

Timer2 registers list

8.2.2. Timer2 Register Detailed Description

INT_PE_STAT(85H)WDT/Timer2 interrupt sta	atus register
	leas register

Bit number	7	6	5	4	3	2	1	0
Symbol	-	I	-	-	-	-	INT_WDT_STAT	INT_TIMER2_STAT
R/W	-	-	-	-	-	-	R/W	R/W
Reset value	-	-	-	-	-	-	0	0

Bit number	Bit symbol	Description
	0 INT_TIMER2_STAT	TIMER2 interrupt status, set 0, write TIMER2_CFG can
0		set 0.
0		1: interrupt effective
		0: invalid interrupt

TIMER2_CFG (93H) TIMER2 CFG register

Bit number	7~4	3	2	1	0
Symbol	-	TIMER2_CNT_MOD	TIMER2_CLK_SEL	TIMER2_RLD	TIMER2_EN
R/W	-	R/W	R/W	R/W	R/W
Reset value	-	0	0	0	0

Bit number	Bit symbol	Description
	3 TIMER2_CNT_MOD	TIMER2 count step mode select
2		register
5		1: count step is 65536 clock.
		0: count step is 1 clock.

2	TIMER2_CLK_SEL	TIMER2 clock select register 1: select XTAL32768Hz 0: select LIRC
1	TIMER2_RLD	TIMER2 reload enable control register 1: automatic reload mode 0: manual reload mode
0	TIMER2_EN	 TIMER2 count enable register 1: turn on timing; 0: stop timing; In manual reload mode, the hardware automatically clears this register after timing is completed, stop count. In manual reload mode, will maintain the enable register after the count is completed. Automatically re-counting from 0, no matter which mode, configuring this register to 1 during counting will start counting from 0.

TIMER2_SET_H(94H) TIMER2 count value configuration register, high 8 bits

						<u> </u>				
Bit number	7	6	5	4	3	2	1	0		
Symbol		TIMER2_SET_H[7:0]								
R/W				R/	W					
Reset value				()					

Bit number	В	it symbol	Description							
7~0	TIME	R2_SET_H	[7:0]		TIMER2 count configuration register, high 8 bits. Configuring this register during the scan will recount.					
TIMER2_SET	TIMER2_SET_L(95H) TIMER2 count value configuration register, low 8 bits									
Bit num	ber	7	6		5 4 3 2 1					0
Symbo	ol				TIM	IER2_SET	_L[7:0]			
R/W		R/W								
Reset va	lue		0							

Bit number	Bit symbol	Description
7~0	7.0 TIMED2 SET 1 (7.0)	TIMER2 count configuration register, low 8 bits.
7~0	TIMER2_SET_L[7:0]	Configuring this register during the scan will recount.

IEN1 (E6H) Interrupt enable register 1

Bit number	7	6	5	4	3	2	1	0
Symbol	EX7	EX6	EX5	EX4	EX3	EX2	-	-
R/W	R/W	R/W	R/W	R/W	R/W	R/W	-	-
Reset value	0	0	0	0	0	0	-	-

Bit number	Bit sy	mbol	Description							
7	E	V7	WDT/Timer2 interrupt enable							
/	7 EX7			1: interrupt enable; 0: interrupt disable						
IRCON1 (F1H) Interrupt flag register 1										

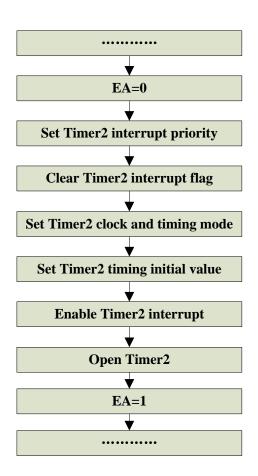
Bit number	7	6	5	4	3	2	1	0
Symbol	IE7	IE6	IE5	IE4	IE3	IE2	-	-
R/W	R/W	R/W	R/W	R/W	R/W	R/W	-	-
Reset value	0	0	0	0	0	0	-	-

Bit number	Bit symbol	Description
7	IE7	WDT/Timer2 interrupt flag 1: There is a WDT/Timer2 interrupt flag; 0: No WDT/Timer2 interrupt flag

IPL1 (F6H) Interrupt priority register 1

Bit number	7	6	5	4	3	2	1	0
Symbol	IPL1.7	IPL1.6	IPL1.5	IPL1.4	IPL1.3	IPL1.2	-	-
R/W	R/W	R/W	R/W	R/W	R/W	R/W	-	-
Reset value	0	0	0	0	0	0	-	-

Bit number	Bit symbol	Description
7	IDI 1 7	WDT/Timer 2 interrupt priority.
/	IPL1.7	0: low priority; 1: high priority


PD_ANA (FEH) Module switch control register

Bit number	7~4	3	2	1	0
Symbol	-	PD_OSC_32K	PD_XTAL_32K	PD_CSD	PD_ADC
R/W	-	R/W	R/W	R/W	R/W
Reset value	-	0	1	1	1

Bit number	Bit symbol	Description
2	DD OSC 22V	LIRC control register
3	PD_OSC_32K	1: off; 0: on, default on
		RTC crystal oscillator circuit (32768Hz) control register.
2	PD_XTAL_32K	1: close;
		0: open; default close.

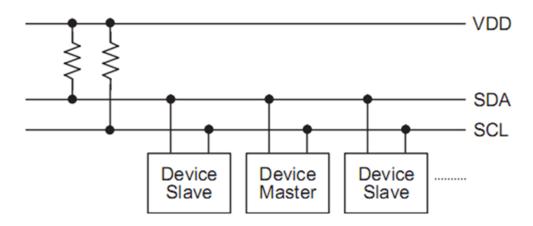
8.2.3. Timer2 Configure Process

Timer2 configure process table

In the configuration process:

- 1. First configure the timing set value register TIMER2_SET_H/TIMER2_SET_L and step configuration TIMER2_CNT_MOD;
- 2. Then automatically reload the enable register TIMER2_RLD according to the configuration, set to 1 if automatic loop count is required, otherwise configure 0;
- 3. Final configuration timing enable register TIMER2_EN, enable timing configuration TIMER2_EN=1;
- 4. Stop timing: TIMER2_EN=0.

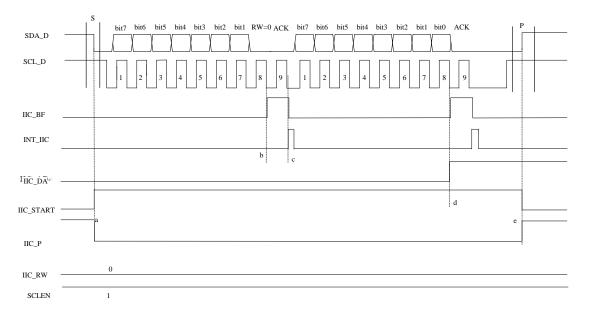
Notes:


- 1. TIMER2_EN=0x1 to be placed at the end of all configurations;
- 2. During the TIMER2 timing, it is forbidden to change the configuration of Timer2. To modify, you need to stop timing first;
- **3.** For precise timing, in the auto-reload mode, it is not allowed to configure three registers of TIMER2 in interrupt processing.

9. IIC

The BF7412AMXX-XJLX supports standard and fast IIC communication, and has the following characteristics:

- Two serial interfaces: serial data line SDA and serial clock line SCL;
- Meet philips's standard communication protocol;
- Transmission rate: 100Kbps, 400Kbps;
- Support for 7-bit address addressing;
- Has the function of extending the clock low level;
- Wake-up core can be interrupted by IIC in low_power mode;
- Detect write conflicts and cache BUF overflow exceptions;
- Support digital filter function and analog filter function of IIC port.


IIC host-slave

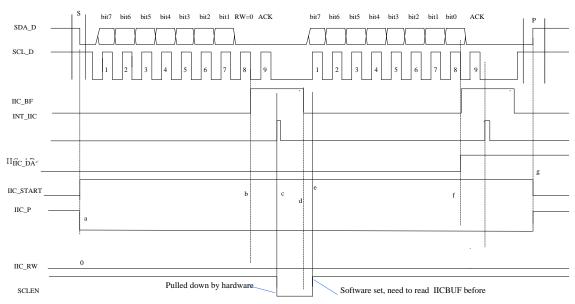
The host and slave from the SCL (serial clock) line, SDA (serial data) wire connection, in the communication mode, the PA0/PA1/PD6 is open drain, SCL, SDA must be connected to the pull resistor(suggest 4.7k~10k). When the TS device has touch related actions, such as touch, slide, figure away, etc. The host can read the state of the slave through IIC communication.

9.1. Communication Timing

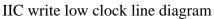
The BF7412AMXX-XJLX uses hardware slave. When the host reads/writes data, after the slave receives the address, if the address matches, an interrupt is generated and a valid response signal is sent. And an interrupt is generated after the host computer writes the eighth clock of the data, and the host will not generate an interrupt signal when sending the stop signal. IIC timing diagram as follows:

IIC host write timing diagram

IIC write not pull down clock line diagram


As shown in the above figure, the schematic diagram of the clock line is not pulled down during the host write operation. From this, you can see the changes of the IIC bus and some internal signal changes.

First the host sends a start signal IIC_START, and the slave sets the IIC_START status bit after detecting the IIC_START signal, as shown by the dotted line a in the figure.


Then the host sends the address bytes and write flag bit, and the slave automatically compares with its own address after receiving the address byte. Set IIC_BF after the falling edge of the eighth clock if the address matches, as shown by the dotted line b in the figure. An interrupt signal INT_IIC is generated after the falling edge of the ninth clock, as shown by the dotted line c. The MCU executes interrupt subroutine device needs to read IICBUF. Even if this data is not useful, it needs to be operated.Reading the IICBUF operation will indirectly clear the START_BF. The host continues to send messages. The IIC_BF is also set after the falling edge of the 8th clock of the 2nd byte, and the IIC_AD flag is also set. The currently received byte of the flag is data, and the stop signal has no effect on the IIC_STOP flag. That is, the stop signal IIC_STOP is detected, as shown by the dotted line d. And the IIC_AD flag will not be cleared. The interrupt is generated after the

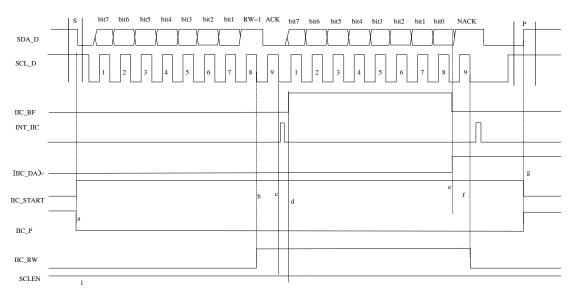
falling edge of the ninth clock, and the interrupt subroutine requires the same operation. If the host wants to send multiple bytes, it can continue to send. The figure above only shows the case where the host sends a data.

Finally, the host sends a stop signal IIC_STOP after sending all the data, indicating the end of the communication, releasing the IIC bus, and the bus enters the idle state.

IIC host write pull low timing diagram

As shown in the above figure, it is a schematic diagram of pulling down the clock line during the host write operation, from which you can see the changes of the IIC bus and some internal signal changes.

First the host sends a start signal IIC_START, and the slave sets the IIC_START status bit after detecting the IIC_START signal, as shown by the dotted line a.


Then the host sends the address bytes and write flag bit, and the slave automatically compares with its own address after receiving the address byte. Set IIC_BF after the falling edge of the eighth clock if the address matches, as shown by the dotted line b.

An interrupt signal INT_IIC is generated after the falling edge of the ninth clock, as shown by the dotted line c. SCLEN will be cleared by hardware. This process is used to process or read data from the slave. Even if this data is not useful, reading IICBUF will cause IIC_BUF to be cleared indirectly, as shown by the dotted line d. Software sets SCLEN to release the clock line.As shown by the dotted line e.

After the master detects that the slave releases the SCL, it continues to send the synchronous clock. The IIC_BF is also set after the falling edge of the 8th clock of the 2nd byte, and the IIC_AD flag is also set. And the IIC_AD flag is also set. The currently received byte of the flag is data, as shown by the dotted line f, and the stop signal has no effect on the IIC_STOP flag. That is, the stop signal IIC_STOP is detected, and the IIC_AD flag will not be cleared; The interrupt is generated

after the falling edge of the ninth clock, and the interrupt subroutine requires the same operation. If the host wants to send multiple bytes, it can continue to send. The figure above only shows the case where the host sends a data.

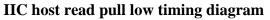
Finally, the host sends a stop signal IIC_STOP after sending all the data, indicating the end of the communication, releasing the IIC bus, and the bus enters the idle state.

IIC host read timing diagram

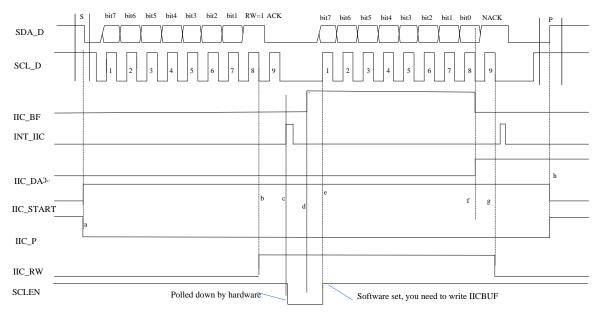
IIC host does not pull low clock line diagram

As shown in the above figure, the schematic diagram of the clock line is not pulled when the host reads.

First the host sends a start signal IIC_START, marking the beginning of communication. As shown by the dotted line a. The internal circuit detects the IIC_START signal timing and sets the status flag IIC_START.


Then the host sends the address bytes and write flag bit, $IIC_RW = 1$, indicates that the host reads the slave. The slave automatically compares with its own address after receiving the address byte.Status bit IIC_RW set. As shown by the dotted line b. Set IIC_RW after the falling edge of the ninth clock if the address matches.

An interrupt signal INT_IIC is generated after the falling edge of the ninth clock. As shown by the dotted line c. Ballast the data in IICBUFFER to IICBUF, IIC is set to clear, as shown by the dotted line d, and the highest bit is sent to the bus. After the eighth clock, one byte of data is sent, IIC_BF is set to clear; At the same time, the address data flag will also be set, indicating the currently transmitted byte data.


As shown by the dotted line e. An interrupt signal INT_IIC is generated after the falling edge of the ninth clock. If the host needs to read the slave, the host replies with a valid acknowledge bit ACK and continues to communicate. If the data require by the host has been read, the host replies with an invalid response NACK, and then sends a stop signal IIC_STOP to stop the communication. This should be noted in the application. When the NACK is detected, the read/write flag IIC_RW is

cleared by hardware. As shown by the dotted line f. If the host sends a NACK, the slave SCLEN will not be automatically pulled low.

Finally, the host sends a stop signal IIC_STOP after reading all the data, indicating the end of the communication. When the IIC_STOP signal is detected the status bit IIC_STOP is set and IIC_START is cleared. Release IIC bus. As shown by the dotted line g. The bus enters the idle state.

比亚迪半导体 Semiconductor

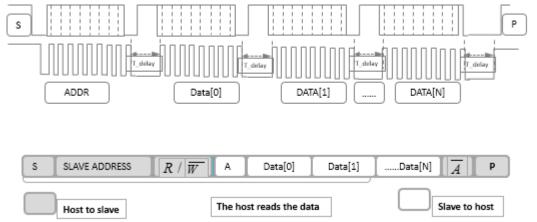
IIC host read pull low clock line diagram

As shown in the above figure, the schematic diagram of the clock line is not pulled when the host reads.

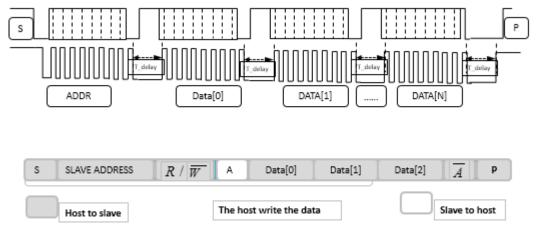
First the host sends a start signal IIC_START, marking the beginning of communication. As shown by the dotted line a. The internal circuit detects the IIC_START signal timing and sets the status flag IIC_START.

Then the host sends the address byte after the IIC_START signal. IIC_RW = 1, indicates that the host reads the slave. Status bit IIC_RW set. As shown by the dotted line b. Will not be set if the addresses do not match.

An interrupt signal INT_IIC is generated after the falling edge of the ninth clock. As shown by the dotted line c. SCLEN will also be automatically pulled low by the hardware after the falling edge of the ninth clock. This period is used to process or prepare data from the slave, then write the prepared data to IICBUF, set SCLEN in software, and release the clock line. As shown by the dotted line d. In writing the data to the IIC, the IIC will be set, indicating that the IIC is full at this time. As shown by the dotted line e.


After the master detects that the slave releases the SCL, it continues to send the synchronous clock and read the slave data. After the falling edge of the 8th clock, one byte of data has been sent and IIC_BF cleared; At the same time, the address data flag will also be set, indicating the currently transmitted byte data. As shown by the dotted line f.

An interrupt signal INT_IIC is generated after the falling edge of the ninth clock. If the host needs to continue to read the slave, the host replies with a valid acknowledge bit ACK and continues to communicate; If the data require by the host has been read, the host replies with an invalid response NACK, and then sends a stop signal IIC_STOP to stop the communication. When the NACK is detected, the read/write flag IIC_RW is cleared by hardware. As shown by the dotted line g.


Finally, the host sends a stop signal IIC_STOP after reading all the data, indicating the end of the communication. When the IIC_STOP signal is detected the status bit IIC_STOP is set and IIC_START is cleared. Release IIC bus. As shown by the dotted line h. The bus enters the idle state.

IIC host read data diagram

PS: T_delay: Reserve slave interrupt time, generally 60us^300us, if the slave IIC interrupts the service processing time at100us, suggest T_delay>200us.

IIC host write data diagram

PS: T_delay: Reserve slave interrupt time, generally 60us^300us, if the slave IIC interrupts the service processing time at100us, suggest T_delay>200us .

At the eighth clock slave send ack, IIC interrupt occurs at the ninth clock fulling edge. It is

recommended that the host delay 60us~300us when the ninth clock fulling edge is sent. Reserve the slave IIC interrupt service data preparation time, and then send the clock signal.

Note: When IIC communication>=100K, it is recommended that the system clock is 6MHz.

9.2. IIC Related Register

	SFR register								
Address	Name	RW	Reset value	Description function					
0xE3	IICADD	RW	0000_000xb	IIC address register					
0xE4	IICBUF	RW	0000_0000b	IIC transmit receive data register					
0xE5	IICCON	RW	xx01_0000b	IIC configuration register					
0xE6	IEN1	RW	0000_00xxb	Interrupt enable register 1					
0xE8	IICSTAT	RO/RW	0100_0100b	IIC status register					
0xE9	IICBUFFER	RW	0000_0000Ь	IIC transmit and receive data buffer register					
0xF1	IRCON1	RW	0000_00xxb	Interrupt flag register 1					
0xF2	PERIPH_IO_SEL	RW	x100_0000b	IIC /INT function control register					
0xF6	IPL1	RW	0000_00xxb	Interrupt priority register 1					

IIC registers list

9.3. IIC Register Detailed Description

IICADD (E3H) IIC address register

Bit number	7	6	5	4	3	2	1	0
Symbol			II	CADD[7:	1]			-
R/W		R/W						-
Reset value		0						_

Bit number	Bit symbol Description							
7~1	IICADI	D[7:1]	IIC address register					
IICBUF (E4H)	F (E4H) IIC transmit and receive data register							
Bit number	7	6	5	4	3	2	1	0
Symbol		IICBUF						
R/W		R/W						
Reset value				()			

Bit number	Bit symbol	Description
7~0	IICBUF	IIC transmit receive data buffer

Bit number	7	6	5	4
Symbol	-	-	IIC_RST	RD_SCL_EN
R/W	_	_	R/W	R/W
Reset value	_	_	0	1
Bit number	3	2	1	0
Symbol	WR_SCL_EN	SCLEN	SR	IIC_EN
R/W	R/W	R/W	R/W	R/W
Reset value	0	0	0	0

IICCON (E5H) IIC configuration register

Bit number	Bit symbol	Description
7~6		Reserved
		IIC module reset signal
5	IIC_RST	1: IIC module reset operation
		0: IIC module works properly
		Host read pull low clock line control bit.
4	RD_SCL_EN	1: enable the host to read and pull the low clock line function;
		0: disable the host to read and pull the low clock line function.
		Host write pull low clock line control bit.
3	WR_SCL_EN	1: enable the host to write and pull the low clock line function;
		0: disable the host to write and pull the low clock line function.
		IIC clock enable bit
2	SCLEN	1: clock work properly
		0: pull down the clock line.
		IIC conversion rate control bit
		1: Conversion rate control is turned off to adapt to the standard
1	SR	speed mode (100K);
		0: Conversion rate control is enabled to adapt to fast speed mode
		(400K)
		IIC work enable bit
0	IIC_EN	1: IIC normal work;
		0: IIC not work

IEN1 (E6H) Interrupt enable register 1

Bit number	7	6	5	4	3	2	1	0
Symbol	EX7	EX6	EX5	EX4	EX3	EX2	-	-
R/W	R/W	R/W	R/W	R/W	R/W	R/W	-	-
Reset value	0	0	0	0	0	0	-	-

Bit number Bit symbol Description

2	EX3	IIC interrupt enable						
3	EAJ	1: interrupt enable	1: interrupt enable; 0: interrupt disable					
IICSTAT (E8H)	IIC status register							
Bit number	7	6	5	4				
Symbol	IIC_START	IIC_STOP	IIC_RW	IIC_AD				
R/W	R	R	R	R				
Reset value	0	1	0	0				
Bit number	3	2	1	0				
Symbol	IIC_BF	IIC_ACK	IIC_WCOL	IIC_RECOV				
R/W	R	R	R/W	R/W				
Reset value	0	1	0	0				

Bit number	Bit symbol	Description
		Start signal flag
7	IIC_START	1: start bit detected;
		0: no start bit detected
		Stop signal flag
6	IIC_STOP	1: stop status detected;
		0: no stop status detected
		Read and write flag.
5	IIC_RW	Record the read/write information obtained from the address
5		byte after the last address match.
		1: read; 0: write.
		Address data flag
4	IIC_AD	1: The most recently received or sent byte is data;
		0: The most recently received or sent byte is address
		IICBUF full flag.
		Received in IIC bus mode:
		1: received successfully, buffer is full;
		0: received successfully, buffer is empty.
3	IIC_BF	Send in IIC bus mode
		1: data transmission is in progress (does not include the
		acknowledge bit and the stop bit), buffer is full;
		0: data transmission has been completed (does not include the
		acknowledge bit and the stop bit), buffer is empty.
		Answer flag
2	IIC_ACK	1: invalid response signal;
		0: effective response signal.
1	IIC_WCOL	Write conflict flag.
1		1: when the IIC is transmitting the current data, the new data

		is attempted to be written to the transmit buffer; new datacannot be written to the buffer.0: no write conflict
0	IIC_RECOV	Receive overflow flag bit 1: When the previous data received by the IIC has not been taken, new data is received, the new data cannot be received by the buffer. 0: no receive overflow.

IICBUFFER (E9H) IIC transmit and receive data buffer register

Bit number	7	6	5	4	3	2	1	0
Symbol		IICBUFFER						
R/W		R/W						
Reset value	0							

Bit number	Bit symbol	Description
7~0	IICBUFFER	IIC transmit receive data buffer register. RD_SCL_EN=0, when the host reads the data, the data in the IICBUFFER is send to the slave transmit buffer after 2 clocks after the interrupt is generated, the data sent as a salve. Therefore, the previously prepared IICBUFFER interrupt data is generated before the interruption.

IRCON1 (F1H) Interrupt flag register 1

Bit number	7	6	5	4	3	2	1	0
Symbol	IE7	IE6	IE5	IE4	IE3	IE2	-	-
R/W	R/W	R/W	R/W	R/W	R/W	R/W	-	-
Reset value	0	0	0	0	0	0	-	-

Bit number	Bit symbol	Description
		IIC interrupt flag
3	IE3	1: There is a IIC interrupt flag;
		0: No IIC interrupt flag

PERIPH_IO_SEL (F2H) IIC /INT function control register

Bit number	7	6	5	4	3
Symbol	-	IIC_AFIL_SEL	IIC_DFIL_SEL	IIC_IC	D_SEL
R/W	-	R/W	R/W	R/W	R/W
Reset value	-	1	0	0	0
Bit number	2	1	0	/	/
Symbol	INT2_IO_SEL	INT1_IO_SEL	INT0_IO_SEL		
R/W	R/W	R/W	R/W	/	

BF7412AMXX-XJLX

Reset value	0	0	0	

Bit number	Bit symbol	Description
		IIC port analog filter selection enable
6	IIC_AFIL_SEL	1: select analog filter function;
		0: do not select analog filter function.
		IIC port digital filter selection enable.
5	IIC_DFIL_SEL	1: select digital filter function;
		0: do not select digital filter function.
		IIC select enable
		0: PA0/PA1 select IIC function;
		1: PB5/PC0 select IIC function;
4~3	UC IO SEI	2: PA1/PD6 select IIC function
4~3	IIC_IO_SEL	(When PB5/PC0 is used as IIC port, there is no SR control
		function, automatic logic control becomes open-drain
		output, when PB5/PC0 is used as GPIO, there is no
		open-drain output function)

IPL1 (F6H) Interrupt priority register 1

Bit number	7	6	5	4	3	2	1	0
Symbol	IPL1.7	IPL1.6	IPL1.5	IPL1.4	IPL1.3	IPL1.2	-	-
R/W	R/W	R/W	R/W	R/W	R/W	R/W	-	-
Reset value	0	0	0	0	0	0	-	-

Bit number	Bit symbol	Description
3	IPL1.3	IIC interrupt priority.0: low priority; 1: high priority

9.4. IICSTAT Register

The IIC status register is used to reflect the status in the communication process and can be inquired by the user. Bit0 and Bit1 are readable and writable, and the other bits are read-only. IICSTAT (E8H) IIC status register

Bit number	7	6	5	4
Symbol	IIC_START	IIC_STOP	IIC_RW	IIC_AD
R/W	R	R	R	R
Reset value	0	1	0	0
Bit number	3	2	1	0
Symbol	IIC_BF	IIC_ACK	IIC_WCOL	IIC_RECOV
R/W	R	R	R/W	R/W
Reset value	0	1	0	0

Bit number	Bit symbol	Description
		Start signal flag
7	IIC_START	1: start bit detected;
		0: no start bit detected
		Stop signal flag
6	IIC_STOP	1: stop status detected;
		0: no stop status detected
		Read and write flag.
5	UC DW	Record the read/write information obtained from the address
5	IIC_RW	byte after the last address match.
		1: read; 0: write.
		Address data flag
4	IIC_AD	1: The most recently received or sent byte is data;
		0: The most recently received or sent byte is address
		IICBUF full flag.
		Received in IIC bus mode:
		1: received successfully, buffer is full;
		0: received successfully, buffer is empty.
3	IIC_BF	Send in IIC bus mode
		1: data transmission is in progress (does not include the
		acknowledge bit and the stop bit), buffer is full;
		0: data transmission has been completed (does not include the
		acknowledge bit and the stop bit), buffer is empty.
		Answer flag
2	IIC_ACK	1: invalid response signal;
		0: effective response signal.

		Write conflict flag.				
		1: when the IIC is transmitting the current data, the new data is				
1	IIC_WCOL	attempted to be written to the transmit buffer; new data cannot				
		be written to the buffer.				
		0: no write conflict				
		Receive overflow flag bit				
		1: When the previous data received by the IIC has not been				
0	IIC_RECOV	taken, new data is received, the new data cannot be received by				
		the buffer.				
		0: no receive overflow.				

IIC_START: Start signal status bit, IIC_START is set when the start signal is detected, Indicating that the bus is busy.

IIC_STOP: Stop signal status bit, IIC_START is set when the start signal is detected, indicating that the bus is idle. When the start signal is detected, the hardware is cleared, indicating that communication begins.

IIC_AD: Address data flag. It indicates whether the byte currently received or sent is an address or data. IIC_AD =0, flag is currently received or sent byte is the address; IIC_AD = 1 flag is currently received or sent byte is the data; Start signal, stop signal, non-response signal have no effect on this status bit. This status bit change occurs on the falling edge of the eighth clock.

IIC_RW: Read and write flag. The flag bit is recorded the read and write information bits obtained from the address is matched. IIC_RW = 1 means the host reads the slave. RW = 0 means the host writes the slave. Start signal, stop signal, non-answer signal (NACK) is cleared IIC_RW. This status bit change occurs on the falling edge of the eighth clock.

IIC_BF: BUFFER full flag. It indicates that the transceiver buffer is currently full or empty. IIC_BF=0 indicates that the buffer does not receive data and the buffer is empty; IIC_BF=1 indicates that the buffer receive data and the buffer is full. This status bit can only be set and cleared indirectly, not directly.

Address matching and IIC_RW=0, IIC_BF will be set after the falling edge of the eighth clock, indicating that the IICBUF has received the data. The IICBUF should be read during the execution of the interrupt routine, and the read IICBUF will indirectly clear the BF flag. If the host does not read IICBUF and the host continues to send data, a receive overflow will occur. Although the slave still receives the host to send data and is ballasted to the IICBUF.

IIC_RW=1 indicates the operation of the master to read the slave, the slave operation needs to write data to the IICBUF, and the slave writes IICBUF operation to set the IICBUF. The software then sets SCLEN to release the clock line; The host The host sends the synchronous clock. After the 8th clock is passed, the IICBUF is cleared by hardware after the data in the IICBUF is sent out.

IIC_ACK: Answer flag. Regardless of whether the host is a read or write operation, the slave samples the data line from the rising edge of the ninth clock and records the response information. The acknowledge bits are divided into a valid acknowledgment ACK and a non-valid acknowledgement bit NACK. That is to say, the rising edge of the ninth clock samples the data to 0,

indicating that the ACK is valid, and the IIC_ACK is cleared. If data 1 is sampled, NACK is set, indicating non-response. After the non-acknowledgment signal, the host will send a stop signal to announce the end of the communication. The start signal will clear this status bit.

IIC_WCOL: Write conflict flag. IICBUF only when IIC_RW=1, RD_SCL_EN=1 and SCLEN=0 can be written by the CPU. Any other attempt to write to IICBUF is forbidden. If the above conditions are not met, the write IICBUF operation occurs. Then the data will not be written to IICBUF, and the conflict flag IIC_WCOL will be set. This flag needs to be cleared by software.

IIC_RECOV: Receive overflow flag. In the case of IICBUF full, that is, in the case of data in the IICBUF. If IIC received new data, it will receive overflow and IIC RECOV will set. At the same time, the data in the IICBUF will not be updated, and the newly received data will be lost. This status bit also requires software to clear, otherwise it will affect the subsequent communication. This kind of situation will only appear in IICRW=0. BF=1, and the CPU will appear when it does not read IICBUF.

9.5. IICCON Register

песен (ден)									
Bit number	7	6	5	4					
Symbol	_	_	IIC_RST	RD_SCL_EN					
R/W	-	-	R/W	R/W					
Reset value	-	-	0	1					
Bit number	3	2	1	0					
Symbol	WR_SCL_EN	SCLEN	SR	IIC_EN					
R/W	R/W	R/W	R/W	R/W					
Reset value	0	0	0	0					

The IICCON register is used to control the communication operation.

Bit number	/	6	5	4
Symbol	-	-	IIC_RST	RD_SCL_EN
R/W	—	-	R/W	R/W
Reset value	—	—	0	1
Bit number	3	2	1	0
Symbol	WR_SCL_EN	SCLEN	SR	IIC_EN
R/W	R/W	R/W	R/W	R/W
Reset value	0	0	0	0

IICCON (E5H) IIC configuration register

Bit number	Bit symbol	Description				
7~6		Reserved				
		IIC module reset signal				
5	IIC_RST	1: IIC module reset operation				
		0: IIC module works properly				
		Host read pull low clock line control bit.				
4	RD_SCL_EN	1: enable the host to read and pull the low clock line function;				
		0: disable the host to read and pull the low clock line function.				
		Host write pull low clock line control bit.				
3	WR_SCL_EN	1: enable the host to write and pull the low clock line function;				
		0: disable the host to write and pull the low clock line function.				
		IIC clock enable bit				
2	SCLEN	1: clock work properly				
		0: pull down the clock line.				
		IIC conversion rate control bit				
		1: Conversion rate control is turned off to adapt to the standard				
1	SR	speed mode (100K);				
		0: Conversion rate control is enabled to adapt to fast speed				
		mode (400K)				
		IIC work enable bit				
0	IIC_EN	1: IIC normal work;				
		0: IIC not work				

The role is describle in detail below:

IICEN is module enable signal, when IICEN=1, the circuit works.

SR is the conversion rate control bit, SR=1 conversion ratecontrol off, port adapted to 100Kbps communication.

SCLEN is clock enable control bit, although the slave cannot generate the communication clock, the slave can extend the low time of the clock according to the protocol. SCLEN=0, clock line is locked at low level; SCLEN=1, release clock line. The premise of extending the low level of the clock is IICEN=1, otherwise the internal circuit will not have any effect on the IIC bus. SCLEN is often used to extend low time and make the host enter the wait state, so that the slave has enough time to process the data.

WR_SCL_EN is write low line control bit. When it is 1 to enable the interrupt to pull down the clock line, when it is 0, it does not enable the interrupt to pull down the clock line.

IIC_RW=0, according to the communication rate of the host and the time of processing the interrupt, it is determined whether to lower the clock line, that is, configure the WR_SCL_EN bit.

When the CPU can process the interrupt and exit the interrupt within 8 IIC clocks. WR_SCL_EN=0 disable pull down the clock clock line function. At this time, the hardware will not automatically pull down the clock line when the interrupt arrives. When the CPU cannot process the interrupt and exit in the 8 IIC clocks, WR_SCL_EN=1 enables the clock line to be pulled down. At this point, the hardware automatically pulls down the clock line when the interrupt arrives, forcing the host to enter the wait state. When the data written to the IIC is read by the CPU, the software sets SCLEN.

RD_SCL_EN is read low line control bit. When it is 1 to enable the interrupt to pull down the clock line, when it is 0, it does not enable the interrupt to pull down the clock line.

RD_SCL_EN=1, when the slave receives the address byte or sends one byte and the host sends, SCLEN wll be automatically pulled low by hardware, forcing the host to the enter the wait state. The release the IIC clock from the slave, the following two operations arerequired: first write the data to be sent to the IIC, set the software in IICBUF in SCLEN. The purpose of this design is to ensure that the data to be sent has been written in the IICBUF before the SCL is pulled high.

RD_SCL_EN=0, when the slave receives the address byte or sends one byte and the host sends an ACK, the slave immediately polls the data prepared in the IICBUFFER register to the transmit buffer register and then to the data line. Therefore, in order to ensure that data transmitted each time is correct, IICBUFFER prepares the next data to be sent in the interrupt service routine. The data received by the host is the last interrupted data, and the first time the data is received is ready for initialization.

Note: When you need to pull down the clock line, that is, WR_SCL_EN/RD_SCL_EN=1. Software should turn off the clock line until the last Byte data is sent and received. That is, WR_SCL_EN/RD_SCL_EN=0, the software should turn on the write low pull clock line before sending and receiving the last Byte data. This kind of operation can be self-regulated according to whether the host is software or hardware.

IIC_RST is IIC module control enable bit, enable the IIC module reset function for 1 and disable the IIC module reset function when 0. Pay attention to configuration 1 reset IIC module all DFF triggers. The reset terminal of IIC_RST is global reset, and the other reset terminal are iic_rst_n. All iic_rst writes 0 first, then operate other register configurations.

9.6. IICBUF Register

IICBUF (E4H) IIC transmit and receive data register									
Bit number	7	7 6 5 4 3 2 1 0							
Symbol		IICBUF							
R/W		R/W							
Reset value		0							

The IICBUF register is used to control the communication operation. •, 1 • 14

Bit number	7 6 5 4 3 2 1 0								
Symbol		IICBUF							
R/W		R/W							
Reset value		0							

Bit number	Bit symbol	Description
7~0	IICBUF	IIC transmit and receive data buffer

The specific application process is as follows:

In the send state, after the data is ballasted into the IICBUF, under the synchronous clock of the host. The data is sequentially shifted and sent out, the high position is in front. After 8 clocks, one byte is sent.

In the receive state, after the host's 8 clocks have passed, the data is written to the BUF. After the 9th clock, an interrupt is generated, telling the CPU to read the data in the IICBUF.

Writing data to IICBUF is conditional, when RD SCL EN=1, only IIC RW=1, and SCLEN=0 can write data into IICBUF; Otherwise, the operation of writing IICBUF is prohibited. That is to say, if the condition is not satisfied, the operation of writing IICBUF cannot be successful, and the data cannot be written. IICBUF data will not change, but will also cause write confilicts.

For example: IICBUF already has been 55h. In case the condition of writing IICBUF is not satisfied, we want to write data 00h into IICBUF. The result is that the data in IICBUF is still 55h, and the write conflict flag IIC_WCOL is set to tell the user that the operation is abnormal.

When RD SCL EN=0, the data to be the slave is the value of the ballast IICBUFFER register when the interrupt signal is generated.

9.7. IICBUFFER Register

Bit number	7	6	5	4	3	2	1	0	
Symbol		IICBUFFER							
R/W		R/W							
Reset value		0							

IICBUFFER (E9H) IIC transmit and receive data buffer register

The specific application process is as follows:

When RD_SCL_EN=0, and the host reads the data, the data in the IICBUFFER is sent to the slave transmit buffer register after the two clks after the interrupt is generated, and the data is sent as slave. Therefore, the data in the IICBUFFER should be prepared before the interrupt is generated. Generally, it is ready in the service routine. Device address generation interrupts send data to prepare for initialization.

9.7. IIC Configure Process

IIC configure process

Notes: IIC bus pull-up resistor 4.7K~10K, ground filter capacitor 10pF~ 100pF close to the lead chip.

10. UART

There are 2 UART modules in the BF7412AMXX-XJLX series. UART0 supports 6 IO port mapping, and UART1 supports 2 channels. Only one set of mapping can be mapped at the same time. UART module interface characteristics:

- Support full-duplex, half-duplex serial
- Independent dual buffer receiver and single buffer transmitter
- Programmed baud rate (10bit analog-to digital divider)
- Interrupt-driven or polling operation:
 - send completed
 - receiving full
 - receive overflow, parity error, frame error
- Supports hardware parity production and check
- Programmable 8bit or 9bit character length
- STOP bit 1 or 2 can be selected
- Supports multiprocessor mode
- Support TXD/RXD pin position swap
- Support TXD/RXD independent enable

10.1. UART Function Description

10.1.1. Baud Rate Generation

Baud rate generation modules: Baud_Mod= {UART0/1_BDH[1:0], UART0/1_BDL}. Baud rate calculation formula: Baud_Mod=0, does not generate baud rate clock. When Baud_Mod=1~1023, UART0 baud rate = BUSCLK/(16x Baud_Mod).

The BUSCLK uses the divided clock of the system clock source, fixed to 24M. Each time the baud rate register is configured, the internal counter is cleared and the baud rate signal is regenerated. Communication requires the transmitter and receiver to use the same baud rate. Baud rate deviation range allowed by communication: 8/(11*16)=4.5%.

10.1.2. Transmitter Function

Send data flow: Trammitted by writing UART0/1_BUF data, sending stop bit after sending stop bit. Software clear interrupt flag and waits for the next write. The transmitter output pin (TXD) idle state defaults to a logic high state. The entire transmission process must be performed when the module is enabled.

By writing data to the data register (UART0/1_BUF), save the data directly to the send data buffer and start the send process. The data buffer is locked during the subsequent complete transmission. The configuration write data register UART0/1_BUF and T8 is invalid. After the stop bit is sent, writing to UART0/1_BUF again will restart the new transmission.

The serial component of the serial transmitter has a length of 10/11/12 (depending on the setting in the data_mode control bit) transmit shift register. If data_mode=0, select normal 8bit data mode. In the 8bit data mode, there is 1 start bit in the shift register, 8 data bits and 1/2 stop bits. Send and receive are small endian mode (LSB first).

10.1.3. Receiver Function

The receiver is enabled by setting the receive enable bit in UART0/1_CON1. The entire receiving process must be performed when the module is enabled.

Receiving data flow: receive data at any time with the reception enable enabled. After receiving the stop bit, set the middle segment and the software clears the interrupt flag.

Currently acceptly data will detect wit, detect receive overflow, frame error, parity error three errors. Software clearance mark required. It is recommended to read the status flag and read the data buf after receiving the receive interrupt. Finally, the received data status flags are cleared.

Data character is started by logic 0, 8 or 9 data bit (LSB send first) and stop bits (1bit) of logic 1. After receiving the stop bit to the shifter, if the receive data shift register is not full (RI0/1=0), data characters are transferred to the receive data register, setting the receive data register full (RI0/1=1) status flag. If the rx_full_if of the receive data register is already set at this time, set the overflow (UART0/1_RO) status flag, the new data will be lost. Because the receiver is double

buffered, after setting rx_full_if, program has a full character time for reading before reading the data of the receive data buffer to avoid receiver overflow.

When the program detects that the receive data register is full (RI0/1=1), it acquires data from the receive data register by reading UART0/1_BUF.

10.1.4. Receiver Sampling Method

The receiver uses with a 16x baud rate clock for sampling. The receiver searches for falling edge on the RXD serial data input pin by extracting the logic level samples at 16x baud rate. The falling edge is defined as the logic 0 level after 3 consecutive logic 1 samples. The 16x baud rate clock is used to divide the bit time into 16 segements, labeled RT1 and RT16 respectively.

The receiver then samples at each bit time of RT8, RT9 and RT10, including the start and stop bits to determine the logic level of the bit. The logic level is the logic level of most samples advanced during the bit time period. When the falling edge is located, the logic level is 0 to ensure that this is the true starting bit, not the noise. If at least two of the three samples are 0, the receiver assumes that it is synchronized with the receiver character. Start shifting to receive the following data, if the above conditions are not met, exit the state machine and return to the waiting for falling edge state.

The falling edge detection logic constantly looks for the falling edge. If an edge is detected, the sample clock resynchronizes the bit time. This improves the reliability of the receiver when noise or mismatch in baud rate occurs.

10.1.5. Multiprocessor Mode

Multiprocessor mode, only works in 9-bit mode, when the received UART0/1_R8 bit=1, the receive interrupt is set, otherwise it is not set. The role of this mechanism is to eliminate the software overhead of handing unimportant information for different receivers.

In this application system, all receivers estimate the address character (ninth bit=1) of each message. Once it is determined that the information is intended for different receivers, subsequent data characters (ninth bit=0) are not received.

Configuration process: configuring receive enable, configuring multiprocessor mode, received address data (ninth bit=1), receive and generate an interrupt. The application confirms that the addresses match, and the match configures to turn off the multiprocessor mode. All subsequent data (ninth bit=0) can be received and interrupted until the next time the address data is received, the address does not match, then the multiprocessor mode is turned on. Then all subsequent data is not received until the next address data, and then cyclically applied.

10.2. UART Related Register

	SFR register								
Address	Name	RW	Reset value	Function description					
0xB1	UART_IO_SEL	RW	xxxx_0000b	UART select enable register					
0xBD	UART0_BDL	RW	0000_0000b	UART0 Baudrate control registe					
0xBE	UART0_CON1	RW	0000_0000b	UART0 control register 1					
0xBF	UART0_CON2	RW	0000_1100b	UART0 control register 2					
0xC0	UART0_STATE	RO/RW	x000_0000b	UART0 status flag register					
0xC1	UART0_BUF	RW	1111_1111b	UART0 data register					
0xC5	UART1_BDL	RW	0000_0000b	UART1 baud rate control register					
0xC6	UART1_CON1	RW	0000_0000b	UART1 control register 1					
0xC7	UART1_CON2	RW	xxx0_1100b	UART1 control register 2					
0xC8	UART1_STATE	RO/RW	x000_0000b	UART1 status flag register					
0xC9	UART1_BUF	RW	1111_1111b	UART1 data register					
0xE1	IRCON2	RW	xxxx_x000b	Interrupt flag register 2					
0xE7	IEN2	RW	xxxx_x000b	Interrupt enable register 2					
0xF4	IPL2	RW	xxxx_x000b	Interrupt priority register 2					

UART registers list

10.3. UART Register Detailed Description

OAKT_IO_SEE (DTH) OAKT select chable register								
Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	UART1_IO_SEL	UA	UART0_IO_SEL	
R/W	-	-	-	-	R/W	R/W	R/W	R/W
Reset value	-	-	-	-	0	0	0	0

UART_IO_SEL (B1H) UART select enable register

Bit number	Bit symbol	Description
7~4		Reserved
3	UART1_IO_ SEL	UART1 port selection enable 0: PB1/2 (RXD1_A/TXD1_A) port select UART1 port function 1: PB6/7 (RXD1_B/TXD1_B) port select UART1 port function
2~0	UART0_IO_ SEL	UART0 port selection enable 000: PA0/1 (RXD0_A/TXD0_A) port select UART0 port function 001: PB3/4 (RXD0_B/TXD0_B) port select UART0 port function 010: PD4/5 (RXD0_C/TXD0_C) port select UART0 port function 011: PC0/1 (RXD0_D/TXD0_D) port select UART0 port function 100: PD6/PA1 (RXD0_E/TXD0_E) port select UART0 port function

	101: PD7/PA0 (RXD0_F/TXD0_F) port select UART0 port							
		function						
UART0_BDL	RT0_BDL (BDH) UART0 Baudrate control register							
Bit number	7	6	5	4	3	2	1	0
Symbol		-						
R/W	R/W							
Reset value		0						

Bit number	Bit symbol	Description
		Baud rate control register.
		Baud rate modules divisor register lower 8 bits,
7~0		bandrate={UART0_BDH[1:0], UART0_BDL},
		bandrate=0, does not generate baud rate clock.
		bandrate=1~1023, bandrate = BUSCLK/(16xbandrate)

UART0_CON1 (BEH) UART0 control register 1

Bit number	7	7 6		4
Symbol	UART0_	TRANS_	RECEIVE_	MULTI_
Symbol	ENABLE	ENABLE	ENABLE	MODE
R/W	R/W	R/W R/W		R/W
Reset value	0	0	0	0
Bit number	3	2	1	0
Symbol	STOP_MODE	DATA_MODE	PARITY_EN	PARITY_SEL
R/W	R/W	R/W	R/W	R/W
Reset value	0	0	0	0

Bit number	Bit symbol	Description
		Module enable.
7	UART0_ENABLE	1: module enable;
		0: module off.
		Transmitter enable
6	TRANS_ENABLE	1: transmitter is on;
		0: transmitter is off
		Receiver enable.
5	RECEIVE_ENABLE	1: receiver open;
		0: receiver off.
		Multiprocessor communication mode.
4	MULTI_MODE	1: mode enable;
		0: mode disable.
3	STOP_MODE	Stop bit width selection.

		1: 2 bit; 0: 1 bit.
		Data mode select.
2	DATA_MODE	1: 9bit mode;
		0: 8bit mode.
		Parity enable.
1	PARITY_EN	1: parity enable;
		0: parity disable.
		Parity select.
0	PARITY_SEL	1: odd parity;
		0: even parity.

UART0_CON2 (BFH) UART0 control register 2

				ĕ				
Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	PAD_CHANGE	TX_EMPTY_IE	RX_FULL_IE	UART0	BDH
R/W	-	-	-	R/W	R/W	R/W	R/V	N
Reset value	-	-	-	0	1	1	0	0

Bit number	Bit symbol	Description			
		Txd/rxd pin interchange			
4	PAD_CHANGE	1: pin interchange;			
		0: the pins are not interchangeable			
		Send interrupt enable.			
3	TX_EMPTY_IE	1: interrupt enable;			
		0: interrupt disable (used in polling mode)			
		Received interrupt enable			
2	2 RX_FULL_IE	1: interrupt enable;			
		0: interrupt disable (used in polling mode)			
1~0	UART0_BDH	Baud rate modulus divisor register high 2bit.			

UART0_STATE (COH) UART0 status flag register

		00		
Bit number	7	6	5	4
Symbol	-	UART0_R8	UART0_T8	TIO
R/W	-	R	R/W	R/W
Reset value	-	0	0	0
Bit number	3	2	1	0
Symbol	RIO	UART0_RO	UART0_F	UART0_P
R/W	R/W	R/W	R/W	R/W
Reset value	0	0	0	0

Bit number	Bit symbol	Description
6	UART0_R8	Receiver's ninth data, read only.

5	UART0_T8	Transmitter's ninth data, read only when parity is enabled.
		Send interrupt flag.
4	TIO	1: send buffer is empty;
4	110	0: send buffer is full, software write 0 clear 0, write 1
		invalid.
		Receive interrupt flag.
3	DIO	1: receive buffer is full;
5	RIO	0: receive buffer is empty, software write 0 clear 0, write 1
		invalid.
		Receive overflow flag;
2	UART0_RO	1: receive overflow (lost new data);
		0: no overflow, software write 0 clear 0, write 1 invalid.
		Framing error flag.
1	UART0_F	1: framing error flag;
1		0: no framing error flag, software write 0 clear 0, write 1
		invalid.
		Parity error flag.
0	UART0_P	1: receiver parity error;
		0: parity is correct, software write 0 clear 0, write 1 invalid.

UART0_BUF (C1H) UART0 data register

Bit number	7	6	5	4	3	2	1	0
Symbol		_						
R/W		R/W						
Reset value		FF						

Bit number	Bit symbol	Description
		Data register
7~0		Read returns read-only receive data buffer contents, write
		into write-only send data buffer.

UART1_BDL(C5H) UART1 baud rate control register

Bit number	7	6	5	4	3	2	1	0
Symbol	-							
R/W	R/W							
Reset value	0							

Bit number	Bit symbol	Description	
		Baud rate control register	
7~0 -		The lower 8 bits of the baud rate modulus divisor register,	
		Baud_Mod={UART1_BDH[1:0], UART1_BDL},	

When Baud_Mod=0, the baud rate clock is not generated,		
when Baud_Mod= $1 \sim 1023$, the baud rate =		
BUSCLK/(16xBaud_Mod)		

UART1_C2(C6H) UART1 control register 3

Bit number	7	6	5	4
Symbol	UART1_	TRANS_	RECEIVE_E	MULTI_
	ENABLE	ENABLE	NABLE	MODE
R/W	R/W	R/W	R/W	R/W
Reset value	0	0	0	0
Bit number	3	2	1	0
Symbol	STOP_MODE	DATA_MODE	PARITY_EN	PARITY_SEL
R/W	R/W	R/W	R/W	R/W
Reset value	0	0	0	0

Bit number	Bit symbol	Description		
7	UART1_ENABLE	Module enable		
		1: module enable; 0: module close		
r.	TRANS_ENABLE	Transmitter enable		
6		1: transmitter is on; 0: transmitter is off		
5	RECEIVE_ENABLE	Receiver enable		
3		1: receiver is on; 0: receiver is off		
4	MULTI_MODE	Multiprocessor communication mode		
4		1: mode enable; 0: mode disable		
3	STOP_MODE	Stop bit width selection		
3		1: 2 bits; 0: 1 bit		
2	DATA_MODE	Data mode selection		
		1: 9-bit mode; 0: 8-bit mode		
	PARITY_EN	Parity check enable		
1		1: parity check is enabled;		
		0: parity check is disabled		
0	WAKE SEI	Parity selection		
U	WAKE_SEL	1: odd parity; 0: even parity		

UART1_CON2(C7H) UART1 control register 2

D'/ 1	7	C	_	4
Bit number	1	6	5	4
Symbol	-	-	-	PAD_CHANGE
R/W	-	-	-	R/W
Reset value	-	-	-	0
Bit number	3	2	1	0
Symbol	TX_EMPTY_IE	RX_FULL_IE	UART1_BDH	

R/W	R/W	R/W	R/W	R/W
Reset value	1	1	0	0

Bit number	Bit symbol	Description
		Txd/rxd pin interchange
4	PAD_CHANGE	1: pin interchange;
		0: the pins are not interchangeable
		Transmit interrupt enable
3	TX_EMPTY_IE	1: interrupt enable;
		0: interrupt disabled (used in polling mode)
		Receive interrupt enable
2	RX_FULL_IE	1: interrupt enable;
		0: interrupt disabled (used in polling mode)
1~0	UART1_BDH	Baud rate modulus divisor register high 2 bits

UART1_STATE (C8H) UART1 status flag register

Bit number	7	6	5	4
Symbol	-	UART1_R8	UART1_T8	TI1
R/W	-	R	R/W	R/W
Reset value	-	0	0	0
Bit number	3	2	1	0
Symbol	RI1	UART1_RO	UART1_F	UART1_P
R/W	R/W	R/W	R/W	R/W

Bit number	Bit symbol	Description
6	UART1_R8	The 9th data of the receiver, read only
5	UART1_T8	The 9th data of the transmitter, read only during parity check
		Send buffer empty interrupt flag
4	TI1	1: The sending buffer is empty;
		0: Send buffer is full, software write 0 to clear
		Receive interrupt flag
3	RI1	1: The receive buffer is full;
		0: Receive buffer is empty, software write 0 to clear
		Receive overflow flag
2	UART1_RO	1: Receive overflow (new data is lost);
		0: No overflow, software writes 0 to clear
		Frame error flag
1	UART1_F	1: A frame error is detected;
		0: No frame error is detected, software writes 0 to clear
0	UART1_P	Parity error flag

Reset value

			 Receiver parity error; Parity check is correct, software writes 0 to clear 					
UART1_BUF (C9H) UART1 data register								
Bit number	7	6	5	4	3	2	1	0
Symbol	-							
R/W		R/W						

FF

Bit number	Bit symbol	Description
7~0	-	Read returns the contents of the read-only receive data buffer, writes to the write-only send data buffer.

IRCON2 (E1H) Interrupt flag register 2

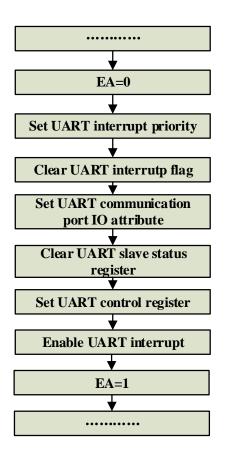
Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	-	IE10	IE9	IE8
R/W	-	-	-	-	-	R/W	R/W	R/W
Reset value	-	-	-	-	-	0	0	0

Bit number	Bit symbol	Description
		UART1 interrupt flag
2	IE10	1: There is a UART1 interrupt flag;
		0: No UART1 interrupt flag
		UART0 interrupt flag
1	IE9	1: There is a UART0 interrupt flag;
		0: No UART0 interrupt flag

IEN2(E7H) Interrupt enable register 2

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	-	EX10	EX9	EX8
R/W	-	-	-	-	-	R/W	R/W	R/W
Reset value	-	-	-	-	-	0	0	0

Bit number	Bit symbol	Description
7~3	-	Reserved
		UART1 interrupt enable
2	EX10	1: interrupt enable;
		0: interrupt disable
		UART0 interrupt enable
1	1 EX9	1: interrupt enable;
		0: interrupt disable



IPL2 (F4H) Interrupt priority register 2

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	-	IPL2.2	IPL2.1	IPL2.0
R/W	-	-	-	-	-	R/W	R/W	R/W
Reset value	-	-	-	-	-	0	0	0

Bit number	Bit symbol	Description
7~3	Reserved	
		UART1 interrupt priority.
2	IPL2.2	0: low priority; 1: high priority
1		UART0 interrupt priority.
1	IPL2.1	0: low priority; 1: high priority

10.4. UART Configuration Process

UART initial configuration process

UART suggested application process:

- 1. Configuration module enable, receive enable, mode select: UART0_CON1;
- 2. Configure baudrate, open interrupt enable: UART0_BDL, UART0_CON2;

3. Write UART0_BF starts to send data, after detecting the transmission interrupt, clear the interrupt flag TI0;

4. Receive interrupt detected, first read status UART0_STATE. Then read R8 and UART0_BUF, finally clear the receive status flag (UART0_STAT[3:0] = B0000). One receiving process is completed, waiting for the next receiving interrupt;

5. If the configuration interrupt is not enabled, the program executes the UART0 function. Also read the status flag first, then read UART0_R8 and UART0_BUF, and finally clear the status flag.

6. Interrupt flag clear operation. In full-duplex operation, clear flag bit operation requires a vaild interrupt bit to be written 0, and other interrupt bits to be written as 1 (write 1 as invalid operation), otherwise it is easy to operate incorrectly. For example: when the send interrupt is vaild, you need tp write UART0_STATE = 0x0F; (configuration UART0_STATE[0:3] = 0x0F, UART0_R8 write is invalid, UART0_T8 needs to configure vaild transmit data when it is in 9 bit mode and does not have parity).

7. 8 bit mode: Parity enable is valid.

9 bit mode: When the parity bit is enabled, when the parity bit calculated by the ninth bit is not enable, the ninth bit is the UARTO_T8 written in. Only send interrupts and receive interrupts. The error flag only marks the error detection of the current data, and only the corresponding bit writes 0 clear, do not jump out of error interrupt. The transmit interrupt is set after the stop bit is sent, and the software clears it. The receive interrupt is set after the stop bit is sent, and the software clears it.

Multiprocessor mode: Only works in 9 bit mode, received UART0_R8= 1, receive interrupt is set, otherwise it is not set. When using multiprocessor mode, configuring receive enable and multiprocessor mode. Receive address data (the ninth bit=1) and generate an interrupt, confirm that the address matches. Matching configures the multiprocessor mode to be turned off, and all subsequent data (the ninth bit = 0) can be interrupted by the received interrupt, until the next time data is received. If the address do not match, the multiprocessor mode is turned on, and all subsequent data is not received until the next address data.

Hardware response: Send data is opened by the value written to UART0_BUF. The interrupt flag is sent after the stop bit is sent. The software clears the interrupt flag and waits for the next write. The receive data receives data at any time when the receiving enable is effective. Set receive interrupt after receiving stop bit, software clear interrupt flag. The currently received data has a detection mechanism that can detect three errors of receive overflow, frame error, and parity error. Both require a software clear flag. It is recommended to read the status flag after the receive interrupt and clear the receive status flag UART0_STATE[3:0].

8. It is recommended to change the configuration of UART0_CON1[4:0] and the baud rate register when the module is enabled and closed, otherwise it may be disordered and cause the communication function to malfunction.

Note: The mapping synchronization output function is not supported.

11. PWM

11.1. PWM0 Function Description

PWM0 Function Description:

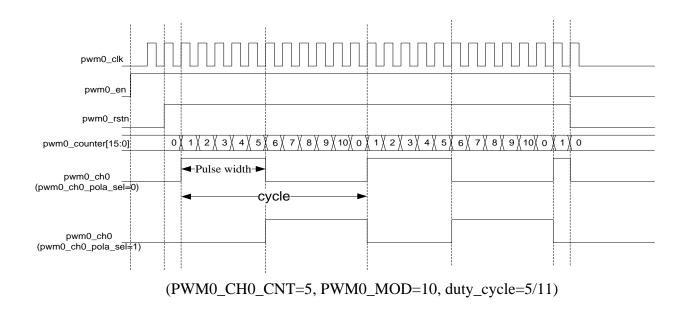
- The clock source is the fixed clock PLL_12M;
- Support up to 4 channels, each channel is individually enabled
- 16bit counter;
- Configurable counting period, adjustable duty cycle of each channel;
- PWM output waveform polarity can be configured;

• The duty cycle of channel 1/2/3 can be selected as the same configuration as channel 0 or the duty cycle configuration of your own channel;

• Each channel can independently select 2 IO port mapping

The PWM0 module supports 4 channels. Each channel can be individually controlled and enabled, sharing a 16-bit counter. The counting clock is 12MHz. The period of the PWM0 signal is determined by the value of the period configuration register (PWM0_MOD), the duty cycle is determined by the setting in the channel register (PWM0_CHn_CNT), the polarity of the PWM0 signal is determined by the setting in the PWM0_CH_CTRL control bit, 0% and 100% Space ratios are all possible.

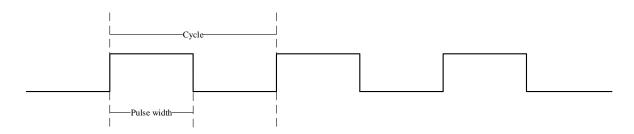
Pulse width = (PWM0_CHn_CNT)


Cycle = (PWM0_MOD+1)

Duty cycle = pulse width/period

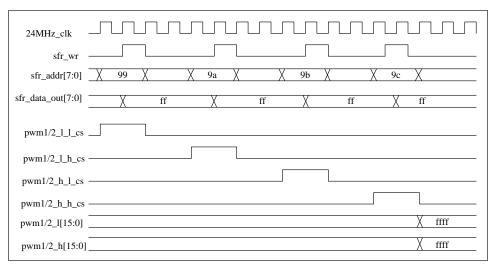
PWM0 counter counts up from 0x0000, when PWM0_CHn_CNT is counted, the output is inverted. This time is the pulse width. Countine counting until the count overflows at PWM0_MOD+1. If PWM0_CH0_POLA_SEL=0, PWM0 signal enters high state when output is flipped. If PWM0_CH0_POLA_SEL=1, PWM0 signal enters high state when output is overflows.

When channel count register (PWM0_CHn_CNT) is set 0x0000, the duty cycle is 0. When channel count register (PWM0_CHn_CNT) is set to a value greater than the value set by the period configuration register (PWM0_MOD) to achieve a 100% duty cycle. The counter is automatically reloaded and will not stop by itself until the register PWM0 is enabled to stop and the counter is cleared.



11.2. PWM1/2 Function Description

PWM1/2 features are as follows:


- The clock source is the fixed clock PLL_12M
- The high level control register and the low level control register are 16-bit registers
- Output cycle: $T_{PWM1/2_data} = (PWM1/2_H + PWM1/2_L) * T_{12MHz} (\mu s)$
- Output duty cycle: $D_{PWM1/2_data} = PWM1/2_H/(PWM1/2_L + PWM1/2_H)$
- Each channel can independently select 2 IO port mapping

Waveform diagram

The PWM1/2 pulse width modulation module's high and low time can be configured through the register, but the configuration of the register must be in the case of PWM1/2 enable effective (high effective), and the high level control register and low level control register must be configured in order from low to high, in order to ensure that the internal counter of the PWM1/2 module counts correctly and avoid generating wrong waveforms. These configuration values update the period and duty cycle after a complete period.

PWM1/2 timing diagram

11.3. PWM Related Registers

SFR register								
address	name	R/W	Reset value	Description				
0x99	PWM1_L_L	RW	0000_0000b	PWM1 low level control register (low 8 bits)				
0x9A	PWM1_L_H	RW	0000_0000b	PWM1 low level control register (high 8 bits)				
0x9B	PWM1_H_L	RW	0000_0000b	PWM1 high level control register (low 8 bits)				
0x9C	PWM1_H_H	RW	0000_0000b	PWM1 high level control register (high 8 bits)				
0x9D	PWM2_L_L	RW	0000_0000b	PWM2 low level control register (low 8 bits)				
0x9E	PWM2_L_H	RW	0000_0000b	PWM2 low level control register (high 8 bits)				
0x9F	PWM2_H_L	RW	0000_0000b	PWM2 high level control register (low 8 bits)				
0xA1	PWM2_H_H	RW	0000_0000b	PWM2 high level control register (high 8 bits)				
0xA2	PWM_EN	RW	xx00_0000b	PWM control register				
0xA3	PWM0_CH_CTRL	RW	0000_0000b	PWM0 control register				
0xA4	PWM0_CH0_CNT_L	RW	0000_0000b	PWM0 channel 0 count value configuration register low 8 bits				
0xA5	PWM0_CH0_CNT_H	RW	0000_0000b	PWM0 channel 0 count value configuration register high 8 bits				
0xA6	PWM0_CH1_CNT_L	RW	0000_0000b	PWM0 channel 1 count value configuration register low 8 bits				
0xA7	PWM0_CH1_CNT_H	RW	0000_0000b	PWM0 channel 1 count value configuration register high 8 bits				
0xA9	PWM0_CH2_CNT_L	RW	0000_0000Ъ	PWM0 channel 2 count value configuration register low 8 bits				
0xAA	PWM0_CH2_CNT_H	RW	0000_0000b	PWM0 channel 2 count value configuration register high 8 bits				
0xAB	PWM0_CH3_CNT_L	RW	0000_0000b	PWM0 channel 3 count value configuration register low 8 bits				
0xAC	PWM0_CH3_CNT_H	RW	0000_0000Ь	PWM0 channel 3 count value configuration register high 8 bits				
0xAD	PWM0_MOD_L	RW	0000_0000b	PWM0 cycle configuration register low 8 bits				
0xAE	PWM0_MOD_H	RW	0000_0000b	PWM0 cycle configuration register high 8 bits				
0xB2	PWM_IO_SEL	RW	xx00_0000b	PWM channel selection IO configuration register				

PWM registers list

NOTE:

Channel 0: PWM0_A/A1; Channel 1: PWM0_B/B1; Channel 2: PWM0_C/C1; Channel 3: PWM0_D/D1;

11.4. PWM Register Detailed Description

PWM1_L_L (99	PWM1 (HVM1	low level	control reg	gister (low	8 bits)			
Bit number	7	6	5	4	3	2	1	0
Symbol				PWM.	l_L_L			
R/W				R/	W			
Reset value				()			
PWM1_L_H (9/	AH) PWM	1 low leve	l control re	egister (hig	h 8 bits)			
Bit number	7	6	5	4	3	2	1	0
Symbol				PWM	I_L_H			
R/W				R/	W			
Reset value				()			
PWM1_H_L (9)	BH) PWM	1 high leve	el control r	egister (lov	w 8 bits)			
Bit number	7	6	5	4	3	2	1	0
Symbol				PWM	I_H_L			
R/W				R/	W			
Reset value		0						
PWM1_H_H (9	CH) PWM	CH) PWM1 high level control register (high 8 bits)						
Bit number	7	6	5	4	3	2	1	0
Symbol	PWM1_H_H							
R/W	R/W							
Reset value		0						
PWM2_L_L (91	OH) PWM	2 low level	l control re	gister (low	v 8 bits)			
Bit number	7	6	5	4	3	2	1	0
Symbol				PWM2	2_L_L			
R/W				R/	W			
Reset value				()			
PWM2_L_H (9)	EH) PWM	2 low level	l control re	gister (hig	h 8 bits)			
Bit number	7	6	5	4	3	2	1	0
Symbol	PWM2_L_H							
R/W	R/W							
Reset value		0						
PWM2_H_L (9)	FH) PWM	2 high leve	el control re	egister (lov	v 8 bits)			
Bit number	7	6	5	4	3	2	1	0
Symbol	PWM2_H_L							
R/W				R/	W			
Reset value				()			

PWM1_L_L (99H) PWM1 low level control register (low 8 bits)

Bit number	7	6	5	4	3	2	1	0
Symbol		·		PWM	I2_H_H			
R/W				R	R/W			
Reset value					0			
PWM_EN (A2)	PWM_EN (A2H) PWM control register							
Bit number	7			6	5		4	
Sumbol	-				PWM0_CH3_		PWM)_CH2_
Symbol				-	CMOD		CM	IOD
R/W		-		-	R/W		R	/W
Reset value		-		-	0			0
Bit number	3			2	1			0
Symbol	PWM0_CH1_CMOD		PWN	/12_EN	PWM1_EN		PWN	10_EN
R/W	R/W		R	2/W	R/W		R/W	
Reset value	0			0	0		0	

PWM2_H_H (A1H) PWM2 high level control register (high 8 bits)

Bit number	Bit symbol	Description
7~6		Reserved
		PWM0 channel 3 duty cycle mode select register
5	PWM0_CH3_CMOD	1: select channel 0 duty cycle
		0: select its own channel duty cycle
		PWM0 channel 2 duty cycle mode select register
4	PWM0_CH2_CMOD	1: select channel 0 duty cycle
		0: select its own channel duty cycle
		PWM0 channel 1 duty cycle mode select registe
3	PWM0_CH1_CMOD	1: select channel 0 duty cycle
		0: select its own channel duty cycle
		PWMn module enable register
2~0	PWMn_EN	1: enable;
	(n=2,1,0)	0: not enable

PWM0_CH_CTRL (A3H) PWM0 control register

	× /	6		
Bit number	7	6	5	4
Symphol	PWM0_CH3_	PWM0_CH2_	PWM0_CH1_	PWM0_CH0_
Symbol	POLA_SEL	POLA_SEL	POLA_SEL	POLA_SEL
R/W	R/W	R/W	R/W	R/W
Reset value	0	0	0	0
Bit number	3	2	1	0
Symbol	Symbol PWM0_CH3_EN		PWM0_CH1_EN	PWM0_CH0_EN
R/W	R/W R/W		R/W	R/W

Reset value	0	0	0	0

Bit number	Bit symbol	Description
		Channel 3 polarity selection ch3_pola_sel
7	PWM0_CH3_POLA_SEL	1: count value overflow makes the output low
		0: count value overflow makes the output high
		Channel 2 polarity selection ch2_pola_sel
6	PWM0_CH2_POLA_SEL	1: count value overflow makes the output low
		0: count value overflow makes the output high
		Channel 1 polarity selection ch1_pola_sel
5	PWM0_CH1_POLA_SEL	1: count value overflow makes the output low
		0: count value overflow makes the output high
		Channel 0 polarity selection ch0_pola_sel
4	PWM0_CH0_POLA_SEL	1: count value overflow makes the output low
		0: count value overflow makes the output high
		Channel 3 enable ch3_en
3	PWM0_CH3_EN	1: enable
		0: not enable
		Channel 2 enable ch2_en
2	PWM0_CH2_EN	1: enable
		0: not enable
		Channel 1 enable ch1_en
1	PWM0_CH1_EN	1: enable
		0: not enable
		Channel 0 enable ch0_en
0	PWM0_CH0_EN	1: enable
		0: not enable

PWM0_CH0_CNT_L (A4H) PWM0 channel 0 count value configuration register low 8 bits

Bit number	7	6	5	4	3	2	1	0
Symbol	PWM0_CH0_CNT_L							
R/W		R/W						
Reset value	0							

Bit number	Bit s	ymbol		Description						
		WMO CHO CNT I		Channel 0 count configuration register low 8 bits.						
7~0	PWW0_CI	PWM0_CH0_CNT_L		Configure PWM output duty cycle.						
PWM0_CH0	PWM0_CH0_CNT_H (A5H) PWM0 channel 0 count value configuration register high 8 bits									
Bit number	• 7	6	5	4	3	2	1	0		
Symbol]	PWM0_CH0_CNT_H							

BF7412AMXX-XJLX

R/W	R/W
Reset value	0

Bit number	Bit symbol			Description				
7~0	PWM0_CH0_CNT_H			Channel 0 count configuration register high 8 bits. Configure PWM output duty cycle.				
PWM0_CH1_CNT_L (A6H) PWM0 channel 1 count value configuration register low 8 bits								
Bit number	7	6	5	4	3	2	1	0
Symbol	PWM0_CH1_CNT_L							
R/W	R/W							
Reset value				()			

Bit number	Bit symbol	Description				
7.0	DWM0 CHI CNT I	Channel 1 count configuration register low 8 bits.				
7~0	PWM0_CH1_CNT_L	Configure PWM output duty cycle.				
PWM0_CH1_CNT_H (A7H) PWM0 channel 1 count value configuration register high 8 bits						

Bit number	7	6	5	4	3	2	1	0
Symbol		PWM0_CH1_CNT_H						
R/W		R/W						
Reset value		0						

Bit number	Bit s	ymbol		Description						
7~0	PWM0 CI	WM0_CH1_CNT_H		Channel 1 count configuration register high 8 bits.						
1 0	1		Config	Configure PWM output duty cycle.						
PWM0_CH2_CNT_L (A9H) PWM0 channel 2 count value configuration register low 8 bits										
Bit number	7	6	5	4	3	2	1	0		
Symbol]	PWM0_CH	H2_CNT_I					
R/W		R/W								
Reset value				()					

Bit number	Bit	symbol		Description					
7~0		PWM0 CH2 CNT L L		Channel 2 count configuration register low 8 bits.					
7~0	1 W WIO_C			Configure PWM output duty cycle.					
PWM0_CH2_CNT_H (AAH) PWM0 channel 2 count value configuration register high 8 bits									
Bit number	7	6	5	4	3	2	1	0	
Symbol			Ι	PWM0_CH	I2_CNT_F	ł			
R/W	R/W								
Reset value		0							

Bit number	Bit symbol			Description					
7~0	PWM0	PWM0 CH2 CNT H L		Channel 2 count configuration register high 8 bits.					
	1 1110_			Configure PWM output duty cycle.					
PWM0_CH3_CNT_L (ABH) PWM0 channel 3 count value configuration register low 8 bits									
Bit number	7	6	5	4	3	2	1	0	
Symbol				PWM0_CH	H3_CNT_I				
R/W	R/W								
Reset value		0							

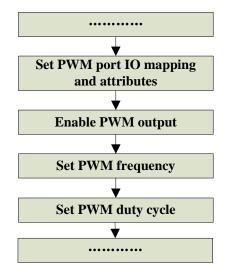
Bit number	Bit symbol			Description					
7~0	PWM0_CH3_CNT_L		` I,	Channel 3 count configuration register low 8 bits. Configure PWM output duty cycle.					
PWM0_CH3_CNT_H (ACH) PWM0 channel 3 count value configuration register high 8 bits									
Bit number	7	6	5	4	3	2	1	0	
Symbol				PWM0_CH	H3_CNT_H	ł			
R/W	R/W								
Reset value	0								

Bit number	Bit	symbol		Description					
7~0	DWMO (PWM0 CH3 CNT H L		Channel 3 count configuration register low 8 bits.					
/~0				Configure PWM output duty cycle.					
PWM0_MOD_L (ADH) PWM0 cycle configuration register low 8 bits									
Bit number	7	6	5	4	3	2	1	0	
Symbol				PWM0_	MOD_L				
R/W		R/W							
Reset value				()				

Bit number	Bit sy	mbol	Description						
7~0	PWM0 MOD L		PWM0 count cycle configuration register low 8 bits. Configure PWM output duty cycle.						
PWM0_MOD_H (AEH) PWM0 cycle configuration register high 8 bits									
Bit number	7	6	5	4	3	2	1	0	
Symbol				PWM0_	MOD_H				
R/W		R/W							
Reset value				()				

Bit number	Bit symbol	Description
7~0	PWM0_MOD_H	PWM0 count cycle configuration register high 8 bits. Configure PWM output duty cycle.

Bit number	7	6	5	4
Symbol	-	-	PWM2_CH_SEL	PWM1_CH_SEL
R/W	-	-	R/W	R/W
Reset value	-	-	0	0
Bit number	3	2	1	0
Symbol	PWM0_CH3_SEL	PWM0_CH2_SEL	PWM0_CH1_SEL	PWM0_CH0_SEL
R/W	R/W	R/W	R/W	R/W
Reset value	0	0	0	0


PWM_IO_SEL(B2H) PWM channel selection IO configuration register

Bit number	Bit symbol	Description
		PWM2 channel selection IO port configuration
5	PWM2_CH_SEL	0: PD1 port selects PWM2 function;
		1: PC7 port selects PWM2 function
		PWM1 channel selection IO port configuration
4	PWM1_CH_SEL	0: PD0 port selects PWM1 function;
		1: PC6 port selects PWM1 function
		PWM0 channel 3 select IO port configuration
3	PWM0_CH3_SEL	0: PB3 port selects PWM0_CH3 function;
		1: PC5 port selects PWM0_CH3 function
		PWM0 channel 2 selects IO port configuration
2	PWM0_CH2_SEL	0: PB2 port selects PWM0_CH2 function;
		1: PC3 port selects PWM0_CH2 function
		PWM0 channel 1 select IO port configuration
1	PWM0_CH1_SEL	0: PB1 port selects PWM0_CH1 function;
		1: PC0 port selects PWM0_CH1 function
		PWM0 channel 0 select IO port configuration
0	PWM0_CH0_SEL	0: PB0 port selects PWM0_CH0 function;
		1: PB5 port selects PWM0_CH0 function

11.5. PWM Configure Process

PWM configure process

PWM0 configuration process:

- 1. Configure the channel control register PWM0_CH_CTRL (channel enable and polarity selection);
- 2. Configure the enable register PWM0_EN, configure the count register PWM0_CHn_CNT_L/H, and the period register PWM0_MOD_L/H (the last configuration) to start working.

Note:

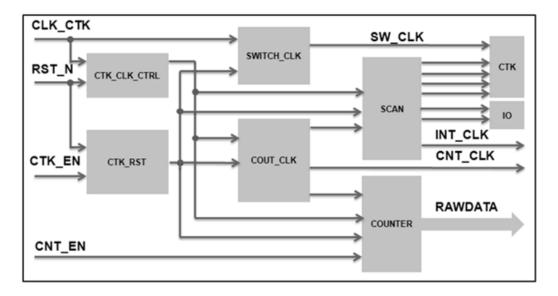
- 1. The period and duty cycle registers need to be configured when PWM0_EN=1. The counting register PWM0_CHn_CNT_L/H and the period register PWM0_MOD_L/H (update the duty cycle and period) are allowed to be configured during operation, and they are allowed to be in the same cycle Multiple channels are updated at the same time. The channel control register PWM0_CH_CTRL is not allowed to be configured during the update period. The channel control register PWM0_CH_CTRL can be changed only when PWM0_EN=0. When PWM0_EN=1, writing the count register and period configuration register will directly update the duty cycle and period. During the counter operation, the write count register and period configuration register will be latched, and the register value will be updated when the counter (PWM0_MOD) becomes (PWM0_MOD+1), that is, the duty cycle and period will be updated after a complete period.
- 2. Frequency range: 184 Hz~120 kHz is recommended.

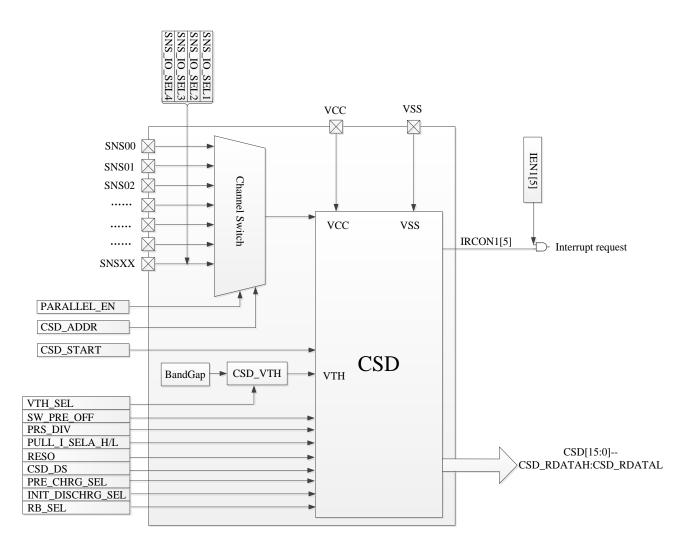
12. Touch Key

CSD features:

- CSD charge and discharge clock three modes are optional:
 - ➢ Fixed frequency division of the system clock 12M∼193k
 - > PRS 1.5M normal distribution
 - PRS 3.5M normal distribution
- CSD count clock 24M, 12M, 6M, 4M is optional;
- Counting width 9-16 bits optional;
- Support asynchronous scanning mode;
- Support wake up in wait mode

The BF7412AMXX-XJLX implements multiple functions through a series of register. The relationship between the capacitance detection related quantity and the SFR value is as follows:


The count value is proportional to RESO, Rb resistance, PULL_I_SELA_H, and inversely proportional to VTH_SEL. In the case of ensuring complete charge and discharge, it is proportional to the charge and discharge frequency set by PRS_DIV.


Channel touch variation is proportional to RESO and Rb, and inversely proportional to VTH_SEL. In the case of ensuring complete charge and discharge. Compared with the charge and disarge frequency set by PRS_DIV and the amount of touch change.

The signal-to-noise ratio of touch is proportional to VTH_SEL and PULL_I_SELA_L, and inversely proportional to CSD_DS. When the charge and discharge are incomplete, it is inversely proportional to the charge-discharge frequency set by PRS_DIV and the signal-to-noise ratio.

The time for a signal touch key detection is related to RESO and CSD_DS.

Notes: When configuring parameters, ensure that the touch key is fully charged and discharged. CSD module structure diagram

CSD structure diagram

比亚迪半导体 Semiconductor

12.1. Touch Key Related Register

		Ŷ	SFR register	
Address	Name	RW	Reset value	Function description
0xCA	CSD_START	RW	xxxx_xxx0b	CSD scan open register
0xCB	SNS_SCAN_CFG1	RW	x000_0000b	Touch key scan configuration register 1
0xCC	SNS_SCAN_CFG2	RW	x100_0000b	Touch key scan configuration register 2
0xCD	SNS_SCAN_CFG3	RW	x111_0000b	Touch key scan configuration register 3
0xCE	CSD_RAWDATAL	R	0000_0000b	CSD counter, low 8-bit
0xCF	CSD_RAWDATAH	R	0000_0000b	CSD counter, high 8-bit
0xD1		DW	0000_0000b	CSD pull-up current source selection
0XD1	PULL_I_SELA_L	RW	0000_00000	register
0xD2	SNS_ANA_CFG	RW	xx10_1101b	CSD scan parameter configuration
0XD2	SINS_ANA_CI'U	K W	XX10_11010	register
0xD3	SNS_IO_SEL1	RW	0000_0000b	SNS channel select register 1
0xD4	SNS_IO_SEL2	RW	0000_0000b	SNS channel select register 2
0xD5	SNS_IO_SEL3	RW	0000_0000b	SNS channel select register 3
0xD6	SNS_IO_SEL4	RW	xxxx_xx00b	SNS channel select register 4
0xE6	IEN1	RW	0000_00xxb	Interrupt enable register 1
0xF1	IRCON1	RW	0000_00xxb	Interrupt flag register 1
0xF6	IPL1	RW	0000_00xxb	Interrupt priority register 1
0xFE	PD_ANA	RW	xxxx_0111b	Module switch control register

CSD registers list

12.2. Touch Key Register Detailed Description

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	-	-	-	-
R/W	-	-	-	-	-	-	-	R/W
Reset value	-	_	-	_	-	-	-	0

Bit number	Bit symbol	Description
		1: CSD scanning is on;
		0: CSD scan stops
		Write 1 in CSD_START to start scanning. After one scan, the
0		hardware will automatically set to 0. If you want to start the next
		scan, you need to set it to 1 again by software; if CSD_START=0
		during the scan, the scan will stop immediately, and the module
		will have related internal signals Reset

		Note: Must be used in accordance with the process configuration:						
		CSD_START=1, if interruption is detected, configure						
		CSD_START=0. CSD_START is not allowed to be configured						
		during scanning						
SNS_SCAN_CFG1 (CBH) Touch key scan configuration register 1								
Bit number	7	6	5	4	3	2	1	0

Dit number	/	0	5	4	5	Δ	1	0
Symbol	_	SW_PRE_OFF	PRS_DIV					
R/W	-	R/W	R/W					
Reset value	_	0	0					

Bit number	Bit symbol	Description
		Front-end charge and discharge clock switch control.
6	SW_PRE_OFF	1: close sw_clk;
		0: open sw_clk
		Front-end charge and discharge clock frequency selection
		register:
		0~61: fixed frequency: F=F24m/2/(PRS_DIV+4) (12M~193K);
5~0	PRS_DIV	62: highest frequency 4M, lowest frequency 1M, center
		frequency 1.5M, normal distribution;
		63: highest frequency 4M, lowest frequency 1M, center
		frequency 1.5M, normal distribution.

SNS_SCAN_CFG2 (CCH) Touch key scan configuration register 2

Bit number	7	6	5	4 3 2 1 (
Symbol	-	PULL_I_SELA_H	PARALLEL_EN	CSD_ADDR				
R/W	-	R/W	R/W	R/W				
Reset value	-	1	0	0				

Bit number	Bit symbol	Description				
6	PULL_I_SELA_H	CSD pull-up current source configuration highest bit.				
		SNS channel shunt enable register.				
5	PARALLEL_EN	1: multi-channel parallel;				
		0: signal channel.				
4.0		The address of the detection channel 0~25 corresponds to				
4~0	CSD_ADDR	the channel number 0~25				

SNS_SCAN_CFG3(CDH) Touch key scan configuration register 3

Bit number	7	6	5	4	3	2	1	0
Symbol	-	I	RES	C	CSD	_DS	PRE_CHRG_SEL	INIT_DISCHRG_SEL
R/W	-		R/W	Τ	R/	W	R/W	R/W
Reset value	-	1	1	1	0	0	0	0

Bit number	В	it symbol				De	scription			
				Cou	unter bit se	lect registe	er.			
6~4		RESO		000: 9 bits; 001: 10 bits; 010: 11 bits;						
0~4	KESU			011	: 12bits;	100: 13 t	oits; 10	1: 14 bits	;	
				110	: 15 bits;	111:16	bits.			
3~2	CSD DS		Cou	unt clock fi	requency s	election re	gister.			
5~2			00:	24M; 01	:12M; 1	0: 6M; 1	l1:4M;	default 0.		
1	I PRE CHRG SEL		Pre	-charge tin	ne selection	1				
1			0:2	20µs; 1: 40	μs.					
0	LINTE DISCHRG SEL L		Pre	-discharge	time selec	tion				
0			0:2	2μs; 1: 10μ	s.					
CSD_RAWDAT	CSD_RAWDATAL (CEH) CSD counter, low 8-bit									
Bit number	7 6 5				4	3	2	1	0	
Symbol					RAWDA	ATA<7:0>				
R/W						R				
Reset value						0				
CSD_RAWDAT.	AH (CFH	I) CSD cou	inter, İ	high	8-bit					
Bit number	7		6	5	4	3	2	1	0	
Symbol					RAWDA	TA<15:8>	•			
R/W						R				
Reset value						0				
PULL_I_SELA_I	L (D1H)	CSD pull-1	ıp cur	rent	source sele	ction regis	ter			
Bit number	7	6	5	í	4	3	2	1	0	
Symbol					PULL_I_	SEL<7:0>				
R/W	 R/W									
Reset value					()				

Bit number	Bit symbol	Description
7.0		CSD pull up current source size selection switch. The
7~0	PULL_I_SEL<7:0>	default is 0.

SNS_ANA_CFG (D2H) CSD scan parameter configuration register

Bit number	7	6	5	4	3	2	1	0	
Symbol	-	-		RB_SEL		VTH_SEL			
R/W	-	-		R/W		R/W			
Reset value	-	_	1	0	1	1	0	1	

Bit number	Bit symbol	Description
5~4	RB_SEL	Rb resistance size selection.

		100: 60k; 101: 80k;
		Other: reserved
		Need to read Rb80k calibration value from chip flash when
		using: CBYTE [0x401E] k/80k, proportional calculation
		normalization sensitivity.
		VTH voltage selection signal
2~1	VTH CEI	000: 1.4V, 001: 2.1V; 010: 2.5V;
2~1	VTH_SEL	011: 2.8V; 100: 3.2V; 101: 3.5V;
		110: 3.9V; 111: 4.1V.

SNS_IO_SEL1(D3H) SNS channel select register 1

Bit number	7	6	5	4	3	2	1	0
Symbol	SNS_IO_SEL1 [7:0]							
R/W		R/W						
Reset value	0							

Bit number	Bits	symbol		Description						
			SNS_	SNS_IO_SEL1 [7:0] corresponds to SNS7~SNS0.						
7~0	SNS_IO_SEL1 [7:0]	The co	The corresponding bit is							
/~0		1 1: sele	ct SENSO	R enable;						
			0: do 1	not select S	ENSOR en	nable				
SNS_IO_SEL2 (D4H) SNS channel select register 2										
Dit much on	7	6	5	4	2	2	1	0		

Bit number	7	6	5	4	3	2	1	0	
Symbol		SNS_IO_SEL2 [7:0]							
R/W		R/W							
Reset value	0								

Bit number	Bit symbol	Description
		SNS_IO_SEL2[7:0] corresponds to SNS15~SNS8.
7.0	SNS_IO_SEL2	The corresponding bit is
7~0	[7:0]]	1: Select SENSOR to enable;
		0: Do not select SENSOR enable

SNS_IO_SEL3 (D5H) SNS channel select register 3

Bit number	7	6	5	4	3	2	1	0
Symbol		SNS_IO_SEL3 [7:0]						
R/W		R/W						
Reset value				()			

Bit number	Bit symbol	Description
7~0	SNS_IO_SEL3 [7:0]	SNS_IO_SEL3 [7:0] corresponds to SNS23~SNS16.

	The corresponding bit is
	1: Select SENSOR to enable;
	0: Do not select SENSOR enable

SNS_IO_SEL4 (D6H) SNS channel select register 4

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	-	-	-	SNS_IO_SEL4[1:0]
R/W	-	-	-	-	-	-	-	R/W
Reset value	-	-	-	-	-	-	-	0

Bit number	Bit symbol	Description
		SNS_IO_SEL4[1:0] corresponds to SNS25~SNS24.
1~0	SNIG TO SET 4[1:0]	The corresponding bit is
1~0		1: select SENSOR enable;
		0: Do not select SENSOR enable

IEN1 (E6H) Interrupt enable register 1

Bit number	7	6	5	4	3	2	1	0
Symbol	EX7	EX6	EX5	EX4	EX3	EX2	-	-
R/W	R/W	R/W	R/W	R/W	R/W	R/W	-	-
Reset value	0	0	0	0	0	0	_	_

Bit number	Bit symbol	Description
5	5 EV5	CSD interrupt enable
5	EX5	1: interrupt enable; 0: interrupt disable

IRCON1 (F1H) Interrupt flag register 1

Bit number	7	6	5	4	3	2	1	0
Symbol	IE7	IE6	IE5	IE4	IE3	IE2	-	-
R/W	R/W	R/W	R/W	R/W	R/W	R/W	-	-
Reset value	0	0	0	0	0	0	-	-

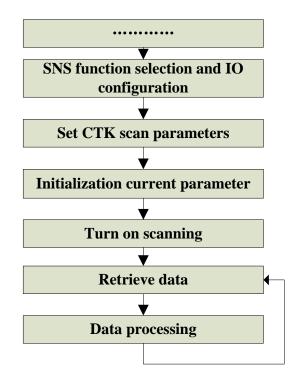
Bit number	Bit symbol	Description
		CSD interrupt flag
5	IE5	1: There is a CSD interrupt flag;
		0: No CSD interrupt flag

IPL1 (F6H) Interrupt priority register 1

Bit number	7	6	5	4	3	2	1	0
Symbol	IPL1.7	IPL1.6	IPL1.5	IPL1.4	IPL1.3	IPL1.2	-	-
R/W	R/W	R/W	R/W	R/W	R/W	R/W	-	-
Reset value	0	0	0	0	0	0	-	-

Bit number	Bit symbol	Description
5	IPL1.5	CSD interrupt priority. 0: low priority; 1: high priority

PD_ANA (FEH) Module switch control register


Bit number	7~4	3	2	1	0
Symbol	-	PD_OSC_32K	PD_XTAL_32K	PD_CSD	PD_ADC
R/W	-	R/W	R/W	R/W	R/W
Reset value	-	0	1	1	1

Bit number	Bit symbol	Description		
1	PD_CSD	Analog CSD work control register: 0: CSD module works normally;		
		1: CSD module does not work		

12.3. Touch Key Configure Process

CTK touch key scan for query or interrupt mode. At first, configuring the CTK scanning parameter. Second, starting CTK scanning; Then obtain and save CTK data at CTK interrupt, software algorithm for data processing and touch key output judgement.

CTK configure process

Through the sensitivity parameter configuration, a set of parameters with better signal-to-noise ratio is obtained, thereby improving the accuracy of the key judgment.

- 1. **RESO:** 0~7 CTK capacitiance scanning resolution, counter digits: (**RESO + 9**)**bit**, the bigger CTK scanning resolution, the bigger the downward rawdata, the noise is increased at the same time, conversely reverse.
- 2. **VTH_SEL:** 0~7, the lower VTH, the bigger raw data, the noise is increased at the same time, conversely reverse.
- 3. **CSD_DS:** Detect speed **0: 24M, 1: 12M, 2: 6M, 3: 4M,** the slower detect speed the slower raw data simple time, conversely reverse. Suggest default 24M, at least twice the speed of the PRS clock.
- 4. **RB_SEL:** Rb resistance select: **4: 60k, 5: 80k**; The greater resistance, the bigger raw data, the noise is increased at the same time, conversely reverse.
- 5. **PRS_DIV:** front-end charge and discharge clock frequency selection register: 0~61: fixed frequency: F=F24m/2/(PRS_DIV+4) (12M~193k);

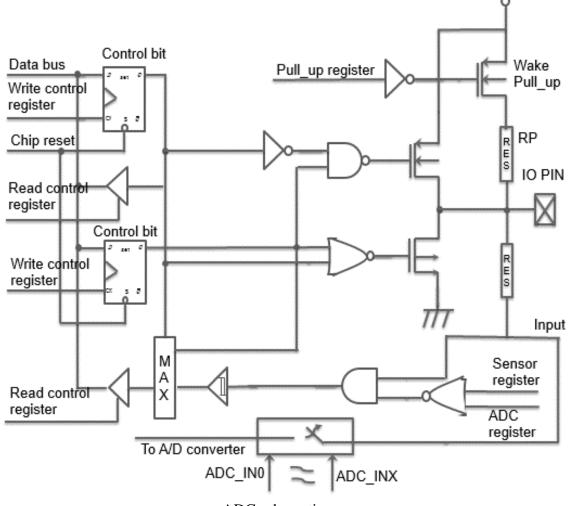
62: the highest frequency 4M, the lowest frequency 1M, center frequency 1.5M, normal distribution;

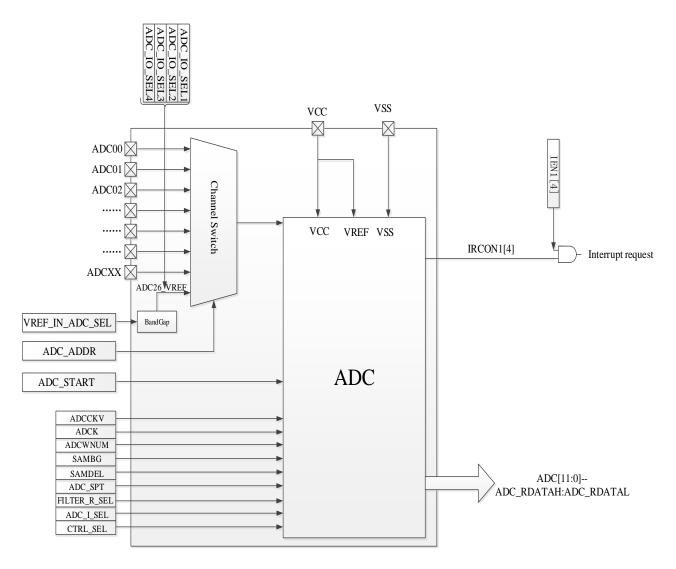
63: the highest frequency 4M, the lowest frequency 1M, center frequency 1.5M, normal distributed;

The larger the PRS clock, the larger the amount of charge in Rawdata, and the greater the noise introduced, and vice versa.

- 6. **PULL_I_SELA_L:** pull-up current source low 8 bit.
- PULL_I_SELA_H: pull-up current source high bit, default: 0x01. Current resources value =255.5-0.5*{PULL_I_SELA_H, PULL_I_SELA_L}, the smaller the current source, the smaller the count value, default: 0x00.

Notes:


- 1. Rawdata is the real-time raw count value of the CTK capacitor counter.
- 2. In practical applications, it is necessary to view the data through the programming software and compare the parameters with good signal-to-noise ratio.
- 3. Chip supply voltage and reference voltage: VCC-VTH>0.5V.


13. ADC

The BF7412AMXX-XJLX chip include a signal-ended, 12-bit linear successive approximation analog -to-digital converter (ADC). The reference voltage of the ADC is connected to the VCC of the chip. ADC channels can input independent analog signals. ADC module converts one channel at a time, ADC_START= $0 \rightarrow 1(f)$) turn on conversion. Update the ADC result register and generate an interrupt after the conversion is complete. The ADC module has the following characteristics:

- Liner successive approximation ADC with 12bit resolution;
- Single conversion mode;
- Sampling time and conversion speed are configurable;
- Support wake up in wait mode

ADC schematic

ADC block diagram

13.1. ADC Related Register

	SFR register							
Address	Name	RW	Reset value	Function description				
0xB4	ADC_SPT	RW	0000_0000b	ADC sampling time configure register				
0xB5	ADC_SCAN_CFG	RW	xx00_0000b	ADC scan control register				
0xB6	ADCCKC	RW	xxxx_0000b	ADC clock control register				
0xB9	ADC_RDATAH	R	xxxx_0000b	ADC scan result register, high 4 bit.				
0xBA	ADC_RDATAL	R	0000_0000b	ADC scan result register, low 8 bit.				
0xBB	ADC_CFG1	RW	0000_0000b	ADC sampling time configure register 1				
0xBC	ADC_CFG2	RW	xx00_0111b	ADC sampling time configure register 2				
0xD9	ADC_IO_SEL1	RW	0000_0000b	ADC function select register 1				
0xDA	ADC_IO_SEL2	RW	0000_0000b	ADC function select register 2				
0xDB	ADC_IO_SEL3	RW	0000_0000b	ADC function select register 3				
0xDC	ADC_IO_SEL4	RW	xxxx_xx00b	ADC function select register 4				
0xE6	IEN1	RW	0000_00xxb	Interrupt enable register 1				
0xF1	IRCON1	RW	0000_00xxb	Interrupt flag register 1				
0xF6	IPL1	RW	0000_00xxb	Interrupt priority register 1				
0xFE	PD_ANA	RW	xxxx_0111b	Module switch control register				

ADC registers list

13.2. ADC Register Details

Bit number	7	6	5	4	3	2	1	0
Symbol		ADC_SPT						
R/W		R/W						
Reset value				()			

ADC SPT (B4H) ADC sample time configure register

Bit number	Bit syn	nbol	Description							
7~0	ADC_SPT		ADC	ADC sample time configure register						
7~0	ADC_	ADC_SP1		<pre>sample time: sample_Timer = (ADC_SPT+1)*4Tadc_clk</pre>						
ADC_SCAN_CFG (B5H) ADC scan control register										
Bit number	7	6	5	5 4 3 2 1 0			0			
Symbol	-	-	ADC_ADDR ADC_START					ADC_START		
R/W	-	-	R/W R/W					R/W		
Reset value	-	-			0			0		

Bit number	Bit symbol	Description
		ADC channel address selection register
		00000: corresponds to ADC0;
		00001: corresponding to ADC1;
5~1	ADC_ADDR	
		11001: corresponding to ADC25;
		11010: ADC26_VREF;
		Other values: reserved
		ADC scan enable register
		0: ADC module does not scan;
		1: ADC module starts scanning
		ADC_START is set from 0 to 1, ADC starts to scan, after
0	ADC_START	scanning once, ADC_START hardware is automatically set
		to 0, corresponding to the ADC interrupt flag bit, the ADC
		interrupt flag bit needs to be cleared by software
		Note: ADC_START is not allowed to be configured during
		scanning

ADCCKC (B6H) ADC clock control register

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	ADC	CKV	ADO	CCK
R/W	-	-	-	-	R/W		R/	W
Reset value	-	-	-	-	0	0	0	0

Bit number	Bit symbol	Description
7~4		Reserved
3~2	ADCCKV	ADC comparator offset cancellation analog input clock.
		0: 12MHz 1: 6MHz 2: 3MHz 3: 2MHz
1~0	ADCCK	ADC_CLK frequency division selection.
1~0	ADCCK	0: 3MHz 1: 2MHz 2: 1.5MHz 3: 1MHz

ADC_RDATAH (B9H) ADC scan result register high 4 bits

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	ADC_RAWDATA<11:8>			
R/W	-	-	-	-	R			
Reset value	-	-	-	-			0	

Bit number	Bit symbol		Description					
3~0	ADC_RAWDATA<11:8>			ADC_RAWDATA<11:8> ADC scan result register				
ADC_RDATAL(BAH) ADC scan result register low 8 bits								
Bit number	7	7 6 5 4 3 2 1 0					0	
Symbol			A	DC_RAW	DATA<7:	<0>		
R/W		R						
Reset value				()			

Bit number	Bit symbol			Description						
7~0	ADC_I	RAWDAT	'A<7:0>	> ADC scan result register						
ADC_CFG1(BI	DC_CFG1(BBH) ADC sampling timing control register 1									
Bit number	7	6	5	4	3	2	1 0			
Symbol	ADCWNUM					SAMBG	SAM	SAMDEL		
R/W		R/W R/W R/W				/W				
Reset value			0			0		0		

Bit number	Bit symbol	Description							
7~3	ADCWNUM	Selection of distance conversion interval after sampling							
		3+ADCWNUM(ADC_CLK)							
2	SAMBG	Sampling timing and comparison timing interval selection							
		0: interval 0; 1: interval 1 (ADC_CLK)							
1~0	SAMDEL	Sampling delay time selection							
		0:0; 1:2; 2:4; 3:8 (ADC	_CLK)						
ADC_CFG2 (H	BCH) ADC sampling	timing control register 2	2						
Bit number	7	6	5	4					
Symbol	-	- VREF_IN_ADC_SEL							

R/W	-	-	R/W	R/W
Reset value	-	-	0	0
Bit number	3	2	1	0
Symbol	FILTER_R_SEL	ADC_	I_SEL	CTRL_SEL
R/W	R/W	R/W	R/W	R/W
Reset value	0	1	1	1

Bit number	Bit symbol	Description
5~4	VREF_IN_ADC_SEL	ADC26 internal input voltage selection
		00: 1.378V; 01: 2.271V; 10: 3.168V; 11: 4.06V
3	FILTER_R_SEL	Input signal filter selection
		0 means no RC filter, 1 means RC filter
2	ADC_I_SEL[1]	ADC bias current size selection register
		Op amp bias current selection signal
		0 is 1uA; 1 is 2uA
1	ADC_I_SEL[0]	ADC bias current size selection register
		Comparator bias current selection signal
		0 is 1uA; 1 is 2uA
0	CTRL_SEL	ADC comparator offset cancellation selection signal
		0: First sampling and then offset elimination;
		1: All switches are disconnected together
ADC_IO_SEL	1 (D9H) ADC function	selection register 1

Bit number	7	6	5	4	3	2	1	0
Symbol				ADC_IO_	SEL1[7:0]			
R/W				R/	W			
Reset value				()			

Bit number	Bit symbol Description			
		ADC_IO_SEL1[7:0] corresponds to ADC07~ADC00.		
7~0	ADC 10 SEI 1[7:0]	The corresponding bit is		
/~0	ADC_IO_SEL1[7:0]	1: Select ADC function;		
		0: Do not select ADC function		

ADC_IO_SEL2(DAH) ADC function selection register 2

	_~====								
Bit nu	umber	7	6	5	4	3	2	1	0
Syn	nbol				ADC_IO_	SEL2[7:0]			
R/	W				R/	W			
Reset	value				()			

7~0		ADC_IO_SEL2[7:0] corresponds to ADC15~ADC08. The corresponding bit is 1: Select ADC function;			
		0: Do not select ADC function			
ADC_IO_SEL3(DBH) ADC function selection register 3					

			i serection	register s				
Bit number	7	6	5	4	3	2	1	0
Symbol				ADC_IO_	SEL3[7:0]			
R/W				R/	W			
Reset value				()			

Bit number	Bit symbol	Description
		ADC_IO_SEL3[7:0] corresponds to ADC23~ADC16.
7~0	ADC_IO_SEL3[7:0]	The corresponding bit is
/~0	ADC_IO_SELS[7:0]	The corresponding bit is 1: select ADC function;
		0: The ADC function is not selected

ADC_IO_SEL4(DCH) ADC function selection register 4

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	-	-	ADC_IO_SEL4[1:0]	
R/W	-	-	-	-	-	-	R/W	
Reset value	-	-	-	-	-	-	0	

Bit number	Bit symbol	Description
		ADC_IO_SEL4[1:0] corresponds to ADC25~ADC24.
1.0		The corresponding bit is
1~0		1: Select ADC function;
		0: Do not select ADC function

IEN1 (E6H) Interrupt enable register 1

Bit number	7	6	5	4	3	2	1	0
Symbol	EX7	EX6	EX5	EX4	EX3	EX2	-	-
R/W	R/W	R/W	R/W	R/W	R/W	R/W	-	-
Reset value	0	0	0	0	0	0	-	-

Bit number	Bit symbol	Description
4	EX4	ADC interrupt enable
4	LA4	1: interrupt enable; 0: interrupt disable

IRCON1 (F1H) Interrupt flag register 1

Bit number	7	6	5	4	3	2	1	0
Symbol	IE7	IE6	IE5	IE4	IE3	IE2	-	-
R/W	R/W	R/W	R/W	R/W	R/W	R/W	-	-

r		BF74	412AM)	X-XJLX

Reset value	0	0	0	0	0	0	-	-
-------------	---	---	---	---	---	---	---	---

Bit number	Bit symbol	Description
		ADC interrupt flag
4	IE4	1: There is a ADC interrupt flag;
		0: No ADC interrupt flag

IPL1 (F6H) Interrupt priority register 1

Bit number	7	6	5	4	3	2	1	0
Symbol	IPL1.7	IPL1.6	IPL1.5	IPL1.4	IPL1.3	IPL1.2	-	-
R/W	R/W	R/W	R/W	R/W	R/W	R/W	-	-
Reset value	0	0	0	0	0	0	-	_

Bit number	Bit symbol	Description
4	4 I IPL1.4	ADC interrupt priority.
4		0: low priority; 1: high priority

PD_ANA (FEH) Module switch control register

Bit number	7~4	3	2	1	0
Symbol	-	PD_OSC_32K	PD_XTAL_32K	PD_CSD	PD_ADC
R/W	-	R/W	R/W	R/W	R/W
Reset value	-	0	1	1	1

Bit number	Bit symbol	Description
		Analog ADC shutdown control register
0	PD_ADC	0: ADC module works normally;
		1: ADC module does not work

Note:

ADC detection time:

Formula	Description		
TAD=TADC_SPT+TW1+TW2	ADC conversion time		
$T_{ADC_SPT(\mu s)} = 4*(ADC_SPT+1) *T_{adc_clk}$	ADC sampling time		
	Distance conversion internal after sampling and		
Tw1=(ADCWNUM+3+ SAMDEL)*Tadc_clk	delay time		
$T_{W2}=(2*1+12)*T_{adc_{clk}}$	Fixed time		

1. **Timing requirements**: (3+ADCWNUM)/F_ADCK >4 /F_ADCCKV;

F_ADCK: ADC frequency division clock;

F_ADCCKV: ADC comparator offset cancellation analog input clock; ADC external signal plus RC filtered voltage setting time $\geq 2*(ADC \text{ sampling converts time});$

2. When the power supply voltage fluctuates greatly or drops, the VCC voltage value can be calculated by the formula ADCINNER_Data/VREF_IN_ADC_SEL = 4096/VCC, and the Vin voltage value can be calculated by the formula Vin_Data/Vin=4096/VCC.

ADCINNER_Data: ADC internal channel data

Vin_Data: ADC input channel data

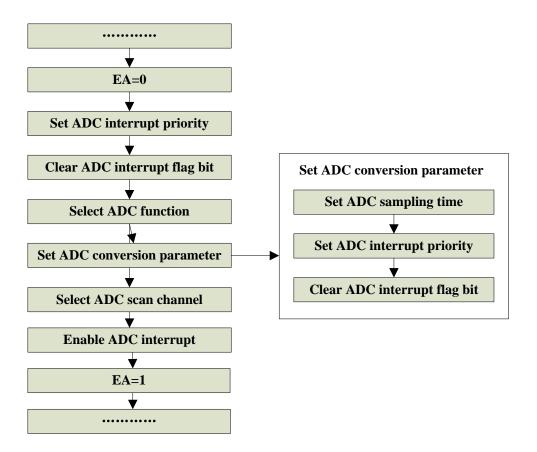
Vin: input voltage

VREF_IN_ADC_SEL: need to read the chip calibration value

Vin = (Vin_Data/ADCINNER_Data)*VREF_IN_ADC_SEL. First obtain the internal channel data, and then obtain the input voltage Vin_Data data, and the interval between the two acquisitions should be as short as possible.

- 3. ADC interrupt conditions: the configuration sequence is ADC_IO_SEL enable -> ADC interrupt enable -> ADC_ADDR (the address must correspond to ADC_IO_SEL) -> ADC_START. Pay attention to the initial configuration timing during application. If there is an application where the ADC and IO port functions are multiplexed, you need to pay attention to the switching timing. If the ADC_IO_SEL enable is turned off or the address does not correspond to ADC_IO_SEL, the ADC scan cannot be turned on. The configuration sequence must be followed: ADC_IO_SEL enable -> ADC interrupt enable -> ADC_ADDR (the address must correspond to ADC_IO_SEL) -> ADC_START sequence to start ADC scanning.
- CBYTE[0x4020] = ADC internal channel input voltage calibration value, high eight bits, CBYTE[0x4021] = ADC internal channel input voltage calibration value, low eight bits, Read the 1.378V calibration value of the ADC internal channel input voltage of the chip information address;

CBYTE[0x4022] = ADC internal channel input voltage calibration value, high eight bits, CBYTE[0x4023] = ADC internal channel input voltage calibration value, low eight bits, Read the 2.271V calibration value of the ADC internal channel input voltage of the chip information address;


CBYTE[0x4024] = ADC internal channel input voltage calibration value, high eight bits, CBYTE[0x4025] = ADC internal channel input voltage calibration value, low eight bits, Read the3.168V calibration value of the ADC internal channel input voltage of the chip information address;

CBYTE[0x4026] = ADC internal channel input voltage calibration value, high eight bits, CBYTE[0x4027] = ADC internal channel input voltage calibration value, low eight bits, Read the 4.06V calibration value of the ADC internal channel input voltage of the chip information address;

6. When the pin is configured as ADC function, the pin needs to be configured as IO input mode, and other multiplexing functions are turned off, such as pull-up resistors, etc.

13.3. ADC Configuration Process

ADC configuration process

14. LVDT

The BF7412AMXX-XJLX supports low pressure alarm function, effectively monitor voltage dynamics. Support 5 levels of voltage: 3.0V/3.3V/3.6V/3.9V/4.2V (Preset point buck interrupt, hysteresis 0.1V to generate corresponding boost interrupt).

When the voltage monitoring configures the above threshold, the voltage drops to this threshold will trigger a low voltage interrupt. The system can be propely processed in low voltage interrupts according to the needs of the application.

14.1. LVDT Related Register

	SFR register									
Address	Name	RW	Reset value	Description						
0x86	INT_POBO_STAT	RW	xxxx_xx00b	LVDT boost/LVDT buck interrupt status register						
0xB3	LVDT_SEL	RW	xx11_1000b	LVDT control register						
0xE1	IRCON2	RW	xxxx_x000b	Interrupt flag register 2						
0xE7	IEN2	RW	xxxx_x000b	Interrupt enable register 2						
0xF4	IPL2	RW	xxxx_x000b	Interrupt priority register 2						

LVDT register list

14.2. LVDT Register Detailed Description

	-					-	<u> </u>	
Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	-	-	INT_PO_STAT	INT_BO_STAT
R/W	-	-	-	-	-	-	R/W	R/W
Reset value	-	-	-	-	-	-	0	0

Bit number	Bit symbol	Description
		Lvdt boost interrupt status
1	1 INT_PO_STAT	1: boost interrupt is valid
		0: boost interrupt is invaild
		Lvdt buck interrupt state
0	INT_BO_STAT	1: buck interrupt is valid
		0: buck interrupt is invalid

LVDT_SEL(B3H) LVDT control register

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	PD_LVDT	SEL_LVD	T_DELAY	SEL	_LVDT_	VTH

比亚迪半导体 Semiconductor

BF7412AMXX-XJLX

R/W	-	-	R/W	R/W	R/W	R/W	R/W	R/W
Reset value	-	-	1	1	1	0	0	0

Bit number	Bit symbol	Description
5		LVDT control register
3	5 PD_LVDT	1: close; 0: open, close by default
		Select signal, select LVDT power-down delay; default 11
4~3	SEL_LVDT_DELAY	0: Delay time 1; 1: Delay time 2;
		2: Delay time 3; 3: Delay time 4
		LVDT threshold selection
2~0	SEL_LVDT_VTH	000/001: reserved; 010: 3.0V; 011: 3.3V; 100: 3.6V; 101:
		3.9V; 11x: 4.2V

							LVDT			
SEL_LVDT_VTH	SEL_	_LVDT_D	ELAY	Power dow	vn	Re	covery	Hysteres	s Dela	y
				threshold (V)	thres	hold (V)	(mV)	(µs))
		00		3.0			3.1	117	8.0	
010		01		3.0			3.1	118	15.8	3
010		10		3.0			3.1	118	34.7	7
		11		3.0			3.1	120	63.0)
		00		3.3			3.4	93	8.6	
011		01		3.3			3.4	94	17.0)
011		10		3.3			3.4	95	34.0)
		11		3.3			3.4	97	68.0)
	00			3.6		3.7		110	9.1	
100	01			3.6		3.7		110	18.1	l
100	10			3.6		3.7		111	36.3	3
	11			3.6		3.7		113	72.5	5
	00			3.9		4.1		131	9.6	
101		01		3.9		4.1		132	19.2	2
101		10		3.9		4.1		133	38.5	5
		11		3.9		4.1		135	77.0)
		00		4.2		4.3		124	10.0)
1137		01		4.2			4.3	125	20.0)
11X		10		4.2			4.3	126	40.0)
		11		4.2			4.3	128	80.0)
IRCON2 (E1H) Int	errupt f	flag registe	er 2							
Bit number	7 6 5		4		3	2	1	0		
Symbol	-	-	-	-		-	IE10	IE9	IE8	

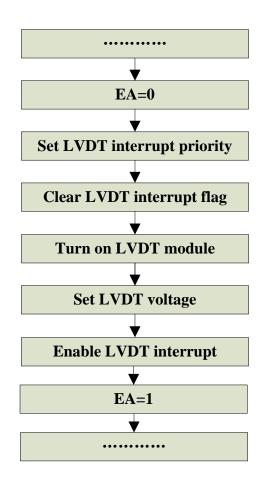
R/W	-	-	-	-	-	R/W	R/W	R/W
Reset value	-	-	-	-	-	0	0	0

Bit number	Bit symbol	Description
		LVDT interrupt flag
0	IE8	1: There is a LVDT interrupt flag;
		0: No LVDT interrupt flag

IEN2(E7H) Interrupt enable register 2

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	-	EX10	EX9	EX8
R/W	-	-	-	-	-	R/W	R/W	R/W
Reset value	-	-	_	-	-	0	0	0

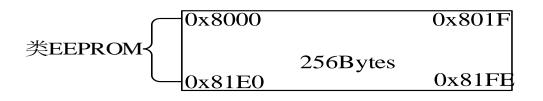
Bit number	Bit symbol	Description
7~3	-	Reserved
		UART1 interrupt enable
2	EX10	1: interrupt enable;
		0: interrupt disable
		UART0 interrupt enable
1	EX9	1: interrupt enable;
		0: interrupt disable
		LVDT interrupt enable
0	EX8	1: interrupt enable;
		0: interrupt disable


IPL2 (F4H) Interrupt priority register 2

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	-	IPL2.2	IPL2.1	IPL2.0
R/W	-	-	-	-	-	R/W	R/W	R/W
Reset value	-	-	-	-	-	0	0	0

Bit number	Bit symbol	Description
0	IPL2.0	LVDT interrupt priority. 0: low priority; 1: high priority

14.3. LVDT Configuration Process


LVDT Configuration Process

15. EEPROM

EEPROM size is 256 Bytes, which can be divided into 16 pages, each page is 16 Bytes. EEPROM address is 0x8000+2*i (i = $0x00\sim0xFF$). Page erasure is required when using, then perform byte write operation, and can only be written once after erasing.

The data erased by EEPROM is indeterminate.

EEPROM address

15.1. EEPROM Related Register

	SFR register								
Address	Name	RW	Reset value	Function description					
0xFA	SPROG_ADDR_L	RW	0000_0000b	EEPROM address control register					
0xFB	SPROG_DATA	RW	xxxx_0000b	EEPROM data register					
0xFC	SPROG_CMD	RW	0000_0000b	EEPROM command register					
0xFD	SPROG_TIM	RW	xxxx_0001b	EEPROM erase time control register					

EEPROM registers list

15.2. EEPROM Register Detailed Description

SPROG_ADDR_L(FAH) EEPROM address control register

Bit number	7	6	5	4	3	2	1	0
Symbol	-							
R/W		R/W						
Reset value	0							

Bit number	Bit symbol	Description
		EEPROM block address low 8 bits
7~0		SPROG_ADDR_L [3:0]: select the address in the page,
		SPROG_ADDR_L [7:4]: select the page.

SPROG_DATA(FBH) EEPROM data register

Bit number	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	-	-	-	-
R/W	-	-	-	-	R/W	R/W	R/W	R/W
Reset value	-	_	-	-	0	0	0	0

Bit number	Bit symbol	Description
		EEPROM programming: the number of data to be written
3~0		(SPROG_NUM*2bytes). When SPROG_NUM=0, it means
		that only 1 data is programmed

SPROG_CMD(FCH) EEPROM command register

	,		0					
Bit number	7	6	5	4	3	2	1	0
Symbol		-						
R/W		R/W						
Reset value				()			

Bit number	Bit symbol	Description
7.0		Write 0x96: EEPROM page erase;
7~0		Write 0x69: EEPROM byte programming

SPROG_TIM (FDH) EEPROM erase time control register

Bit number	7	6	5	4	3	2	1	0
Symbol	—	_	_	_	-	_	_	—
R/W	—	_	—	_	R/W	R/W	R/W	R/W
Reset value	_	_	_	_	0	0	1	0

Bit number	Bit symbol	Description
7~4		Reserved
3~2		0~3 data writing time=1.50~2.25ms (step 0.25ms)
		00: Data writing time=1.50ms;
		01: Data writing time = 1.75ms;
		10: Data writing time=2.00ms;
		11: Data writing time = 2.25ms
		Note: The time for writing a single word or multiple words
		is the time selected above
1~0		0~3 page erasing time=2.25~3.00ms (step 0.25ms)
		00: page erasing time = 2.25 ms;
		01: Page erasing time=2.50ms;
		10: Page erase time=2.75ms;
		11: Page erase time=3.00ms

15.3. Page Erase Step

- 1. SPROG_TIM[4:0] = $0 \sim 3$ (3 ms recommended). Only configure once in the main program main() function initialization;
- 2. Turn off the interrupt;
- 3. Configure SPROG_ADDR_L[7:4], select the page to be erased;
- 4. Configure SPROG_CMD = 0x96;
- 5. Write 4 NOP instructions;
- 6. Start erasing, the CPU turns off the clock F_sys_clk, and turns on the clock F_sys_clk after erasing is completed;
- 7. Need to continue to erase data, skip to step 2;
- 8. Configure SPROG_ADDR_L=0x00, restore interrupt settings

15.4. Byte Write Step

- Prepare EEPROM to write cache data, the cache address is xram address 0x00+2*i(i=0~15);
- 2. SPROG_TIM[3:2] = 0~3 (recommended 2.25ms), only configure once in the main program main() function initialization;
- 3. Turn off the interrupt;
- 4. Configure SPROG_ADDR_L[3:0] and select the first address of the page corresponding to SPROG_ADDR_L[7:4];
- 5. Configure SPROG_NUM, select the number of characters to be programmed (0~15) (when SPROG_NUM=0, it means that only 1 data is programmed);
- 6. Configure SPROG_CMD = 0x69;
- 7. Write 4 NOP instructions;
- 8. Start programming, the CPU turns off the clock F_sys_clk, and then turns on the clock F_sys_clk after completion;
- 9. Need to continue programming data, skip to step 3;
- 10. Configure SPROG_ADDR_L=0x00 to restore interrupt settings.

NOTE:

- 1. The data written in EEPROM is read from xram address (0x00+2*i(i=0-15)).
- When SPROG_NUM =0~15, it means that the number of bytes to be programmed is SPROG_NUM +1. When {SPROG_ADDR_L[3:0]+ SPROG_NUM}>15, for the excess part, the programmed data will overwrite the original data starting from the top address of the page.

For example, SPROG_ADDR_L[7:0]=0x0a; SPROG_NUM=10; the number of bytes that need to be programmed is 11; at this time, the six address spaces of 0x8014, 0x8016, 0x8018, 0x801A, 801C, and 0x801E are programmed normally, but There are still 5 bytes

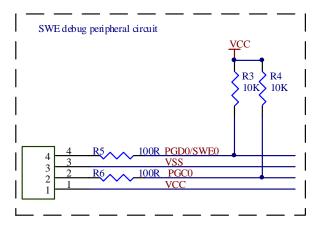
BYD
 比亚迪半导体
 Semiconductor

that have not been programmed. At this time, the remaining 5 data will be programmed into the 5 address spaces of 0x8000, 0x8002, 0x8004, 0x8006, and 0x8008.

15.5. Address Correspondence

EEP page	Page erase logical address SPROG_ADDR_L [7:4] (HEX)	Page erase physical address (HEX)
0	00	8000
1	01	8020
2	02	8040
3	03	8060
4	04	8080
5	05	80A0
6	06	80C0
7	07	80E0
8	08	8100
9	09	8120
10	0A	8140
11	0B	8160
12	0C	8180
13	0D	81A0
14	0E	81C0
15	0F	81E0

EEP page	Address in EEP page	Data write logical address	Data write physical address
	SPROG_ADDR_L [3:0](HEX)	SPROG_ADDR_L [7:0] (HEX)	(HEX)
0	00	00	8000
0	01	01	8002
0	02	02	8004
0	03	03	8006
0	0D	0D	801A
0	0E	0E	801C
0	0F	0F	801E
1	00	10	8020
1	01	11	8022
2	00	20	8040
15	00	F0	81E0

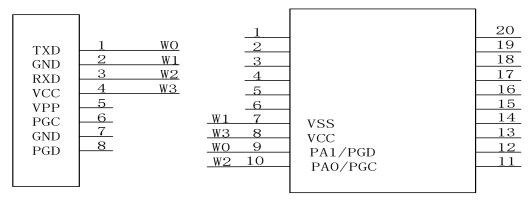


15	01	F1	81E2
15	0B	FB	81F6
15	0C	FC	81F8
15	0D	FD	81FA
15	0E	FE	81FC
15	0F	FF	81FE

16. Burning and Debugging

16.1. SWE Circuit Connection

Two-wire programming and single-wire debugging. When performing simulation debugging, you need to connect a SWE wire. In the SWE debugging mode, the IO function of the SWE port is blocked. It is recommended not to configure other functions of the SWE debugging I/O port to avoid affecting the SWE debugging function.


SWE circuit connection

16.2. TouchKey Programming

Connect the chip PGD, PGC, VCC, VSS four lines. When entering the programming interface, select the chip of the corresponding model. Open the compiled HEX file, click on a built-in flash to wait for burning.

When entering the debugging interface, first burn the HEX file with the debug data transmission mode, click to open the debug to view the touch key data. For example:

ConnectPinsMin

BF7412AM_SOP20 burning wiring diagram

Notes: refer to the TK programming guide for specific operation instructions.

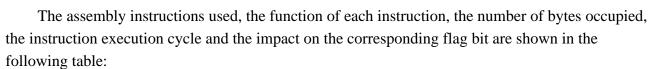
17. CPU Instruction System

17.1. Instruction Code

The BF7412AMXX-XJLX instructions are divided into signal-byte instructions, double-byte instructions and three-byte instructions.

Signal-byte instructions: A signal-byte instruction consists of 8 bit binary code. There are only instruction opcodes in the instruction, no instruction operand or instruction operand is implied in the instruction opcode. There are 49 such instructions.

Double-byte instructions: Consists of two bytes, one for opcode and the other for the operand (or operand address), stored in order in program memory. There are 46 such instructions.


Three-byte instructions: Consists of one byte of instruction opcode and two bytes of operands (or operand address). There are 16 such instructions.

17.2. Instruction Set

In order to describe the instructions conveniently, some symbols are used in the instructions. The meanings of these symbols are as follows:

addr 11	Lower 11 address
addr 16	16-bit address
dine of	Direct addressing, 8-bit internal data and address (including special function
direct	registers)
bit	Bit address
#data	8-bit immediate
#data16	16-bit immediate
rel	Signed 8-bit relative displacement
n	Number 0~7
Rn	R0~R7 working registers of the current register group
i	Numbers 0, 1
Ri	Working register R0, R1
@	Register indirect addressing
\leftarrow	Data transfer direction
\wedge	Logical "and"
\lor	Logical OR
\oplus	Logical "exclusive OR"
\checkmark	Affect the flag
Х	No effect on the flag

CPU instruction symbol meaning table

			In	pact of	on the	flag		Number
Mnemonic		Function		OV	AC	CY	Number of bytes	of cycles
	Rn	A←(Rn)		×	×	×	1	1
	direct	A←(direct)		×	×	×	2	1
MOV A	@Ri	A←((Ri))		×	×	×	1	1
	#data	A←data		×	×	×	2	1
	А	Rn←(A)	×	×	×	×	1	1
MOV Rn	direct	Rn←(direct)	×	×	×	×	2	2
	#data	Rn←data	\times	×	×	×	2	1
MOV	А	direct1←(A)	×	×	×	×	2	1
direct1	Rn	direct1←(Rn)	\times	×	×	×	2	2
ullecti	direct2	direct1←(direct2)	\times	×	×	×	3	2
MOV	@Ri	direct←((Ri))	\times	×	×	×	2	2
direct,	#data	direct←data	\times	×	×	×	3	2
MOV	А	(Ri)←(A)	\times	×	×	×	1	1
@Ri	direct	(Ri)←(direct)	\times	×	×	×	2	2
WKI	#data	(Ri)←data	\times	×	×	×	2	1
16 bit data	transfer instruct	ion						
			Impact on the flag			Number		
Mr	nemonic	Function	Р	OV	AC	CY	Number of bytes	of cycles
MOV DP7	TR,#data16	DPTR←data16	×	×	×	×	3	2
External d	ata transfer and t	able lookup instruction	ons					
			In	npact o	on the	flag		Number
Mr	nemonic	Function	Р	OV	AC	CY	Number of bytes	of
			P	01	AC	CI		cycles
MOVX	@DPTR,A	(DPTR)←(A)	×	×	×	×	1	2
MOVC	@A+DPTR	$A \leftarrow ((A) + (DPTR))$		×	×	×	1	2
А,	@A+PC	A←((A)+(PC))		×	×	×	1	2
MOVX A,	@DPTR	A←(DPTR)	\checkmark	×	×	×	1	2
Notes: The	e number of cycl	es and the number of	byte	es of tl	ne MC	OVX i	nstruction can be co	onfigured
	gisters CKCON<							

Exchange	class instruction							
			In	pact o	on the	flag	Number	Number
Mnemonic		Function		OV	AC	CY	of bytes	of cycles
	Rn	(Rn)←(A)		×	×	×	1	2
XCH A,	direct	(A)←(direct)		×	×	×	2	1
	@Ri	(A)←((Ri))	\times	×	×	×	1	1
XCHD A,	@Ri	(A)3~0~((Ri))3~0		×	×	×	1	1
SWAP A		(A)7-4~(A)3-0		×	×	×	1	1
Arithmetic	c operation instru	uction						
			In	npact o	on the	flag	Number	Number
Mr	nemonic	Function	Р	OV	AC	CY	of bytes	of cycles
	Rn	A←(A)+(Rn)		\checkmark			1	1
	direct	$A \leftarrow (A) + (direct)$		\checkmark		\checkmark	2	1
ADD A	@Ri	A←(A)+((Ri))		\checkmark		\checkmark	1	1
	#data	A←(A)+data		\checkmark	\checkmark	\checkmark	2	1
	Rn	A←(A)+(Rn)+(C)		\checkmark	\checkmark	\checkmark	1	1
ADDC	direct	$A \leftarrow (A) + (direct) + (C)$		\checkmark	\checkmark	\checkmark	2	1
А	@Ri	A←(A)+((Ri)) +(C)		\checkmark	\checkmark	\checkmark	1	1
	#data	$A \leftarrow (A) + data + (C)$		\checkmark	\checkmark	\checkmark	2	1
	Α	A←(A)+1	\checkmark	×	×	×	1	1
	Rn	Rn←(Rn)+1	\times	×	×	×	1	1
INC	direct	direct←(direct)+1	\times	×	×	×	2	1
	@Ri	(Ri)←((Ri))+1	×	×	×	×	1	1
	DPTR	DPTR←((DPTR))+1	\times	×	×	×	1	2
DA A		BCD code adjustment	\checkmark	×	\checkmark	\checkmark	1	1
	Rn	A←(A)-(Rn)-(C)	\checkmark	×	×	×	1	1
SUBB A	direct	$A \leftarrow (A) - (direct) - (C)$		\checkmark	\checkmark	\checkmark	2	1
SUDD A	@Ri	(A)←(A)-((Ri))-(C)	\checkmark	\checkmark	\checkmark	\checkmark	1	1
	#data	A←(A)-data-(C)	\checkmark	\checkmark	\checkmark	\checkmark	2	1
	А	A←(A)-1	\checkmark	×	×	×	1	1
DEC	Rn	Rn←(Rn)-1	\times	×	×	×	1	1
DEC	direct	direct←(direct)-1	\times	×	×	×	2	1
	@Ri	(Ri)←((Ri))-1	\times	×	×	×	1	1
		BA←(A)*(B), after						
MUL AB		performing the multiplication			~	0	1	4
MUL AB		operation, the lower byte is	V	N	×	0	1	4
		stored in A and the high byte						

BF7412AMXX-XJLX

		is stored in B.						
DIV AB		A←(A)/(B) B←remainder	\checkmark	\checkmark	×	0	1	4
Notes: When the DA instruction is used, the adjustment rules are as follows: if the low 4 bits of accumulator A are greater than 9 or AC=1, then A \leftarrow A+06H; if the high 4 bits of accumulator A are greater than 9 or CY=1, then A \leftarrow A+60H.								
Logical of	peration instructi	on					1	
			In	npact o	on the	flag	Number	Number
М	nemonic	Function	P	OV	AC	CY	of bytes	of cycles
CLR A		А←00Н	\checkmark	×	×	×	1	1
CPL A		A←(Ā)	\checkmark	×	×	×	1	1
	Rn	A←(A)∧(Rn)	\checkmark	×	×	×	1	1
ANL A,	direct	A←(A)∧(direct)	\checkmark	×	×	×	2	1
ANL A,	@Ri	A←(A)∧((Ri))	\checkmark	×	×	×	1	1
	#data	A←(A)∧data	\checkmark	×	×	×	2	1
ANL	А	direct←(A)∧(direct)	×	×	×	×	2	1
direct,	#data	direct←(direct)∧data	×	×	×	×	3	2
	Rn	$A \leftarrow (A) \lor (Rn)$	\checkmark	×	×	×	1	1
ORL A,	direct	$A \leftarrow (A) \lor (direct)$		×	×	×	2	1
ORE II,	@Ri	$A \leftarrow (A) \lor ((Ri))$		×	×	×	1	1
	#data	A←(A)∨data		×	×	×	2	1
ORL	Α	direct (direct) \lor (A)	×	×	×	×	2	1
direct,	#data	direct←(direct)∨data	×	×	×	×	3	2
	Rn	$A \leftarrow (A) \oplus (Rn)$		×	×	×	1	1
XRL A,	direct	$A \leftarrow (A) \oplus (direct)$		×	×	×	2	1
	@Ri	$A \leftarrow (A) \oplus ((Ri))$		×	×	×	1	1
	#data	$A \leftarrow (A) \oplus data$		×	×	×	2	1
XRL	Α	direct \leftarrow (direct) \oplus (A)	×	×	×	×	2	1
direct,	#data	direct←(direct)⊕data	×	×	×	×	3	2

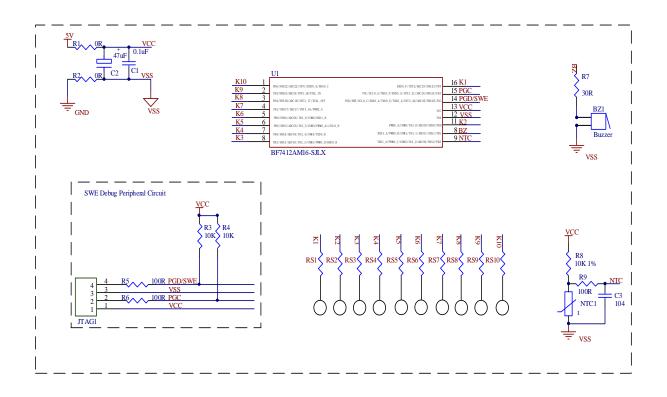
Loop, shift class instruction							
		In	npact o	on the	flag	Number	Number
Mnemonic	Function	Р	OV	AC	CY	of bytes	of cycles
RL A	The content in A is rotated left by one bit.	×	×	×	×	1	1
RLC A	A content with carry left shift one bit.		×	×	\checkmark	1	1
RR A	The content in A is rotated right by one bit.	×	×	×	×	1	1
RRC A	A content with carry right shift one bit.		×	×	\checkmark	1	1
Call, return class instructi	on						
		In	npact o	on the	flag	Number	Number
Mnemonic	Function	Р	OV	AC	CY	of bytes	of cycles
LCALL addr16	addr16 $(PC) \leftarrow (PC) + 3, (SP) \leftarrow (PC), \\ (PC) \leftarrow addr16$		×	×	×	3	2
ACALL addr11	$(PC) \leftarrow (PC) + 2, (SP) \leftarrow (PC),$ $(PC10 \sim 0) \leftarrow addr11$	×	×	×	×	2	2
RET	(PC)←((SP))	×	×	×	×	1	2
RETI	(PC)←((SP)) return from interrupt	××		×	×	1	2
Transfer class instruction			1			<u> </u>	
		In	pact on the flag		NT 1	Number	
Mnemonic	Function	Р	OV	AC	CY	Number of bytes	of cycles
LJMP addr16	PC←addr15~0	×	×	×	×	3	2
AJMP addr11	PC10~0←addr10~0	\times	×	×	×	2	2
SJMP rel	PC←(PC)+rel	\times	×	×	×	2	2
JMP @A+DPTR	$PC \leftarrow (A) + (DPTR)$	×	×	×	×	1	2
JZ rel	$PC \leftarrow (PC)+2,$ If (A)=0, PC \leftarrow (PC)+rel	×	×	×	×	2	2
JNZ rel	$PC \leftarrow (PC)+2,$ If (A) \neq 0, PC \leftarrow (PC)+rel		×	×	×	2	2
JC rel	$PC \leftarrow (PC)+2,$ If (CY)=1, PC \leftarrow (PC)+rel		×	×	×	2	2
JNC rel	$PC \leftarrow (PC)+2,$ If (CY)=0, PC \leftarrow (PC)+rel	×	×	×	×	2	2

		PC←(PC)+3,						
JB bi	it,rel	If (bit)=1, $PC \leftarrow (PC)+rel$	×	×	×	×	3	2
		$PC \leftarrow (PC) + 3,$						
JNB bi	it,rel	If (bit)=0, $PC \leftarrow (PC)+rel$	×	×	×	×	3	2
		$PC \leftarrow (PC) + 3,$						
JBC bit	t, rel	If (bit)=1,bit $\leftarrow 0$,	×	×	×	×	3	2
JDC UI	, 101	$PC \leftarrow (PC) + rel$					5	-
		$PC \leftarrow (PC)+3,$						
	A, direct, rel	If (A) \neq direct, PC(PC)+rel	×	×	×	×	3	2
		If (A)<(direct), CY \leftarrow 1		~	~	~	5	2
		$PC \leftarrow (PC)+3,$						
	A,#data,rel	If (A) \neq data, PC(PC)+rel	×	×	×	×	3	2
	1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	If (A)<(data), CY \leftarrow 1		~	~	~	5	2
CJNE		$PC \leftarrow (PC) + 3,$						
	Rn,#data,rel	If $(Rn) \neq data, PC \leftarrow (PC)+rel$	×	×	×	×	3	2
	itii,#data,itei	If $(Rn) \leq (data), CY \leftarrow 1$		~	~	~	5	2
		$PC \leftarrow (PC)+3$, if ((Ri)) \neq data,						
	@Ri,#data,rel		×	×	×	×	3	2
		If $((Ri)) < (data), CY \leftarrow 1$		~	~	^	5	2
		$PC \leftarrow (PC)+2, Rn \leftarrow (Rn)-1,$						
	Rn,rel	If $(Rn) \neq 0$, PC \leftarrow (PC)+rel		×	×	×	2	2
		$PC \leftarrow (PC) + 3,$						
DJNZ		$(direct) \leftarrow (direct) - 1, if (direct)$						
	direct,rel	$\neq 0,$	×	×	×	×	3	2
		$PC \leftarrow (PC) + rel$						
Stack, em	oty operation cla			<u> </u>				L
,			In	pact of	on the flag			Number
Mr	nemonic	Function					Number	of
			Р	OV	AC	CY	of bytes	cycles
PUSH di	irect	$SP \leftarrow (SP)+1, (SP) \leftarrow (direct)$	×	×	×	×	2	2
POP di	irect	direct←(SP), SP←(SP)-1	×	×	×	×	2	2
NOP		empty operation	×	×	×	×	1	1
	ulation instruction					•		
1			Im	npact of	on the	flag	NT 1	Number
Mr	nemonic	Function		-			Number	of
			Р	OV	AC	CY	of bytes	cycles
MOU	C, bit	CY←bit	×	×	×		2	1
MOV	bit, C	bit←CY	×	×	×	×	2	1
CLR	С	CY←0	×	×	×	\checkmark	1	1

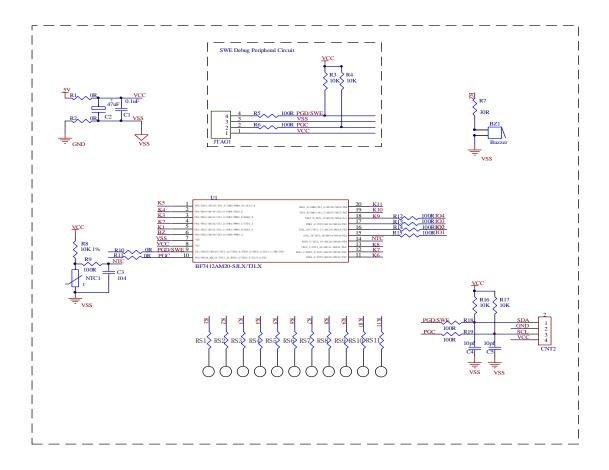
	bit	bit←0	×	×	×	×	2	1
(LEED)	С	CY←1	×	×	×	\checkmark	1	1
SETB	bit	bit←1	×	×	×	×	2	1
CPL	С	$CY \leftarrow (\overline{CY})$	×	×	×	\checkmark	1	1
CPL	bit	bit←(bit)	×	×	×	×	1	1
ANL	C, bit	$C \leftarrow (C) \land (bit)$	×	×	×	\checkmark	2	2
ANL	C, /bit	$C \leftarrow (C) \land (\overline{bit})$	×	×	×	\checkmark	2	2
ORL	C, bit	$C \leftarrow (C) \lor (bit)$	×	×	×	\checkmark	2	2
UKL	C, /bit	$C \leftarrow (C) \lor (\overline{bit})$	×	×	×	\checkmark	2	2
Pseudo-ins	struction							
Mnemonic	Instruction for	mat	Function description					
ORG	【tab:】ORG	addr16	Define the first address of tab					
EQU	tab EQU data/t	ab	Assign values to labels					
DB	【tab:】 DB i	tem or item tabel	Define a-byte or multi-byte					
DW	tob. DW	item or item tabel	16	bit w	ord co	ontent	used to de	efine two
			or	or more cells in memory				
DS	tob. DS or	nrassion	Specifies to leave several memory cells					
03	[tab:] DS expression		starting with the label					
BIT	tab BIT address		As	ssign a	a bit a	ddress	s to a label	
END	END is placed at the end of the assembly langu			lage program to tell the assembler that				
LIND	the source prog	gram ends here.						

CPU instruction symbol table

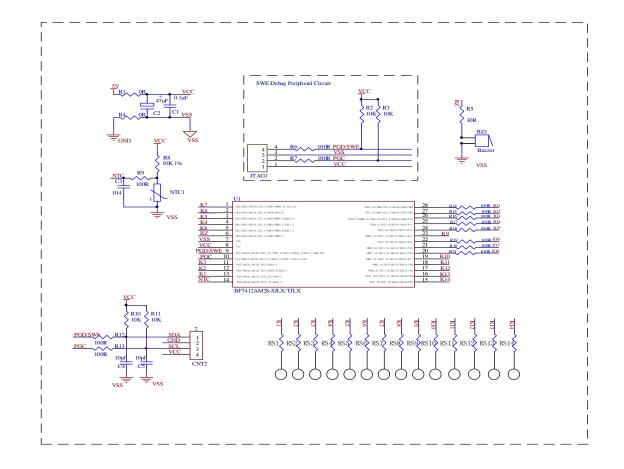
CPU related register


	SFR register								
Address	Name	RW	Reset value	Function description					
0x81	SP	RW	0x07	stack pointer register					
0x82	DPL	RW	0x00	data pointer register 0 low 8 bit					
0x83	DPH	RW	0x00	data pointer register 0 high 8 bit					
0x87	PCON	RW	0x00	low power mode select register					
0xE0	ACC	RW	0x00	accumulator					
0xF0	В	RW	0x00	B register					

CPU SFR register list

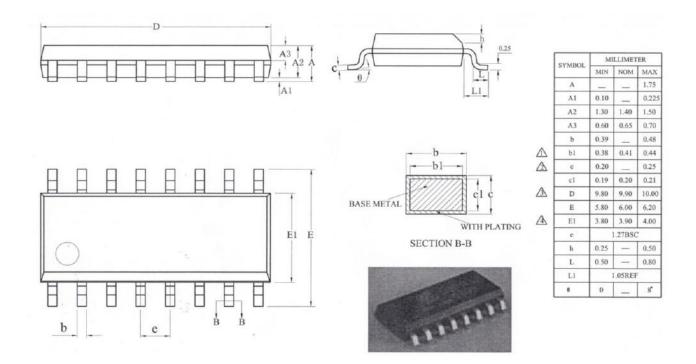

18. Reference Application Circuits

18.1. BF7412AM16-SJLX Reference Circuit



18.2. BF7412AM20-SJLX/TJLX Reference Circuit

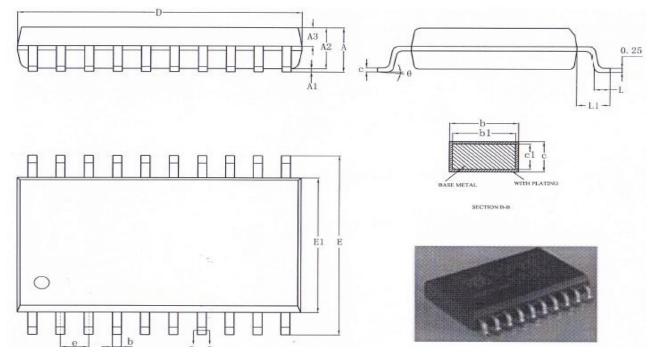
18.3. BF7412AM28-SJLX/TJLX Reference Circuit


Note: The above reference schematic reference circuit is for reference design only.

- 1. The RSX channel resistance is recommended to be 1k~8.2k, normal 4.7k.
- 2. The SWE debugging peripheral circuit is only used for SWE debugging. If the emulator or adapter board has a pull-up resistor, there is no need to connect the SWE pull-up resistor.
- 3. Replace the 0Ω resistors with parallel power and ground with magnetic beads. The EMI test item (RE) can increase the test margin. The recommended parameter is $600 \Omega@100$ MHz.

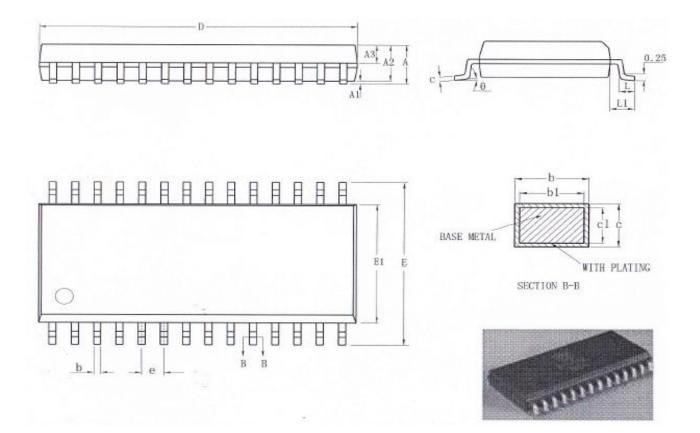
19. Packages

19.1. SOP16



SOP16 Package Infographic

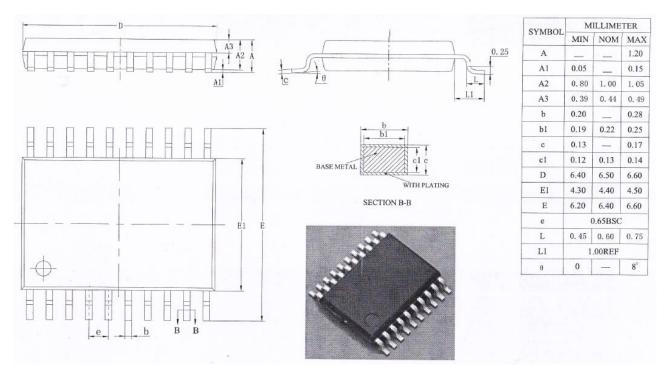
19.2. SOP20



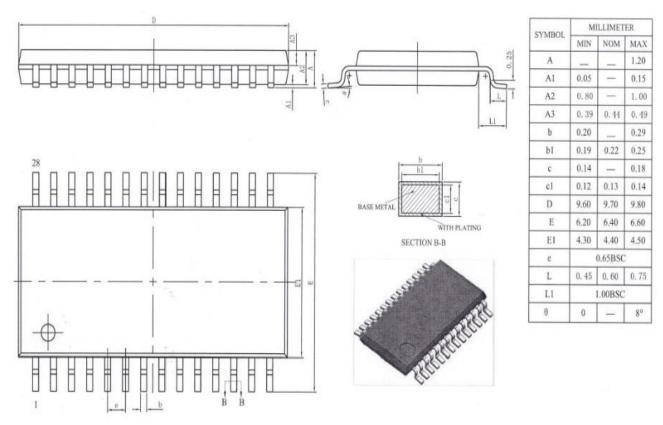
SOP20 Package Infographic

DIM		SOP020 MILLIMETERS	
DIM	MIN	NOM	MAX
А	-	-	2.650
A1	0.100	0.200	0.300
A2	2.250	2.300	2.350
b	0.350	-	0.440
с	0.250	-	0.310
D	12.600	12.800	13.000
E1	7.300	7.500	7.700
Е	10.100	10.300	10.500
e		1.270(BSC)	
L	0.7	-	1
θ	0 °	-	8 °
End surface waste	-	-	0.2
Total length of plastic package	12.800	13.000	13.300

19.3. SOP28

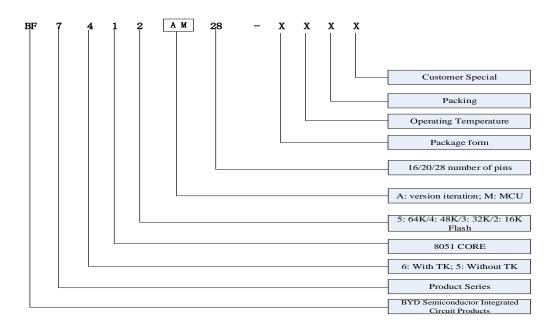

SOP28 Package Infographic

DIM		SOP028 MILLIMETERS	
DIM	MIN	NOM	MAX
А	2.250	2.400	2.650
A1	0.100	0.200	0.300
A2	2.250	2.300	2.350
b	0.300	0.425	0.480
с	0.250	0.285	0.310
D	17.800	18.000	18.200
E1	7.300	7.500	7.700
Е	10.100	10.300	10.500
е		1.270(BSC)	
L	0.7	-	1
θ	0 °	-	8 °
End surface waste	-	-	0.2
Total length of plastic package	18.000	18.300	18.500


19.4. TSSOP20

TSSOP20 Package Infographic

19.5. TSSOP28


TSSOP28 Package Infographic

Ordering Information

Package	Work	temperature	Package style	Keep the follow-up
S: SOP		A: -40°C ~+150°C	B: tap	-
A: SSOP	Car grade	B: -40°C ~+125°C	L: feed tube	-
T: TSSOP		C: -40°C ~+105°C	T: tray	-
M: MSSOP		D: -40°C ~+85°C	-	-
L: LQFP	Industrial grade	K: -40°C ~+85°C	-	-
Q: QFN		J: -40°C ~+105°C	-	-
B: BGA		L: -40°C ~+125 °C	-	-
D: DIP	Consumer grade	P: -25°C ~+70°C	-	-
-		Q : 0°C ~+70°C	-	_

Example:

Revision History

Revised date	Revised content	Reviser	Remarks
2021-06-09	V1.0	YNN	V1.0
2021-09-14	 Add two models, BF7412AM20-TJLX and BF7412AM28-TJLX Update 3.1. FLASH memory chapter Update BYD LOGO Update ADC conversion time formula Update ADC characteristics table Added section 5.3.1. Reset System Register Update register 1CH, BFH, C7H, BBH, B5H, FFH description Add BOR description 	YNN	V1.1
2021-11-03 2021-12-01	 Update the power-down reset voltage range Update the LVDT voltage range Update register 87H, 89H, B3H, FFH description Update timer 0/1 chapter Update register BCH description 	YNN YNN	V1.2 V1.3

Disclaimer

1. The information contained herein is subject to change without notice, see the revision record for details. Please contact FAE or the agent for the latest version.

2. BYD Semiconductor Co., Ltd. will do its utmost to ensure the high quality and high stability of the company's products. Nonetheless, due to the inherent characteristics of general semiconductor devices such as electrical sensitivity and vulnerability to external physical damage, our products may malfunction or fail under these circumstances. When using our company's products, users are responsible for designing a safe and stable system environment in compliance with safety rules. Users can avoid possible accidents, fires and public injuries by removing redundant devices, failure prevention and fire prevention measures. When the user uses the product, please follow the operating steps specified in the company's latest manual to use the product.

3. The products of BYD Semiconductor Co., Ltd. in this document are designed for general electrical applications (computers, personal tools, company tools, measuring tools, industrial mechanical devices, household appliances, etc.). The company's products can not be used in some special equipment that requires extremely high stability and quality, so as to avoid accidents such as casualties. The range of products that cannot be applied includes atomic energy control equipment, aircraft and aviation devices, transportation equipment, traffic signal equipment, combustion control equipment, medical equipment, and all safety equipment. The company shall not be responsible for any loss or injury caused by users who use it within the non-product application ranges listed above.